¼¼°èÀÇ Å©·ç¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀå
Crew Oxygen Systems
»óǰÄÚµå : 1798836
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 269 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Å©·ç¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 8¾ï 7,830¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 6¾ï 4,250¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Å©·ç¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 5.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 8¾ï 7,830¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ »ê¼Ò ¸¶½ºÅ©´Â CAGR 4.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 1,860¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¼Ò ÀúÀå ½Ã½ºÅÛ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 7.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 7,510¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Å©·ç¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 1¾ï 7,510¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³â¿¡ CAGR 8.3%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 1¾ï 7,410¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.7%¿Í 5.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Å©·ç¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛÀÌ Ç×°ø¿ìÁÖ ¾ÈÀü°ú ÀÓ¹« ¿¬¼Ó¼º¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛÀº ¹Î°£ ¹× ±º¿ë Ç×°øÀÇ ±âº» ±¸¼º ¿ä¼Ò·Î¼­ ±â³» ±â¾ÐÀÌ ³·¾ÆÁö°Å³ª »ê¼Ò ¼öÁØÀÌ ¾ÈÀü ±âÁØÄ¡ ÀÌÇÏ·Î ¶³¾îÁú ¶§ Ç×°ø±â³» Àοø¿¡°Ô ÃæºÐÇÑ »ê¼Ò °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. ´ë±â Áß »ê¼Ò°¡ Àΰ£ÀÇ »ýÁ¸¿¡ ºÒÃæºÐÇÑ °í°íµµ¿¡¼­´Â ž½ÂÀÚÀÇ ÀǽÄ, ÀÎÁö±â´É, »ý¸®Àû ¾ÈÁ¤¼ºÀ» À¯ÁöÇϱâ À§ÇØ ÀÌ ½Ã½ºÅÛÀÌ ÇʼöÀûÀÔ´Ï´Ù. ±Þ°ÝÇÑ °¨¾Ð, Àå½Ã°£ÀÇ °í°íµµ ºñÇà, ºñ»ó Âø·úÀ» ¼ö¹ÝÇÏ´Â ½Ã³ª¸®¿À¿¡¼­ ƯÈ÷ Áß¿äÇϸç, ¸î ÃÊÀÇ »ê¼Ò ºÎÁ·µµ »ý¸íÀ» À§ÇùÇÏ´Â °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç×°ø±â°¡ »ó¾÷¿ë ¼öÁØÀ» ÈξÀ ¶Ù¾î³Ñ´Â °íµµ¿Í ÀüÅõ Á¶°Ç¿¡¼­ ºñÇàÇÏ´Â °æ¿ì°¡ ¸¹Àº ±º¿ë Ç×°ø¿¡¼­ »ê¼Ò ½Ã½ºÅÛÀº Á¶Á¾»çÀÇ Çï¸ä ¹× ºñÇູ°ú ÅëÇÕµÇ¾î ±âµ¿¼ºÀ» ¹æÇØÇÏÁö ¾Ê°í ¿øÈ°ÇÑ Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. ¹Î°£ Ç×°ø¿¡¼­´Â ½Ã½ºÅÛÀÌ ½Å·ÚÇÒ ¼ö ÀÖ¾î¾ß Çϰí, ¸ðµç Á¶Á¾½Ç ½Â¹«¿øÀÌ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ¾î¾ß Çϸç, ±¹Á¦ Ç×°ø ¾ÈÀü ±ÔÁ¤À» ÁؼöÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. Ç×°ø »ê¾÷¿¡¼­ ¾ÈÀü°ú ¿îÇ× ¿¬¼Ó¼ºÀÌ Á¡Á¡ ´õ Áß¿äÇØÁü¿¡ µû¶ó »ê¼Ò ½Ã½ºÅÛÀº Ç×°ø ´ç±¹ÀÇ Àǹ« »çÇ×ÀÏ »Ó¸¸ ¾Æ´Ï¶ó ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ÀÚ»êÀ¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¾Ð·Â ÀÌ»ó ¹ß»ý½Ã ÀÚµ¿ ¶Ç´Â ¼öµ¿À¸·Î ÀÛµ¿Çϵµ·Ï ¼³°èµÇ¾úÀ¸¸ç, ºñÇà Áß ¿¹»ó °¡´ÉÇÑ »ç°Ç°ú ¿¹»óÄ¡ ¸øÇÑ »ç°Ç ¸ðµÎ¿¡ ÇʼöÀûÀÎ ½Ã½ºÅÛÀÔ´Ï´Ù. ±× Á¸Àç´Â ½Â¹«¿ø°ú ½Â°´¿¡°Ô ½É¸®Àû ¾ÈÁ¤°¨À» ÁÖ°í, Ç×°ø ¿©Çà¿¡ ´ëÇÑ ½Å·Ú°¨À» °­È­ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ Ç÷§ÆûÀÌ ´õ¿í ÁøÈ­ÇÏ°í ´õ ³ôÀº °íµµ¿¡¼­ ´õ ¿À·£ ½Ã°£ ºñÇàÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛÀÇ ¿ªÇÒÀº Ç×°ø ¾ÈÀü ÇÁ·ÎÅäÄݰú Ç×°ø±â ¼³°è¿¡¼­ ´õ¿í ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

±â¼úÀÌ ½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛÀÇ ¼º´É°ú ÅëÇÕ¼ºÀ» ¾î¶»°Ô Çâ»ó½Ãų ¼ö Àִ°¡?

Ç×°ø¿ìÁÖ ±â¼úÀÇ ¹ßÀüÀ¸·Î ½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛÀÇ ¼³°è, È¿À²¼º, ±â´É¼ºÀÌ Å©°Ô Çâ»óµÇ¾î º¸´Ù ¾ÈÁ¤ÀûÀÌ°í ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³ª¸ç ±¤¹üÀ§ÇÑ Ç×°ø±â ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÁÖ¿ä °³¹ß Áß Çϳª´Â ±âÁ¸ÀÇ ¾ÐÃà °¡½º ½Ç¸°´õ¿¡¼­ ¿£Áø ºí¸®µå °ø±â³ª ´ë±â¿¡¼­ È£Èí °¡´ÉÇÑ »ê¼Ò¸¦ ÃßÃâÇϰí Á¤Á¦ÇÏ´Â ±â³» »ê¼Ò ¹ß»ý ½Ã½ºÅÛ(OBOGS)À¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀúÀåÀÇ Çʿ伺À» ÁÙÀ̰í, ¹°·ùÀÇ º¹À⼺À» ÃÖ¼ÒÈ­Çϸç, »ê¼Ò º¸Ãæ ¾øÀÌ Áö¼ÓÀûÀ¸·Î »ê¼Ò¸¦ °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¼Ò ¸¶½ºÅ©¿Í ·¹±Ö·¹ÀÌÅÍ¿¡ »ç¿ëµÇ´Â ¼ÒÀç´Â °æ·®È­, ³»±¸¼º, Æí¾ÈÇÔÀÌ Çâ»óµÇ¾î °¡È¤ÇÑ ºñÇà Á¶°Ç¿¡¼­µµ Âø¿ë°¨À» ³ôÀ̰í Àå½Ã°£ Âø¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀüÀÚ½Ä ¸ð´ÏÅ͸µ ¹× Áø´Üµµ µµÀÔµÇ¾î »ê¼Ò ¼öÁØ, ½Ã½ºÅÛ »óÅÂ, »ç¿ë ÆÐÅÏÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿¹¹æÀû À¯Áöº¸¼ö ¹× ½Ã½ºÅÛ Áغñ¿¡ µµ¿òÀÌ µË´Ï´Ù. Ç×°øÀüÀÚ ¹× Á¶Á¾¼® µð½ºÇ÷¹ÀÌ¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ °íÀåÀ̳ª ºñÁ¤»óÀûÀÎ ¾Ð·Â Á¶°ÇÀÌ ¹ß»ýÇϸé Á¶Á¾»ç´Â Áï½Ã °æ°í¸¦ ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀϺΠ÷´Ü Ç×°ø±â¿¡¼­´Â »ê¼Ò ½Ã½ºÅÛÀÌ Å¾½Â°´ÀÇ È£ÈíÀ» ¸ð´ÏÅ͸µÇÏ´Â »ýü ¼¾¼­¿Í °áÇÕµÇ¾î º¯È­ÇÏ´Â »ý¸®Àû ¿ä±¸¿¡ µû¶ó À¯·®À» µ¿ÀûÀ¸·Î Á¶Á¤ÇÕ´Ï´Ù. ¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ Ç×°ø±â Å©±â, ÀÓ¹« ÇÁ·ÎÆÄÀÏ, ½Â¹«¿ø ¿ä±¸»çÇ׿¡ µû¶ó ½±°Ô Ä¿½ºÅ͸¶ÀÌ¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÆäÀÏ ¼¼ÀÌÇÁ ¸ÞÄ¿´ÏÁò, ÀÌÁßÈ­ ±â´É, ´Ù¸¥ »ý¸í À¯Áö ÀåÄ¡¿ÍÀÇ È£È¯¼ºÀº ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ »õ·Î¿î ¼³°è¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ¾÷±×·¹À̵å´Â ½Â¹«¿øÀÇ »ýÁ¸¼º°ú Æí¾ÈÇÔÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Ç×°ø±â ÀüüÀÇ ¼º´É Çâ»ó, °æ·®È­, °ø°£ Àý¾à, ¿¡³ÊÁö È¿À² Çâ»ó¿¡µµ ±â¿©ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ ÀÓ¹«°¡ ´õ¿í º¹ÀâÇØÁö°í ¼¼°è ¿µ°øÀÌ ´õ¿í È¥ÀâÇØÁü¿¡ µû¶ó »ê¼Ò ½Ã½ºÅÛÀÌ Áß¿äÇÑ º¸È£ ÃþÀ¸·Î ÀÛ¿ëÇÏ´Â ¹æ½ÄÀº ¾ÕÀ¸·Îµµ ±â¼ú¿¡ ÀÇÇØ °è¼Ó °³¼±µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Çü¼ºÇÏ´Â ¿î¿µ ¹× ±ÔÁ¦ µ¿ÇâÀº ¹«¾ùÀΰ¡?

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛ¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä´Â Ç×°ø ¹× ¿ìÁÖ ºñÇàÀÇ ¿î¿µ ¿ä±¸, ±ÔÁ¦ Àǹ«, ÁøÈ­ÇÏ´Â À§Çè °ü¸® Àü·«ÀÇ Á¶ÇÕ¿¡ ÀÇÇØ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ¿¬¹æÇ×°øÃ»(FAA), À¯·´ ¿¬ÇÕ Ç×°ø¾ÈÀüû(EASA), ±¹Á¦¹Î°£Ç×°ø±â±¸(ICAO) µîÀÇ ±ÔÁ¦±â°üÀº Ç×°ø±â¿¡ ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÃæÁ·ÇÏ´Â ±â´ÉÀûÀÎ »ê¼Ò °ø±Þ ½Ã½ºÅÛÀ» ÀåÂøÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â »ê¼Ò ºÎÁ·ÀÌ ½É°¢ÇÑ À§Çè¿¡ óÇÒ ¼ö ÀÖ´Â 12,500ÇÇÆ® ÀÌ»óÀÇ °íµµ¸¦ ºñÇàÇÏ´Â Ç×°ø±â¿¡ ƯÈ÷ ¾ö°ÝÇÏ°Ô Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø»ç¿Í ¹æÀ§ ±â°üÀº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ Á¤±âÀûÀ¸·Î Á¡°ËµÇ°í, ¹æ°ø Áöħ¿¡ ºÎÇÕÇϸç, ¸ðµç ºñÇà Á¶°Ç¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇØ¾ß ÇÕ´Ï´Ù. ¿î¿ë Ãø¸é¿¡¼­´Â ÃÊÀå°Å¸® ºñÇà°ú °í°íµµ ÀÓ¹« Áõ°¡·Î ÀÎÇØ °æ·®È­Çϸ鼭µµ Àå½Ã°£ ¿î¿ë¿¡ °ßµô ¼ö ÀÖ´Â °ß°í¼ºÀ» °®Ãá ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ó¾÷Àû ¿ìÁÖ ºñÇà°ú ±Ù¿ìÁÖ °ü±¤ÀÇ È®´ë·Î ÀÎÇØ ±âÁ¸°ú´Â ´Ù¸¥ ºñÇà ȯ°æ¿¡ ¸Â´Â ÷´Ü ÆäÀÏ ¼¼ÀÌÇÁƼ »ê¼Ò °ø±Þ ±â¼úÀ» ÇÊ¿ä·Î ÇÏ´Â »õ·Î¿î »ç¿ëÀÚÃþÀÌ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ±º ºÐ¾ßµµ ¿©ÀüÈ÷ Áß¿äÇÑ ½ÃÀåÀ¸·Î, À¯ÀÎ ÀÓ¹«¿¡ ÇÊ¿äÇÑ ¼ÒÇü ÀÚÀ² »ê¼Ò ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â Â÷¼¼´ë ÀüÅõ±â ¹× ¹«ÀÎ Ç×°ø±â ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºñ»ó»çÅ ´ëºñ ÇÁ·ÎÅäÄÝÀº ¹Î°£ Ç×°ø¿¡¼­µµ È®´ëµÇ°í ÀÖÀ¸¸ç, Ç×°ø»ç´Â ´õ ¾ö°ÝÇÑ ¾ÈÀü º¥Ä¡¸¶Å©¸¦ ÁؼöÇÏ°í ½Â°´À» ¾È½É½Ã۱â À§ÇØ ÀÌÁßÈ­ »ý¸í À¯Áö ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² ½Â¹«¿ø ±³À° ÇÁ·Î±×·¥¿¡µµ »ê¼Ò ½Ã½ºÅÛ »ç¿ë¹ý°ú ºñ»ó½Ã ½Ã³ª¸®¿À¸¦ µµÀÔÇÏ¿© ±â³» »ç°í ¹ß»ý½Ã ½Å¼ÓÇϰí ÀûÀýÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀûÀÎ ¿äÀÎÀ¸·Î ÀÎÇØ ½Ã½ºÅÛÀÇ ½Å·Ú¼º, À¯Áöº¸¼ö¼º, ÄÄÇöóÀ̾𽺰¡ °¡Àå Áß¿ä½ÃµÇ°í, ±ÔÁ¦°¡ ¾ö°ÝÇÏ°í ¼º´ÉÀÌ Á߽õǴ ½ÃÀå ȯ°æÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀÇ ¼¼°è ¼ºÀå¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº Ç×°ø ±â¼úÀÇ ¹ßÀü, ¾ÈÀü ¿ä±¸ »çÇ× Áõ°¡, Ç×°ø¿ìÁÖ ¿ëµµÀÇ ´Ù¾çÈ­¿Í °ü·ÃµÈ ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·ÂÀº Çö´ëÀûÀ̰í È¿À²ÀûÀÎ »ý¸í À¯Áö ÀåÄ¡¸¦ ÇÊ¿ä·Î ÇÏ´Â Â÷¼¼´ë Ç×°ø±âÀÇ µµÀÔÀ» Æ÷ÇÔÇÏ¿© ¹Î°£ ¹× ±º¿ë Ç×°ø±âÀÇ ¼¼°è È®´ëÀÔ´Ï´Ù. °í°íµµ ºñÇà Áõ°¡, ºñÇà½Ã°£ÀÇ Àå±âÈ­, ¿ø°ÝÁö ¿îÇ×À¸·Î ÀÎÇØ °¨¾Ð Çö»óÀÇ À§ÇèÀÌ Áõ°¡ÇÏ¿© º¸´Ù Áøº¸µÈ »ê¼Ò ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. »ó¾÷Àû ¿ìÁÖ ºñÇà°ú ¿ìÁÖ °ü±¤ÀÇ ºÎ»óÀ¸·Î ¿ÏÀüÈ÷ »õ·Î¿î ¿ëµµ¸¦ °³¹ßÇϰí ÀÖÀ¸¸ç, »ê¼Ò ½Ã½ºÅÛÀº ÀÚ¿¬ °ø±â°¡ ¾ø´Â ȯ°æ¿¡¼­ Áö±¸ ´ë±â±Ç ¹Û¿¡¼­ Àΰ£ÀÇ »îÀ» Áö¿øÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ ÁöÁ¤ÇÐÀû ±äÀå°ú ±¹¹æ ¿¹»ê Áõ°¡´Â ÅëÇÕ »ê¼Ò °ø±Þ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ Ã·´Ü ½Â¹«¿ø º¸È£ ±â¼ú¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ±º¿ë Ç×°ø ÇÁ·Î±×·¥¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Ç×°øÀüÀÚ, °Ç°­ ¸ð´ÏÅ͸µ, ÀÚµ¿ Áø´Ü°ú °°Àº ´Ù¸¥ ±â³» ½Ã½ºÅÛ°úÀÇ ±â¼ú À¶ÇÕÀº ÃֽŠ»ê¼Ò ¼Ö·ç¼ÇÀÇ ¸Å·Â°ú ±â´É¼ºÀ» ´õ¿í ³ô¿©ÁÖ°í ÀÖ½À´Ï´Ù. ȯ°æ°ú ¹°·ù¿¡ ´ëÇÑ °í·Áµµ ÇÑ ¸òÀ» Çϰí ÀÖÀ¸¸ç, Ç×°ø»çµéÀº ±â³» »ý¼º ±â¼úÀ» äÅÃÇÏ¿© ±âÁ¸ »ê¼ÒÅÊÅ©¿Í °ü·ÃµÈ ¹«°Ô¿Í ºñ¿ëÀ» Àý°¨ÇϰíÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Àǹ«È­¿Í ±¹Á¦ Ç×°ø ¾ÈÀü ±ÔÁ¤Àº °­Á¦ÀûÀÎ ½Ã½ºÅÛ µµÀÔ°ú Á¤±âÀûÀÎ ¾÷±×·¹À̵带 Áö¼ÓÀûÀ¸·Î ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î Á¶Á¾»çÀÇ ÇÇ·Î, Àú»ê¼ÒÁõ ¿¹¹æ, ½Â¹«¿ø °Ç°­ Àü¹Ý¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Ç×°ø±â Á¦Á¶¾÷ü¿Í ¿îÇ׻簡 ½Å±Ô ¹× °³Á¶ ÇÁ·ÎÁ§Æ®¿¡¼­ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ¿ì¼±¼øÀ§¿¡ µÎµµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ½Â¹«¿ø¿ë »ê¼Ò ½Ã½ºÅÛ ½ÃÀåÀÇ ¼¼°è ¼ºÀå°ú ±â¼ú Çõ½ÅÀ» Áö¼ÓÀûÀ¸·Î ÃËÁøÇϰí Ç×°ø ¹× ¿ìÁÖ ºñÇà ¾ÈÀü ÀÎÇÁ¶óÀÇ Çʼö ¿ä¼Ò·Î¼­ÀÇ ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(»ê¼Ò ¸¶½ºÅ©, »ê¼Ò ÀúÀå ½Ã½ºÅÛ, »ê¼Ò °ø±Þ ½Ã½ºÅÛ), ¾ÖÇø®ÄÉÀ̼Ç(»ó¿ë Ç×°ø, ±º Ç×°ø, ÀÏ¹Ý Ç×°ø)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Crew Oxygen Systems Market to Reach US$878.3 Million by 2030

The global market for Crew Oxygen Systems estimated at US$642.5 Million in the year 2024, is expected to reach US$878.3 Million by 2030, growing at a CAGR of 5.3% over the analysis period 2024-2030. Oxygen Mask, one of the segments analyzed in the report, is expected to record a 4.4% CAGR and reach US$518.6 Million by the end of the analysis period. Growth in the Oxygen Storage System segment is estimated at 7.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$175.1 Million While China is Forecast to Grow at 8.3% CAGR

The Crew Oxygen Systems market in the U.S. is estimated at US$175.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$174.1 Million by the year 2030 trailing a CAGR of 8.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.7% and 5.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.4% CAGR.

Global Crew Oxygen Systems Market - Key Trends & Drivers Summarized

Why Are Crew Oxygen Systems Critical to Aerospace Safety and Mission Continuity?

Crew oxygen systems serve as a fundamental component in both civil and military aviation, ensuring that personnel onboard aircraft receive an adequate oxygen supply in situations where cabin pressure drops or oxygen levels fall below safe thresholds. At high altitudes, where atmospheric oxygen becomes insufficient for human survival, these systems become essential for maintaining crew consciousness, cognitive function, and physiological stability. They are especially crucial in scenarios involving rapid decompression, extended high-altitude flight, or emergency landings, where even a few seconds of oxygen deprivation can result in life-threatening outcomes. In military aviation, where aircraft often operate at altitudes well above commercial levels and under combat conditions, oxygen systems are integrated with pilot helmets and flight suits to provide seamless support without impeding mobility. For commercial aviation, systems must be reliable and easily accessible to all cockpit crew members, ensuring compliance with international air safety regulations. As the aviation industry increasingly emphasizes safety and operational continuity, oxygen systems are not only mandated by aviation authorities but also regarded as a mission-critical asset. These systems are designed to activate automatically or manually in the event of pressure anomalies, making them indispensable during both anticipated and unforeseen in-flight events. Their presence provides psychological reassurance to crew and passengers alike, reinforcing confidence in air travel. As aerospace platforms become more advanced and capable of flying at higher altitudes for longer durations, the role of crew oxygen systems becomes more central to aviation safety protocols and aircraft design.

How Is Technology Enhancing the Performance and Integration of Crew Oxygen Systems?

Advancements in aerospace technology are significantly improving the design, efficiency, and functionality of crew oxygen systems, making them more reliable, responsive, and integrated with broader aircraft systems. One major development is the shift from traditional compressed gas cylinders to on-board oxygen generation systems (OBOGS), which extract and purify breathable oxygen from engine bleed air or ambient atmospheric air. These systems reduce the need for storage, minimize logistical complications, and offer continuous oxygen supply without refilling. Materials used in oxygen masks and regulators have become lighter, more durable, and more comfortable, enabling better fit and extended wear in demanding flight conditions. Electronic monitoring and diagnostics have also been introduced, allowing for real-time tracking of oxygen levels, system status, and usage patterns, which helps in preventive maintenance and system readiness. Integration with avionics and cockpit displays ensures that pilots receive immediate alerts in case of malfunction or abnormal pressure conditions. In some advanced aircraft, oxygen systems are paired with biometric sensors that monitor crew respiration and adjust flow rates dynamically to meet changing physiological needs. Modular and scalable system architectures now allow for easier customization based on aircraft size, mission profile, and crew requirements. Fail-safe mechanisms, redundancy features, and compatibility with other life-support systems are being prioritized in new designs to enhance reliability. These technological upgrades not only improve crew survivability and comfort but also contribute to overall aircraft performance, reducing weight, conserving space, and enhancing energy efficiency. As aerospace missions grow more complex and global airspace becomes busier, technology will continue to refine how oxygen systems function as a critical layer of protection.

What Operational and Regulatory Trends Are Shaping the Demand for Crew Oxygen Systems?

The global demand for crew oxygen systems is being influenced by a combination of operational needs, regulatory mandates, and evolving risk management strategies in aviation and spaceflight. Regulatory bodies such as the Federal Aviation Administration (FAA), European Union Aviation Safety Agency (EASA), and International Civil Aviation Organization (ICAO) require aircraft to be equipped with functional oxygen delivery systems that meet stringent safety standards. These regulations are particularly strict for aircraft flying at altitudes above 12,500 feet, where oxygen deficiency becomes a significant hazard. Airlines and defense agencies must ensure that these systems are inspected regularly, comply with airworthiness directives, and are operable under all flight conditions. Operationally, the increase in ultra-long-haul flights and high-altitude missions is driving demand for systems that are lightweight yet robust enough to support extended periods of operation. The expansion of commercial spaceflight and near-space tourism is introducing a new segment of users that require sophisticated and fail-safe oxygen delivery technologies tailored for non-traditional flight environments. The military sector continues to be a significant market, with increasing focus on next-generation fighter aircraft and unmanned aerial systems that demand compact, autonomous oxygen solutions for manned missions. Emergency preparedness protocols have also expanded in commercial aviation, with airlines investing in redundant life-support systems to comply with stricter safety benchmarks and reassure passengers. In parallel, crew training programs are increasingly incorporating oxygen system usage and emergency scenarios to ensure rapid, competent response during inflight incidents. These combined factors are shaping a highly regulated and performance-focused market landscape where system reliability, maintainability, and compliance are paramount.

What Key Drivers Are Contributing to the Global Growth of the Crew Oxygen Systems Market?

The growth in the crew oxygen systems market is driven by a wide array of factors linked to advancements in aviation, increased safety requirements, and the diversification of aerospace applications. A major driver is the global expansion of both civil and military aviation fleets, including the introduction of new-generation aircraft that require modern, efficient life-support systems. The growing number of high-altitude flights, longer flight durations, and operations over remote areas increase the risk of depressurization events, necessitating more sophisticated oxygen systems. The rise of commercial spaceflight initiatives and space tourism is opening up entirely new applications, where oxygen systems must support human life beyond Earth's atmosphere in environments where natural air is unavailable. Additionally, geopolitical tensions and increasing defense budgets are fueling investments in military aviation programs that rely heavily on advanced crew protection technologies, including integrated oxygen delivery systems. Technological convergence with other onboard systems such as avionics, health monitoring, and automated diagnostics further enhances the appeal and functionality of modern oxygen solutions. Environmental and logistical considerations are also playing a role, with airlines seeking to reduce the weight and cost associated with traditional oxygen tanks by adopting on-board generation technologies. Government mandates and international aviation safety regulations continue to drive compulsory system adoption and periodic upgrades. Lastly, rising awareness around pilot fatigue, hypoxia prevention, and overall crew wellness is pushing aircraft manufacturers and operators to prioritize these systems during both new construction and retrofitting projects. Together, these factors are driving consistent global growth and innovation in the crew oxygen systems market, solidifying its role as an essential element of aviation and spaceflight safety infrastructure.

SCOPE OF STUDY:

The report analyzes the Crew Oxygen Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Oxygen Mask, Oxygen Storage System, Oxygen Delivery System); Application (Commercial Aviation Application, Military Aviation Application, General Aviation Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â