¼¼°èÀÇ ÇÙ»ê ±â¹Ý Ä¡·á ½ÃÀå
Nucleic Acid Based Therapeutics
»óǰÄÚµå : 1798174
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 291 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇÙ»ê ±â¹Ý Ä¡·á ½ÃÀåÀº 2030³â±îÁö 126¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 54¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÇÙ»ê ±â¹Ý Ä¡·á ½ÃÀåÀº 2024-2030³â¿¡ CAGR 15.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 126¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ RNA °£¼·¡¤´Ü¼â°£¼· RNA´Â CAGR 16.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 85¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 13.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÑÆí, Áß±¹Àº CAGR 20.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÇÙ»ê ±â¹Ý Ä¡·á ½ÃÀåÀº 2024³â¿¡´Â 15¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 28¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 20.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 11.0%¿Í 13.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÙ»ê ±â¹Ý Ä¡·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÙ»ê Ä¡·áÁ¦´Â Áúº´ Ä¡·áÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?

ÇÙ»ê ±â¹Ý Ä¡·á´Â À¯ÀüÀÚ ¹ßÇö°ú ¼¼Æ÷ ±â´ÉÀÇ Á¤¹ÐÇÑ Á¶ÀÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Çö´ëÀÇÇÐÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå(ASO), ÀúºÐÀÚ °£¼· RNA(siRNA), ¸¶ÀÌÅ©·Î RNA(miRNA), ¾ÐŸ¸Ó, ¸Þ½ÅÀú RNA(mRNA) µîÀ» Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ Ä¡·á¹ýÀº ±âÁ¸ÀÇ ´Ü¹éÁú¿¡ ÃÊÁ¡À» ¸ÂÃá Á¢±Ù¹ýÀ» ¿ìȸÇÏ¿© À¯ÀüÀÚ ¼öÁØ¿¡¼­ Ç¥ÀûÈ­µÈ °³ÀÔÀ» Á¦°øÇÕ´Ï´Ù. Á¦°øÇÕ´Ï´Ù. ¹ø¿ª ÈÄ ´Ü¹éÁú °æ·Î¸¦ Á¶ÀýÇÏ´Â ±âÁ¸ ¾à¹°°ú ´Þ¸®, ÇÙ»ê Ä¡·áÁ¦´Â Àü»ç¿Í ¹ø¿ªÀÇ Ãʱ⠴ܰèÀÎ Àü»ç ¹× ¹ø¿ª ´Ü°è¿¡ °³ÀÔÇϹǷΠÀ¯ÀüÀÚÀÇ ±â´É Àå¾Ö¸¦ ±³Á¤ÇÏ´Â µ¥ ¸Å¿ì ³ôÀº ƯÀ̼ºÀ» ¹ßÈÖÇÕ´Ï´Ù.

ÀÌ Çõ½ÅÀûÀÎ Á¢±Ù¹ýÀº ºñ¾Ïȣȭ RNA, À¯ÀüÀÚ À¶ÇÕ, Èñ±Í ´ÜÀÏ À¯ÀüÀÚ Áúȯ µî ÀÌÀü¿¡´Â 'Ä¡·áÇÒ ¼ö ¾ø¾ú´ø' Ç¥ÀûÀ» Ä¡·áÇÒ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÖ¾ú½À´Ï´Ù. ´©½Ã³Ú¼¾(ô¼ö¼º ±ÙÀ§ÃàÁõ Ä¡·áÁ¦), ÆÄƼ½Ç¶õ(À¯Àü¼º Æ®·£½º½Ã·¹Æ¾ ¸Å°³ ¾Æ¹Ð·ÎÀ̵åÁõ Ä¡·áÁ¦)°ú °°Àº Ä¡·áÁ¦´Â ASO¿Í siRNAÀÇ ÀÓ»óÀû À¯¿ë¼ºÀ» °ËÁõÇß½À´Ï´Ù. ÇÑÆí, COVID-19 ¹é½ÅÀ¸·Î Àü ¼¼°è¿¡¼­ ÁÖ¸ñ¹Þ°ÔµÈ mRNA ±â¼úÀº ÇöÀç Á¾¾çÇÐ, ÀÚ°¡¸é¿ªÁúȯ, °³ÀθÂÃãÇü ¹é½Å µî¿¡ Àç»ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ±¤¹üÀ§ÇÑ °³ÀÔ¿¡¼­ °íµµ·Î °³ÀÎÈ­µÈ À¯ÀüÀÚ ¼öÁØÀÇ ÀÇ·á·ÎÀÇ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù.

¾î¶² ±â¼ú ¹ßÀüÀÌ ÀÓ»ó µµÀÔ°ú Àü´ÞÀ» Áö¿øÇϰí Àִ°¡?

ÇÙ»ê Ä¡·áÀÇ ¼º°ø ¿©ºÎ´Â ÀÌ·¯ÇÑ ±úÁö±â ½¬¿î ºÐÀÚ¸¦ º¸È£ÇÏ°í ¼¼Æ÷ ƯÀÌÀû Èí¼ö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Àü´Þ ±â¼ú¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. ÁöÁú ³ª³ëÀÔÀÚ(LNP)´Â ƯÈ÷ mRNA ¹× siRNA Ä¡·áÁ¦¿¡¼­ °¡Àå È®Àå °¡´ÉÇϰí ÀÓ»óÀûÀ¸·Î °ËÁõµÈ ij¸®¾î·Î µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ LNP´Â Ä¡·áÁ¦ ÆäÀ̷ε带 ºÐÇØ·ÎºÎÅÍ º¸È£Çϰí, ³»ÇǼ¼Æ÷ ºÐ¿­À» ÅëÇØ ¼¼Æ÷ ³»·ÎÀÇ Ä§ÀÔÀ» ÃËÁøÇϸç, ¼¼Æ÷Áú ³»¿¡¼­ Á¶ÀýµÈ ¹æÃâÀ» À¯¹ßÇÕ´Ï´Ù. ÀÌ¿ÂÈ­ °¡´ÉÇÑ ÁöÁú µðÀÚÀÎ, PEGÈ­ Àü·«, Ç¥ÀûÈ­ ¸®°£µå µîÀÇ °³¼±À¸·Î LNP ½Ã½ºÅÛÀÇ È¿´É°ú ¾ÈÀü¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù.

LNP ¿Ü¿¡µµ °íºÐÀÚ ±â¹Ý ³ª³ëÀÔÀÚ, µ§µå¸®¸Ó, ¿¢¼ÒÁ», GalNAc¸¦ ÀÌ¿ëÇÑ ÄÁÁê°ÔÀÌÆ® Àü´Þ(°£ Ÿ°ÙÆÃ¿ë) µî Åõ¿© °æ·Î¿Í Ç¥Àû Á¶Á÷ÀÇ ÆøÀ» ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î GalNAc¸¦ °áÇÕ½ÃŲ siRNA´Â ¸¸¼º °£Áúȯ¿¡ ´ëÇØ ¿ùº° Åõ¿© ½ºÄÉÁÙ·Î ÇÇÇÏÅõ¿©°¡ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ Àü±âõ°ø, ¹ÙÀÌ·¯½º º¤ÅÍ(AAV, ·»Ä¡¹ÙÀÌ·¯½º), »õ·Î¿î ÇÏÀ̵å·Î°Ö µîÀÌ Á¾¾çÇÐ ¹× ÁßÃ߽Űæ°è Áúȯ¿¡¼­ ±¹¼Ò ¶Ç´Â Á¶Á÷ ¼±ÅÃÀû Àü´ÞÀ» À§ÇØ Å×½ºÆ®µÇ°í ÀÖ½À´Ï´Ù. »ý¹°Á¤º¸ÇÐ ÅøÀº ÇöÀç Ç¥Àû ¿Ü ¿µÇâÀ» ÇÇÇÏ°í ¼¼Æ÷³» ¾ÈÁ¤¼ºÀ» ³ôÀ̱â À§ÇØ ¼­¿­ ¼³°è¸¦ ÃÖÀûÈ­ÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

µ¿½Ã¿¡ ÇÕ¼º È­ÇÐÀÇ ¹ßÀüÀº ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ¼­¿­ÀÇ ¾ÈÁ¤¼º, ģȭ·Â, ¸é¿ª¿ø¼º ÇÁ·ÎÆÄÀÏÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¹éº»ÀÇ º¯Çü(Æ÷½ºÆ÷·ÎƼ¿À³×ÀÌÆ® µî), ´ç°í¸®ÀÇ º¯È­(2'-O-¸ÞÆ¿, 2'-Ç÷ç¿À·Î), ¶ôµåÇÙ»ê(LNA) ±¸Á¶ µîÀ¸·Î ¾àµ¿ÇÐÀÌ °³¼±µÇ¾î ¸é¿ªÈ°¼ºÈ­¸¦ ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº Åõ¿© Ƚ¼ö Áõ°¡, ¼øÈ¯ ¹Ý°¨±â ¿¬Àå, µ¶¼º ÇÁ·ÎÆÄÀÏ °¨¼Ò µî ÀÓ»ó Àû¿ë È®´ë¿Í ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀο¡ Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ħÅõ¸¦ ÁÖµµÇÏ´Â Ä¡·á ºÐ¾ß¿Í ±â¾÷Àº?

Èñ±ÍÀ¯ÀüÁúȯ, Á¾¾çÇÐ, °¨¿°ÁúȯÀÌ ÇÙ»êÄ¡·áÁ¦ µµÀÔÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ÀúºÐÀÚ È­ÇÕ¹°·Î´Â ºÒÃæºÐÇÑ °æ¿ì°¡ ¸¹Àº Èñ±ÍÁúȯ¿¡¼­ ASO¿Í siRNA´Â °áÇÔÀÌ ÀÖ´Â À¯ÀüÀÚ »ê¹°À» ȸº¹½ÃŰ°Å³ª ħ¹¬½ÃÅ´À¸·Î½á ¶Ñ·ÇÇÑ È¿°ú¸¦ º¸À̰í ÀÖ½À´Ï´Ù. µÚ½¨ ±ÙÀÌ¿µ¾çÁõ, ±ÙÀ§Ãà¼ºÃø»ö°æÈ­Áõ(ALS), ¹ÙÅÙº´ µîÀÇ ÁúȯÀº Àӻ󿬱¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Â ÁÖ¿ä Ÿ°Ù Áß ÇϳªÀÔ´Ï´Ù. ¹Ì±¹°ú À¯·´¿¡¼­ Èñ±ÍÁúȯ Ä¡·áÁ¦ ÁöÁ¤ ¹× Á¶±â ½ÂÀÎÀ¸·Î ÀÌ ºÐ¾ß °³¹ßÀÚµéÀÌ ´õ »¡¸® ½ÃÀåÀ» °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÇÙ»ê Ä¡·áÁ¦´Â À¯ÀüÀÚ Ä§¹¬, ½ÅÇ׿ø ¹é½Å °³¹ß, ¸é¿ª¼¼Æ÷ ÃʱâÈ­ µî¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Moderna, Merck¿Í °°Àº °Å´ë Á¦¾àȸ»ç¿ÍÀÇ °øµ¿°³¹ßÀ» ÅëÇÑ ¸ÂÃãÇü mRNA ¾Ï ¹é½ÅÀº Èæ»öÁ¾°ú Æó¾Ï¿¡ ´ëÇÑ Èıâ ÀÓ»ó½ÃÇèÀ» ÁøÇàÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, RNA °£¼· Ç÷§ÆûÀº KRAS, STAT3¿Í °°Àº Á¾¾ç ÃËÁø ÀÎÀÚ¸¦ ħ¹¬½Ã۵µ·Ï Á¶Á¤µÇ¾î ÀÖ½À´Ï´Ù. °íÇü¾Ï¿¡¼­ ¾à¹°Àü´ÞÀº ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÌÁö¸¸, Á¾¾ç³» ¹× ±¹¼Ò Àü´Þ Àü·«À» ÅëÇØ ¾à¹°ÀÇ ºÐÆ÷¿Í È¿´ÉÀÌ °³¼±µÇ°í ÀÖ½À´Ï´Ù.

Ionis Pharmaceuticals, Alnylam, Moderna, BioNTech, Sarepta Therapeutics¿Í °°Àº ÁÖ¿ä ±â¾÷Àº ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµåÀÇ È­ÇÐ ¹× Àü´Þ¿¡ ´ëÇÑ ±íÀº Àü¹®¼ºÀ» Ȱ¿ëÇÏ¿© ¾÷°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. ½Å»ý »ý¸í°øÇÐ ±â¾÷µµ ÇÙ»ê Ä¡·á¿Í AI ±â¹Ý ¾à¹° ¼³°èÀÇ ±³Â÷Á¡¿¡¼­ Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Çѱ¹ µî ½ÃÀå ÁøÃâ±â¾÷Àº Á¤Ã¥Àû Áö¿ø°ú IP Á¶Á¤À» ÅëÇØ ÀÚ±¹³» °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ¼¼°è Ä¡·áÁ¦ ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ Áö¿ª³» ÁøÀÔÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.

¼¼°è ÇÙ»ê ±â¹Ý Ä¡·áÁ¦ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è ÇÙ»ê ±â¹Ý Ä¡·áÁ¦ ½ÃÀåÀÇ ¼ºÀåÀº À¯Àüº´¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, ¹é½Å Ç÷§ÆûÀÇ ±Þ¼ÓÇÑ ¹ßÀü, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àΰ£À¯ÀüüÇÐ ¹× Àü»çüÇп¡ ´ëÇÑ ÀÌÇØ°¡ ±í¾îÁü¿¡ µû¶ó Áúº´ Ç¥Àû°ú ¹ÙÀÌ¿À¸¶Ä¿ÀÇ ½Äº°ÀÌ ¿ëÀÌÇØÁ³°í, ÇÙ»ê °³ÀÔÀ» ÅëÇÑ Ä¡·á °¡´ÉÇÑ ÀûÀÀÁõ Ç®ÀÌ È®´ëµÇ¾ú½À´Ï´Ù.

ÀÓ»óÀû ¼º°ø »ç·Ê´Â ÀÌÇØ°ü°èÀÚµéÀÇ ÀDZ¸½ÉÀ» ÁÙÀ̰í ÀüÀÓ»ó ´Ü°èºÎÅÍ ÀÓ»ó ´Ü°è±îÁöÀÇ ÅõÀÚ¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. Àü·«Àû Á¦ÈÞ, ¶óÀ̼±½Ì °è¾à, º¥Ã³ ijÇÇÅÐÀÇ ÀÚ±Ý Á¶´ÞÀÌ RNA¿¡ ÃÊÁ¡À» ¸ÂÃá ½ºÅ¸Æ®¾÷°ú Àü´Þ ±â¼ú Ç÷§Æû¿¡ À¯ÀԵǰí ÀÖ½À´Ï´Ù. COVID-19 mRNA ¹é½ÅÀÇ ¼º°øÀº Àü ¼¼°è¿¡¼­ °ËÁõÀ» ¹Þ¾ÒÀ¸¸ç, ÀÇ·á ½Ã½ºÅÛ°ú ±ÔÁ¦ ´ç±¹ÀÌ ÇâÈÄ À¯Çິ, ¾Ï ¹× ½ÅÈï Áúº´¿¡ ´ëÇÑ È®Àå °¡´ÉÇÏ°í ½Å¼ÓÇÑ ÇÙ»ê ¿ä¹ýÀ» ¿ì¼±¼øÀ§¿¡ µÎµµ·Ï Ã˱¸Çß½À´Ï´Ù.

¶ÇÇÑ ±ÔÁ¦ ´ç±¹Àº ƯÈ÷ ¹ÌÃæÁ· ¼ö¿ä°¡ ³ôÀº »ý¸íÀ» À§ÇùÇÏ´Â ÁúȯÀ» ´ë»óÀ¸·Î ÇÏ´Â °æ¿ì, ÀÌ·¯ÇÑ Ä¡·á¹ý¿¡ ´ëÇØ º¸´Ù ¸íÈ®ÇÑ °æ·Î¿Í ½Å¼Ó ½É»ç ÇÁ·Î±×·¥À» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÇÙ»ê Ä¡·áÀÇ °íºñ¿ë¿¡ ´ëÀÀÇϱâ À§ÇØ °á°ú ±â¹Ý °¡°Ý Ã¥Á¤ ¹× °¡Ä¡ ±â¹Ý °è¾à¿¡ ±â¹ÝÇÑ »óȯ ¸ðµ¨µµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶ ´É·ÂÀÇ È®´ë, ¾à¹° ¼³°èÀÇ µðÁöÅÐÈ­, Ä¡·á ¹æ¹ýÀÇ ´Ù¾çÈ­·Î ÀÎÇØ ÇÙ»ê ±â¹Ý Ä¡·á´Â Æ´»õ »ý¸í°øÇÐ ¿ëµµ¿¡¼­ 21¼¼±â ÀÇ·áÀÇ ±âº» ±âµÕÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(RNA °£¼·¡¤´Ü¼â°£¼· RNA, ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå, ±âŸ Á¦Ç°), ¿ëµµ(ÀÚ°¡¸é¿ªÁúȯ ¿ëµµ, °¨¿°Áõ ¿ëµµ, À¯ÀüÀÚ Áúȯ ¿ëµµ, ¾Ï¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(º´¿ø¡¤Å¬¸®´Ð ÃÖÁ¾»ç¿ëÀÚ, Çмú¡¤¿¬±¸±â°ü ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nucleic Acid Based Therapeutics Market to Reach US$12.6 Billion by 2030

The global market for Nucleic Acid Based Therapeutics estimated at US$5.4 Billion in the year 2024, is expected to reach US$12.6 Billion by 2030, growing at a CAGR of 15.1% over the analysis period 2024-2030. RNA Interference & Short Interfering RNAs, one of the segments analyzed in the report, is expected to record a 16.3% CAGR and reach US$8.5 Billion by the end of the analysis period. Growth in the Antisense Oligonucleotides segment is estimated at 13.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 20.2% CAGR

The Nucleic Acid Based Therapeutics market in the U.S. is estimated at US$1.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.8 Billion by the year 2030 trailing a CAGR of 20.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.0% and 13.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.0% CAGR.

Global Nucleic Acid Based Therapeutics Market - Key Trends & Drivers Summarized

How Are Nucleic Acid Therapeutics Redefining the Future of Disease Treatment?

Nucleic acid based therapeutics are reshaping modern medicine by enabling precise manipulation of gene expression and cellular function. These therapies, which include antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamers, and messenger RNAs (mRNAs), offer targeted intervention at the genetic level, bypassing conventional protein-focused approaches. Unlike traditional drugs that modulate protein pathways post-translation, nucleic acid therapeutics intervene earlier-at the transcription or translation stage-enabling profound specificity in correcting genetic dysfunctions.

This transformative approach has opened doors to treating previously “undruggable” targets such as non-coding RNAs, gene fusions, and rare monogenic diseases. Therapies like nusinersen (for spinal muscular atrophy) and patisiran (for hereditary transthyretin-mediated amyloidosis) have validated the clinical viability of ASOs and siRNAs. Meanwhile, mRNA technologies-propelled to global attention by COVID-19 vaccines-are now being repurposed for oncology, autoimmune conditions, and personalized vaccines. This shift marks a transition from broad-spectrum interventions to highly individualized, gene-level medicine.

What Technological Advances Are Supporting Clinical Translation and Delivery?

The success of nucleic acid therapies hinges on delivery technologies that protect these fragile molecules and enable cell-specific uptake. Lipid nanoparticles (LNPs) have emerged as the most scalable and clinically validated carriers, particularly for mRNA and siRNA drugs. These LNPs shield therapeutic payloads from degradation, facilitate cellular entry via endocytosis, and trigger controlled release in the cytosol. Improvements in ionizable lipid design, PEGylation strategies, and targeting ligands have significantly boosted the efficacy and safety of LNP systems.

Beyond LNPs, polymer-based nanoparticles, dendrimers, exosomes, and conjugated delivery using GalNAc (for liver targeting) are expanding the range of administration routes and target tissues. For example, GalNAc-conjugated siRNAs have enabled subcutaneous administration for chronic liver conditions with monthly dosing schedules. Additionally, electroporation, viral vectors (AAV, lentivirus), and novel hydrogels are being tested for localized or tissue-selective delivery in oncology and CNS disorders. Bioinformatics tools now play a pivotal role in optimizing sequence design to avoid off-target effects and enhance intracellular stability.

Simultaneously, synthetic chemistry advancements are enhancing the stability, affinity, and immunogenicity profiles of oligonucleotide sequences. Backbone modifications (e.g., phosphorothioate), sugar ring alterations (2’-O-methyl, 2’-fluoro), and locked nucleic acid (LNA) architectures have improved pharmacokinetics and minimized immune activation. These advancements are enabling more frequent dosing, longer circulation half-lives, and reduced toxicity profiles-critical factors in expanding clinical adoption and regulatory acceptance.

Which Therapeutic Areas and Companies Are Driving Market Penetration?

Rare genetic diseases, oncology, and infectious diseases are at the forefront of nucleic acid therapeutic adoption. In rare diseases, where traditional small molecules often fall short, ASOs and siRNAs have demonstrated remarkable efficacy by restoring or silencing faulty gene products. Disorders such as Duchenne muscular dystrophy, amyotrophic lateral sclerosis (ALS), and Batten disease are among the key targets under active clinical investigation. The orphan drug designation and accelerated approval pathways in the U.S. and Europe are enabling faster market entry for developers in this segment.

Oncology represents a fast-emerging application area, with nucleic acid therapeutics being employed in gene silencing, neoantigen vaccine development, and immune cell reprogramming. Personalized mRNA cancer vaccines, developed in collaboration between pharma giants like Moderna and Merck, are advancing into late-stage trials for melanoma and lung cancer. Simultaneously, RNA interference platforms are being tailored to silence tumor drivers such as KRAS and STAT3. Delivery challenges in solid tumors remain a hurdle, but intratumoral and local delivery strategies are improving drug distribution and efficacy.

Leading players such as Ionis Pharmaceuticals, Alnylam, Moderna, BioNTech, and Sarepta Therapeutics dominate the landscape, leveraging deep expertise in oligonucleotide chemistry and delivery. Emerging biotechs are also innovating at the intersection of nucleic acid therapy and AI-driven drug design. Markets such as China and South Korea are accelerating homegrown development through policy support and IP harmonization, increasing regional participation in the global therapeutic pipeline.

What Is Fueling Growth in the Global Nucleic Acid Based Therapeutics Market?

The growth in the global nucleic acid based therapeutics market is driven by several factors, including rising genetic disease awareness, rapid vaccine platform development, and the growing demand for precision medicine. Increased understanding of human genomics and transcriptomics has enabled better identification of disease targets and biomarkers, expanding the pool of treatable indications through nucleic acid interventions.

Clinical success stories have reduced stakeholder skepticism and accelerated investments across preclinical and clinical stages. Strategic collaborations, licensing deals, and venture capital funding are flowing into RNA-focused startups and delivery technology platforms. The success of COVID-19 mRNA vaccines served as a global validation event, prompting healthcare systems and regulators to prioritize scalable and rapid-response nucleic acid therapies for future pandemics, cancer, and emerging diseases.

Moreover, regulatory agencies have established clearer pathways and expedited review programs for these therapies, especially when targeting life-threatening conditions with high unmet needs. Reimbursement models are evolving to accommodate the high costs of personalized nucleic acid therapies, supported by outcome-based pricing and value-based contracting. With expanding manufacturing capacity, digital drug design, and increasing therapeutic diversity, nucleic acid based therapeutics are transitioning from niche biotech applications to a foundational pillar of 21st-century medicine.

SCOPE OF STUDY:

The report analyzes the Nucleic Acid Based Therapeutics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (RNA Interference & Short Interfering RNAs, Antisense Oligonucleotides, Other Products); Application (Autoimmune Disorders Application, Infectious Diseases Application, Genetic Disorders Application, Cancer Application, Other Applications) End-User (Hospitals & Clinics End-User, Academic & Research Institutes End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â