¼¼°èÀÇ ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀå
Aluminum Nitride
»óǰÄÚµå : 1798329
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 276 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,206,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,620,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀåÀº 2030³â±îÁö 1¾ï 7,290¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 4,350¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀåÀº 2030³â¿¡´Â 1¾ï 7,290¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 3.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Á÷Á¢ ÁúÈ­¹ýÀº CAGR 2.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 90¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ź¼Ò¿­È¯¿ø ¹× ÁúÈ­¹ý ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3,910¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀåÀº 2024³â¿¡ 3,910¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 5.8%·Î 2030³â±îÁö 3,370¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.3%¿Í 2.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.8%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÁúÈ­ ¾Ë·ç¹Ì´½ÀÌ Ã·´Ü ÀüÀÚ ¹× ¿­ °ü¸® ºÐ¾ß¿¡¼­ Áß¿äÇÑ Àç·á·Î ºÎ»óÇϰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÁúÈ­¾Ë·ç¹Ì´½(AlN)Àº ¶Ù¾î³­ ¿­ÀüµµÀ², ¿ì¼öÇÑ Àü±â Àý¿¬¼º, °ß°íÇÑ ±â°èÀû Ư¼ºÀ¸·Î ÀÎÇØ °í¼º´É ÀüÀÚ ¿ëµµ¿¡¼­ Áß¿äÇÑ Àç·á·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. 170W/mK ÀÌ»óÀÇ ¿­ÀüµµÀ²À» °¡Áø ÁúÈ­¾Ë·ç¹Ì´½Àº ÀüÀÚÁ¦Ç°ÀÇ ¹æ¿­¿¡ °¡Àå ÀûÇÕÇÑ ¼¼¶ó¹Í ¼ÒÀç Áß ÇϳªÀ̸ç, ÆÄ¿ö µð¹ÙÀ̽º, LED, °íÁÖÆÄ ½Ã½ºÅÛ, ¹ÝµµÃ¼ ÆÐŰ¡ µî¿¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. µ¶¼º À§ÇèÀÌ ÀÖ´Â º£¸±·ý »êÈ­¹°°ú °°Àº ´Ù¸¥ ¿­Àüµµ¼º Àç·á¿Í ´Þ¸® AlNÀº ¾ÈÀüÇϰí È¿À²ÀûÀÎ ´ëü Àç·á¸¦ Á¦°øÇϸç, ȯ°æÀû Ã¥ÀÓ°ú ÀÛ¾÷Àå ¾ÈÀü¿¡ ´ëÇÑ ¾÷°è Æ®·»µå¿¡ ºÎÇÕÇÕ´Ï´Ù. ÀÌ ¼ÒÀçÀÇ ³·Àº À¯ÀüÀ²°ú ³ôÀº ³»Àü¾ÐÀº Àü±âÀû Àý¿¬À» ¼Õ»ó½ÃŰÁö ¾Ê°í ¿­À» È¿°úÀûÀ¸·Î °ü¸®ÇØ¾ß ÇÏ´Â ÆÄ¿ö ¸ðµâ¿¡ »ç¿ëÇϱ⿡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ÀüÀÚ±â±âÀÇ ¼ÒÇüÈ­ ¹× ¼º´É ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ ´É·ÂÀº Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷, 5G ÀÎÇÁ¶ó, °í¼Ó ÄÄÇ»ÆÃÀÇ ±ÞÁõÀ¸·Î °íÃâ·Â ¹Ðµµ ÇÏ¿¡¼­ ¿­ ÆòÇü°ú ¼º´É ½Å·Ú¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â ¼ÒÀçÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁúÈ­¾Ë·ç¹Ì´½ ±âÆÇ ¹× ºÎǰÀº ±º¿ë ·¹ÀÌ´õ ½Ã½ºÅÛ ¹× À§¼º Åë½Å¿¡¼­ °¡ÀüÁ¦Ç° ¹× »ê¾÷ ÀÚµ¿È­¿¡ À̸£±â±îÁö ¸ðµç ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±â´ÉÀû Ư¼º»Ó¸¸ ¾Æ´Ï¶ó È­ÇÐÀûÀ¸·Î ¾ÈÁ¤ÀûÀÌ°í »êÈ­¿¡ °­Çϸç Ç¥ÁØ ¹ÝµµÃ¼ °øÁ¤°ú ȣȯÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ Àû¿ëÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¶Æ¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ÁúÈ­¾Ë·ç¹Ì´½Àº ÷´Ü ÀüÀÚÁ¦Ç°ÀÇ ÁøÈ­ÇÏ´Â ¼¼°è¿¡¼­ ¿­ °ü¸® ¹× ½ÅÈ£ ¹«°á¼º ¼Ö·ç¼ÇÀÇ ÃÖÀü¼±¿¡ ¼­°Ô µÇ¾ú½À´Ï´Ù.

Á¦Á¶ ±â¼ú Çõ½ÅÀº ÁúÈ­ ¾Ë·ç¹Ì´½ÀÇ ¼º´É°ú °¡¿ë¼ºÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

Á¦Á¶ °øÁ¤ÀÇ Çõ½ÅÀº »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÁúÈ­ ¾Ë·ç¹Ì´½ÀÇ »ç¿ë°ú È¿°ú¸¦ È®´ëÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸¿¡ AlNÀº ź¼Ò¿­È¯¿ø¹ýÀ̳ª Á÷Á¢ ÁúÈ­¹ýÀ¸·Î ÇÕ¼ºµÇ¾î ¿ÔÀ¸³ª, ÀÌ·¯ÇÑ ±â¼ú¿¡´Â ¼øµµ, ¼öÀ², °áÁ¤¸³ Á¦¾î¿¡ ÇѰ谡 ÀÖ¾ú½À´Ï´Ù. ÃÖ±Ù ºÐ¸» ÇÕ¼º, ÇÖ ÇÁ·¹½º, ½ºÆÄÅ© ÇöóÁ ¼Ò°á, È­ÇÐ ±â»ó ¼ºÀå(CVD)ÀÇ ¹ßÀüÀ¸·Î Àç·áÀÇ ¹Ðµµ, ¿­ÀüµµÀ², ±¸Á¶ÀÇ Àϰü¼ºÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤±³ÇÑ °øÁ¤À» ÅëÇØ ÀÔ°è °áÇÔÀÌ ÀûÀº °í¼øµµ ¼¼¶ó¹ÍÀ» »ý»êÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÀüÀÚ ÆÐŰ¡ ¹× ±âÆÇ¿¡¼­ ÃÖÀûÀÇ ¼º´ÉÀ» ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÚ±â ÀüÆÄÇü °í¿Â ÇÕ¼º¹ý(SHS) ¹× ÇöóÁ °­È­ È­ÇÐ ±â»ó ¼ºÀå¹ý(PECVD)°ú °°Àº »õ·Î¿î Á¢±Ù¹ýÀ» ÅëÇØ ¸¶ÀÌÅ©·Î ÀüÀÚ ÀåÄ¡ Ãþ ¹× ±¤ÀüÀÚ ÀÎÅÍÆäÀ̽º¿¡ ÀÌ»óÀûÀÎ ¿ì¼öÇÑ Á¢Âø·Â°ú À¯Àü Ư¼ºÀ» °¡Áø AlN ¹Ú¸·À» Çü¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ±â¼úÀº ƯÈ÷ °¡°Ý¿¡ ¹Î°¨ÇÑ ¼ÒºñÀç »ê¾÷¿¡¼­ Áö±Ý±îÁöÀÇ º¸±Þ À庮À» ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀûÃþ ¼ºÇü°ú °íµµÀÇ ¼Ò°á·Î º¹ÀâÇÑ Çü»óÀÇ ¸ÂÃãÇü AlN ºÎǰÀÇ ±æÀ» ¿­¾î ¿­ È®»ê±â, ¹æ¿­ÆÇ, Á¤¹Ð ±â°èÀÇ Àý¿¬ ¸µ µîÀ¸·ÎÀÇ ÀÀ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼¶ó¹Í ¹× ÀüÀÚÀç·á¿¡ ´ëÇÑ ¼¼°è R&D ÅõÀÚ°¡ °è¼Ó È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, ¿¬±¸±â°ü°ú ¹Î°£ Á¦Á¶¾÷üµéÀÌ Çù·ÂÇÏ¿© ÀÌ·¯ÇÑ ±â¼úÀ» »ê¾÷Àû ±Ô¸ð·Î Àü°³Çϱâ À§ÇÑ ¹Ì¼¼Á¶Á¤À» ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ³ª³ë Å©±âÀÇ AlN ÀÔÀÚ ¹× źȭ±Ô¼Ò, »êÈ­¾Ë·ç¹Ì´½°ú °°Àº Àç·á¿ÍÀÇ º¹ÇÕÀç·á °³¹ß·Î ±â´É¼ºÀÌ ´õ¿í Çâ»óµÇ¾î ¿­ ¼º´É, °­µµ, ºñ¿ë È¿À²¼ºÀÇ ±ÕÇüÀ» °í·ÁÇÑ ¼³°è ¼Ö·ç¼ÇÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ÁúÈ­ ¾Ë·ç¹Ì´½Àº Ư¼ö ¼ÒÀç¿¡¼­ ÃֽŠ¿­ ¹× Àü±â ¼³°è ½Ã½ºÅÛÀÇ ÇÙ½É ºÎǰÀ¸·Î ºü¸£°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù.

ÁúÈ­¾Ë·ç¹Ì´½ ½ÃÀå ¼ö¿ä¿Í ¸ÂÃãÇüÀº ¾î¶² ÀÀ¿ë ºÐ¾ß¿¡ ¿µÇâÀ» ¹Þ½À´Ï±î?

ÁúÈ­¾Ë·ç¹Ì´½ ¼ö¿ä´Â ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ¹æÀ§, »ê¾÷ Á¦Á¶ µîÀÇ ºÐ¾ß¿¡¼­ ´Ù¾çÇϰí ÁøÈ­ÇÏ´Â ¿ä±¸·Î ÀÎÇØ ¸Å¿ì ¿ëµµ¿¡ ƯȭµÇ¾î ÀÖ½À´Ï´Ù. ÀüÀÚ »ê¾÷¿¡¼­ ÁúÈ­ ¾Ë·ç¹Ì´½ÀÇ ÁÖ¿ä ¿ªÇÒÀº ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ±âÆÇ Àç·á·Î »ç¿ëµÇ¾î ³ôÀº Àü±â Àý¿¬¼ºÀ» À¯ÁöÇϸ鼭 ¿­À» È¿À²ÀûÀ¸·Î ¹æÃâÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ´Â RF ÁõÆø±â, GaN-on-AlN ¼ÒÀÚ, 5G ±âÁö±¹ ¹× Àü±âÀÚµ¿Â÷ ÆÄ¿öÆ®·¹Àο¡¼­ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ´Â IGBT ¸ðµâ°ú °°Àº °íÁÖÆÄ ¹× °íÀü¾Ð ¿ëµµ¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. Á¶¸í ºÐ¾ß¿¡¼­´Â °íÃâ·Â LED ¸ðµâÀÇ ¿­ °ü¸®¿¡ AlNÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, »ó¾÷½Ã¼³ ¹× ÀÚµ¿Â÷ ȯ°æ¿¡¼­ÀÇ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Á¶¸í¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷´Â ¹èÅ͸® ½Ã½ºÅÛ, ÀιöÅÍ, Àü·Â Á¦¾î ÀåÄ¡¿¡ °ß°íÇÑ ¿­ ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ »ê¾÷ ÀÚü°¡ ÁÖ¿ä °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ß¿¡¼­´Â ±ØÇÑÀÇ ¿Âµµ ¹× ¾Ð·Â Á¶°Ç¿¡¼­ ½Å·Ú¼ºÀÌ ¿ä±¸µÇ´Â ·¹ÀÌ´õ ½Ã½ºÅÛ, Ç×°øÀüÀÚ, À§¼º ºÎǰ¿¡ AlNÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â Àý»è °ø±¸, µµ°¡´Ï, °í¿­ ºÎÇÏ¿¡ ³ëÃâµÇ´Â ¹ÐºÀ ºÎǰ¿¡ AlN ¼¼¶ó¹ÍÀÌ »ç¿ëµË´Ï´Ù. Ä¿½ºÅ͸¶ÀÌ¡Àº ÀÌ ¸ðµç ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ƯÁ¤ ¿­ ÀÓ°è°ªÀ» À§ÇÑ ¼øµµ ¹× ÀÔÀÚ Å©±â Á¶Á¤, ÀåÄ¡ ÅëÇÕ¿¡¼­ ´õ ³ªÀº Á¢Âø·ÂÀ» À§ÇÑ Ç¥¸é ó¸® ¿£Áö´Ï¾î¸µ ¶Ç´Â ÀÌÁß ±â´É¼ºÀ» À§ÇÑ º¹ÇÕ ±¸Á¶ °³¹ß µî Á¦Á¶¾÷ü´Â Àç·á Ư¼ºÀ» ÃÖÁ¾ ¿ëµµÀÇ ¿ä±¸ »çÇ׿¡ ¸Â°Ô Á¶Á¤Çϱâ À§ÇØ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÀ¿ë ºÐ¾ß°¡ ´Ù¾çÈ­µÊ¿¡ µû¶ó ÁúÈ­ ¾Ë·ç¹Ì´½¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, °¢ ºÐ¾ß¿¡¼­ ¿ä±¸µÇ´Â ¼º´É°ú È®À强¿¡ ´ëÇÑ ¿ä±¸°¡ Á¦Ç° °³¹ßÀÇ ±Ëµµ¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀåÀÇ ¼¼°è ¼ºÀå °¡¼ÓÈ­ÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

ÁúÈ­ ¾Ë·ç¹Ì´½ ½ÃÀåÀÇ ¼ºÀåÀº ÀüÀÚ ¹× ¿£Áö´Ï¾î¸µ ºÐ¾ß¿¡¼­ º¸´Ù °í¼º´É, ¼ÒÇüÈ­, ¿­ÀûÀ¸·Î ÃÖÀûÈ­µÈ ½Ã½ºÅÛÀ» Ãß±¸ÇÏ´Â Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀ» ¹Ý¿µÇÏ´Â ¸î °¡Áö ÁÖ¿ä Æ®·»µå¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Àü±âÀÚµ¿Â÷, 5G ÀÎÇÁ¶ó, Ç×°ø¿ìÁÖ ÀÏ·ºÆ®·Î´Ð½º, »ê¾÷ÀÚµ¿È­ µîÀÇ ºÐ¾ß¿¡¼­ °íÃâ·Â, °í¹Ðµµ ÀüÀÚºÎǰÀÇ º¸±ÞÀÌ ÁøÇàµÇ°í ÀÖ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Àü±âÀû Àý¿¬¼º°ú ±â°èÀû ¹«°á¼ºÀ» Èñ»ýÇÏÁö ¾Ê°í È¿À²ÀûÀÎ ¿­ °æ·Î¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â Àç·á¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁúÈ­¾Ë·ç¹Ì´½Àº ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ ÀÔÁö¸¦ ±¸ÃàÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷ü¿Í ¼³°èÀÚµéÀº ¾Ë·ç¹Ì³ª³ª º£¸±·ý »êÈ­¹°°ú °°Àº ±âÁ¸ Àç·á¸¦ ¿ì¼öÇÑ ¼º´É°ú ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏ·Î ÀÎÇØ AlNÀ¸·Î ´ëüÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î 5G ³×Æ®¿öÅ©¿Í µ¥ÀÌÅͼ¾ÅͰ¡ ±¸ÃàµÊ¿¡ µû¶ó ±âÁö±¹ Àåºñ¿Í ÄÄÇ»ÆÃ Çϵå¿þ¾î¿¡¼­ ¹ß»ýÇÏ´Â ´ë·®ÀÇ ¿­ ºÎÇϸ¦ ó¸®ÇÒ ¼ö Àִ ÷´Ü ±âÆÇ ¹× ÆÐŰ¡ Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÀÚµ¿Â÷ ¼¼°è¿¡¼­´Â Àü±â À̵¿¼ºÀ¸·ÎÀÇ ÀüȯÀ¸·Î ÁúÈ­ ¾Ë·ç¹Ì´½ÀÇ ´É·ÂÀÌ Á÷Á¢ÀûÀ¸·Î µµ¿òÀÌ µÇ´Â Àü·Â ¸ðµâ ¹× Á¦¾î ÀüÀÚ ÀåÄ¡ÀÇ »ç¿ëÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ¹× ±ÔÁ¦ ¾Ð·Âµµ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, »ê¾÷°è´Â È¿À²ÀûÀ¸·Î ÀçȰ¿ëÇϰųª Æó±âÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¹«µ¶¼º ¹°ÁúÀ» ã°í ÀÖ¾î ȯ°æ ģȭÀûÀÌÁö ¾ÊÀº ´ë¾Èº¸´Ù AlN¿¡ ´ëÇÑ °ü½ÉÀÌ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶ È¿À²ÀÇ Çâ»óÀ¸·Î ÀÎÇØ ºñ¿ëÀÌ ³·¾ÆÁö°í Á¢±Ù¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÁúÈ­ ¾Ë·ç¹Ì´½Àº Áß±Þ ÀÀ¿ë ºÐ¾ß¿¡¼­µµ ¸Å·ÂÀûÀÎ ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù. AlN º¹ÇÕÀç·á ¹× ´Ù±â´É ¼¼¶ó¹Í¿¡ ´ëÇÑ ¿¬±¸°¡ È®´ëµÊ¿¡ µû¶ó °¡ÀüÁ¦Ç°, ž籤 ¹ßÀü, ¹ÙÀÌ¿À ÀÇ·á±â±â¿¡ ´ëÇÑ »õ·Î¿î °¡´É¼ºÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ ÁýÀûÈ­, ¼ÒÇüÈ­, ¿­Àû ¿ä±¸ Áõ°¡¿¡ µû¶ó ÁúÈ­¾Ë·ç¹Ì´½ ½ÃÀåÀº Àç·á ±â¼ú Çõ½Å, ÃÖÁ¾ »ç¿ëÀÚ ¼ö¿ä, ¼¼°è ÀÎÇÁ¶ó °³Ã´¿¡ ÈûÀÔ¾î Áö¼ÓÀûÀÌ°í ¿ªµ¿ÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.

ºÎ¹®

¹æ¹ý(Á÷Á¢ ÁúÈ­¹ý, ź¼Ò¿­È¯¿ø ¹× ÁúÈ­¹ý), ¿ëµµ(Àü±â ¹× ÀüÀÚ, ¿î¼Û, Åë½Å, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Aluminum Nitride Market to Reach US$172.9 Million by 2030

The global market for Aluminum Nitride estimated at US$143.5 Million in the year 2024, is expected to reach US$172.9 Million by 2030, growing at a CAGR of 3.1% over the analysis period 2024-2030. Direct Nitridation Method, one of the segments analyzed in the report, is expected to record a 2.3% CAGR and reach US$100.9 Million by the end of the analysis period. Growth in the Carbothermal Reduction & Nitridation Method segment is estimated at 4.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$39.1 Million While China is Forecast to Grow at 5.8% CAGR

The Aluminum Nitride market in the U.S. is estimated at US$39.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$33.7 Million by the year 2030 trailing a CAGR of 5.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.3% and 2.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.8% CAGR.

Global Aluminum Nitride Market - Key Trends & Drivers Summarized

Why Is Aluminum Nitride Emerging as a Critical Material in Advanced Electronics and Thermal Management?

Aluminum nitride (AlN) has rapidly emerged as a vital material in high-performance electronic applications, largely due to its exceptional thermal conductivity, excellent electrical insulation, and robust mechanical properties. With thermal conductivity levels exceeding 170 W/mK, aluminum nitride is among the best ceramic materials available for dissipating heat in electronics, making it a preferred choice in power devices, LEDs, radio frequency systems, and semiconductor packaging. Unlike other thermally conductive materials like beryllium oxide, which poses toxicity risks, AlN offers a safe and efficient alternative that aligns with industry trends toward environmental responsibility and workplace safety. The material's low dielectric constant and high breakdown voltage make it particularly suited for use in power modules, where heat must be effectively managed without compromising electrical isolation. This capability is becoming increasingly crucial as electronic devices shrink in size and grow in performance demands. The surge in electric vehicles, 5G infrastructure, and high-speed computing has intensified the need for materials that can maintain thermal equilibrium and performance reliability under high power densities. Aluminum nitride substrates and components are now being used in everything from military radar systems and satellite communications to consumer electronics and industrial automation. Beyond its functional attributes, the material is also chemically stable, resistant to oxidation, and compatible with standard semiconductor processes, which further enhances its applicability across a broad range of industries. These unique characteristics place aluminum nitride at the forefront of thermal management and signal integrity solutions in the ever-evolving world of advanced electronics.

How Are Innovations in Manufacturing Enhancing the Performance and Availability of Aluminum Nitride?

Innovations in manufacturing processes are playing a pivotal role in expanding the use and effectiveness of aluminum nitride across industrial applications. Traditionally, AlN has been synthesized using carbothermal reduction and direct nitridation methods, but these techniques have limitations in purity, yield, and grain control. Recent advancements in powder synthesis, hot pressing, spark plasma sintering, and chemical vapor deposition (CVD) are significantly improving the material's density, thermal conductivity, and structural consistency. These refined processes enable the production of high-purity aluminum nitride ceramics with fewer grain boundary defects, which are critical for achieving optimal performance in electronic packaging and substrates. Newer approaches such as self-propagating high-temperature synthesis (SHS) and plasma-enhanced chemical vapor deposition (PECVD) allow for the formation of thin AlN films with superior adhesion and dielectric properties, ideal for microelectronic device layers and optoelectronic interfaces. Moreover, scalable and cost-efficient manufacturing techniques are helping to address previous barriers to widespread adoption, especially in consumer-facing industries where price sensitivity is a factor. Additive manufacturing and advanced sintering also open the door for customized AlN components in complex geometries, extending its use to thermal spreaders, heat sinks, and insulating rings in precision machinery. As global R&D investment into ceramic and electronic materials continues to grow, research institutions and private manufacturers are collaborating to fine-tune these techniques for industrial-scale deployment. The development of nano-sized AlN particles and composites with materials like silicon carbide or aluminum oxide is further enhancing functionality, allowing for engineered solutions that balance thermal performance, strength, and cost-effectiveness. These technological breakthroughs are rapidly transforming aluminum nitride from a specialty material into a core component of modern thermal and electrical design systems.

How Do Application Sectors Influence Demand and Customization in the Aluminum Nitride Market?

The demand for aluminum nitride is highly application-specific, driven by the diverse and evolving needs of sectors such as electronics, automotive, aerospace, defense, and industrial manufacturing. In the electronics industry, aluminum nitride’s primary role lies in its use as a substrate material for semiconductor devices, where it serves to dissipate heat efficiently while maintaining high electrical insulation. This is particularly crucial in high-frequency and high-voltage applications, such as RF amplifiers, GaN-on-AlN devices, and IGBT modules, which are increasingly common in 5G base stations and electric vehicle powertrains. In the lighting sector, AlN is used in the thermal management of high-power LED modules, which are essential for energy-efficient lighting in commercial and automotive environments. The automotive industry itself is becoming a major driver, with electric vehicles demanding robust thermal solutions for battery systems, inverters, and power control units, where aluminum nitride can offer both performance and miniaturization advantages. In aerospace and defense, AlN finds applications in radar systems, avionics, and satellite components, where reliability under extreme temperature and pressure conditions is non-negotiable. Industrial applications include the use of AlN ceramics in cutting tools, crucibles, and sealing components exposed to high thermal loads. Customization plays a significant role across all these sectors. Whether it is tailoring the purity and grain size for specific thermal thresholds, engineering surface treatments for better adhesion in device integration, or developing composite structures for dual-functionality, manufacturers are investing heavily in aligning material properties with end-use requirements. The increasing diversification of its application base ensures that aluminum nitride continues to experience rising demand, each segment contributing distinct performance expectations and scalability needs that shape the trajectory of product development.

What Is Driving the Accelerated Global Growth of the Aluminum Nitride Market?

The growth in the aluminum nitride market is driven by several converging trends that reflect the global push toward higher-performing, more compact, and thermally optimized systems in electronics and engineering. One of the primary drivers is the increasing proliferation of high-power and high-density electronic components, particularly in sectors such as electric vehicles, 5G infrastructure, aerospace electronics, and industrial automation. As these technologies evolve, so does the demand for materials that can provide efficient thermal pathways without sacrificing electrical insulation or mechanical integrity. Aluminum nitride is uniquely positioned to meet these requirements, leading manufacturers and designers to substitute traditional materials like alumina and beryllium oxide with AlN for its superior performance and safety profile. The global rollout of 5G networks and data centers is creating additional demand for advanced substrates and packaging materials capable of handling massive heat loads generated by base station equipment and computing hardware. Meanwhile, in the automotive world, the shift toward electric mobility is generating a sharp rise in the use of power modules and control electronics that benefit directly from aluminum nitride’s capabilities. Environmental and regulatory pressures are also influencing growth, as industries seek sustainable, non-toxic materials that can be efficiently recycled or disposed of, further boosting interest in AlN over less eco-friendly alternatives. In addition, advancements in manufacturing efficiency are lowering costs and improving accessibility, making aluminum nitride attractive even for mid-tier applications. Expanding research into AlN composites and multifunctional ceramics is unlocking new potential in consumer electronics, photovoltaics, and even biomedical devices. As technology becomes more integrated, miniaturized, and thermally demanding, the aluminum nitride market is set for sustained and dynamic growth, supported by material innovation, end-user demand, and global infrastructure development.

SCOPE OF STUDY:

The report analyzes the Aluminum Nitride market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Method (Direct Nitridation Method, Carbothermal Reduction & Nitridation Method); Application (Electrical & Electronics Application, Transportation Application, Telecom Application, Aerospace & Defense Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â