¼¼°èÀÇ Ã¼¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå
Lab Automation for In-Vitro Diagnostics
»óǰÄÚµå : 1797350
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 285 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,245,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,736,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ü¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 74¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 56¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ü¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 4.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 74¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚµ¿ Ç÷¹ÀÌÆ® Çڵ鷯´Â CAGR 4.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 29¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿ ¸®Äûµå Çڵ鷯 ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 15¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀåÀº 2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç¶ó°í ÀÖÀ¸¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.5%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.4%¿Í 4.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ã¼¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½ÇÇè½Ç ÀÚµ¿È­°¡ ü¿ÜÁø´Ü ȯ°æÀ» Àü·Ê ¾ø´Â ¼Óµµ·Î º¯È­½Ã۰í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ü¿ÜÁø´Ü(IVD) ºÐ¾ßÀÇ ½ÇÇè½Ç ÀÚµ¿È­´Â Àü ¼¼°è ÀÓ»ó ½ÇÇè½ÇÀÇ ¾÷¹« È¿À²¼º, Áø´Ü Á¤È®µµ ¹× ³ôÀº 󸮷®À» À§ÇÑ ¸Å¿ì Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Àα¸ °í·ÉÈ­, ¸¸¼ºÁúȯÀÇ È®»ê, ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼¼°èÀû °ü½ÉÀ¸·Î ÀÎÇØ Áø´Ü ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÇ·á ±â°üÀº È®Àå °¡´ÉÇÑ ÀÚµ¿È­ ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö¹Û¿¡ ¾ø´Â »óȲÀÔ´Ï´Ù. ½Ã·á ó¸® ¹× ½Ã¾à Ãë±Þ¿¡¼­ °á°ú ÇØ¼® ¹× µ¥ÀÌÅÍ ÅëÇÕ¿¡ À̸£±â±îÁö ÀÚµ¿È­´Â ´ë·® °Ë»ç ȯ°æ¿¡¼­ Àϰü¼ºÀ» º¸ÀåÇϸ鼭 ÀÎÀû ¿À·ù¿Í ¼Ò¿ä ½Ã°£À» ÁÙ¿©ÁÝ´Ï´Ù. ÀÚµ¿È­´Â ´õ ÀÌ»ó ÇÏÀÌ¿£µå Áß¾Ó ½ÇÇè½Ç¿¡¸¸ ±¹ÇÑµÈ °ÍÀÌ ¾Æ´Ï¶ó, ¸ðµâ½Ä ¹× ¸ÂÃãÇü ½Ã½ºÅÛÀ» ÅëÇØ Á߱Ը𠺴¿ø ½ÇÇè½Ç°ú ºÐ»êÇü PoC(Point of Care) ȯ°æ¿¡µµ ²ÙÁØÈ÷ ħÅõÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿È­¸¦ °¡¼ÓÈ­ÇÏ´Â ¶Ç ´Ù¸¥ ¿äÀÎÀº ºÐÀÚÁø´Ü, ¸é¿ª ÃøÁ¤, ÀÓ»óÈ­ÇÐ ÆÐ³ÎÀ» Æ÷ÇÔÇÑ Áø´Ü °Ë»çÀÇ º¹À⼺°ú ¾çÀÇ Áõ°¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼Óµµ¸¦ À¯ÁöÇϱâ À§ÇØ °Ë»ç½ÇÀº ºÐ¼® Àü, ºÐ¼®, ºÐ¼® ÈÄ ´Ü°è¸¦ Æ÷ÇÔÇÑ ¿£µå Åõ ¿£µå ÀÚµ¿È­ ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ ¸®Äûµå Çڵ鷯, ·Îº¿ »ùÇà ºÐ·ù±â, ÅëÇÕ È­ÇÐ ºÐ¼®±â ½Ã½ºÅÛ µîÀÇ Àåºñ´Â 󸮷®À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó »ý¹°¾ÈÀü À§Çè°ú Àη ºÎÁ·À» °ü¸®Çϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ´Ù±â°ü ÀÓ»ó½ÃÇè°ú ±¹°¡ Áúº´ °¨½Ã ³×Æ®¿öÅ©¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ä°ÇÀΠǥÁØÈ­¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è°¡ Àü¿°º´¿¡ ´ëºñÇϰí Ç×±ÕÁ¦ ³»¼º ¸ð´ÏÅ͸µÀ» ÃßÁøÇϸ鼭 ÀÚµ¿È­µÈ Áø´Ü ÀÎÇÁ¶óÀÇ Á߿伺ÀÌ ´õ¿í °­Á¶µÇ°í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ü¿ÜÁø´Ü ÀǾàǰ ¿¬±¸¼ÒÀÇ ÀÚµ¿È­ ¿öÅ©Ç÷ο츦 ¾î¶»°Ô À籸¼ºÇϰí Àִ°¡?

±â¼ú Çõ½ÅÀº ·Îº¿ °øÇÐ, AI ±â¹Ý ÀÇ»ç°áÁ¤ Áö¿ø, Ŭ¶ó¿ìµå ±â¹Ý °Ë»ç Á¤º¸ ½Ã½ºÅÛ(LIS)À» ÅëÇÕÇÏ¿© ü¿ÜÁø´Ü¿ë ÀǾàǰÀÇ ÀÚµ¿È­ ¿öÅ©Ç÷ο츦 À籸ÃàÇϰí ÀÖ½À´Ï´Ù. ·Îº¿Àº ½Ã·á ¼±º°, Æ©ºê ¶óº§¸µ, ¿ø½ÉºÐ¸®, ºÐÁÖ, º¸°ü µî ÀÌÀü¿¡´Â ¼÷·ÃµÈ Á÷¿ø¿¡°Ô ÀÇÁ¸Çß´ø ±â´É¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ·Îº¿ ÆÈ, ÄÁº£ÀÌ¾î Æ®·¢, ¹ÙÄÚµå ½ºÄ³³Ê´Â ÇöÀç ¹Ìµé¿þ¾î ¼Ö·ç¼ÇÀ» ÅëÇØ µ¿±âÈ­µÇ¾î Àüü Áø´Ü ÆÄÀÌÇÁ¶óÀο¡ °ÉÃÄ ÃßÀû¼º°ú ½Ç½Ã°£ ºÐ¼®À» º¸ÀåÇÕ´Ï´Ù. Áö¸à½ºÀÇ Aptio AutomationÀ̳ª ·Î½´ÀÇ cobas(R) connection modules°ú °°Àº °í±Þ ÀÚµ¿È­ Æ®·¢Àº ½ÇÇè½Ç¿¡¼­ º¯µ¿ÇÏ´Â °Ë»ç·®¿¡ ¸ÂÃç È®Àå °¡´ÉÇÑ ¸ðµâÇü ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ´Â ¸ÂÃãÇü ±¸¼ºÀ» Á¦°øÇÕ´Ï´Ù.

ÀΰøÁö´É°ú ¸Ó½Å·¯´×Àº ÀÚµ¿È­ Ç÷§Æû¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇÕµÇ¾î °á°ú ÇØ¼®, ÀÌ»ó ÆÐÅÏÀÇ Ç÷¡±× ÁöÁ¤, ÀåºñÀÇ ¿¹Áöº¸ÀüÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Ç÷¾×ÇÐÀ̳ª °¨¿° Áø´Ü°ú °°Àº ºÐ¾ß¿¡¼­´Â À§¾ç¼ºÀ» ÁÙÀ̰í Áø´ÜÀÇ Æ¯À̼ºÀ» Çâ»ó½Ã۱â À§ÇØ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®·Î AI ¾Ë°í¸®ÁòÀ» ÈÆ·Ã½Ã۰í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý LIS Ç÷§ÆûÀº ºÎ¼­, ½Ã¼³, Áö¿ªÀ» ³Ñ¾î ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯À» ¿ëÀÌÇÏ°Ô Çϰí, °øµ¿ Áø´Ü ¹× ¿ø°Ý ¸ð´ÏÅ͸µÀ» ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¹Ãø ºÐ¼® µµ±¸´Â ½ÇÇè½Ç¿¡¼­ ¼ö¿ä ±ÞÁõÀ» ¿¹ÃøÇÏ°í ½Ã¾à Àç°í¸¦ ÃÖÀûÈ­Çϸç ÀÚ¿øÀ» µ¿ÀûÀ¸·Î ¹èºÐÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

¼ÒÇüÈ­ ¹× ¹Ì¼¼À¯Ã¼ ±â¼ú Çõ½ÅÀº ºÐ»êÇü Áø´Ü¿¡ ¸Â´Â ¼ÒÇü ÀÚµ¿È­ ½Ã½ºÅÛ °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±×µ¿¾È ÀÎÇÁ¶óÀÇ Á¦¾àÀ¸·Î ÀÎÇØ °íµµÀÇ Áø´ÜÀÌ ºÒ°¡´ÉÇß´ø ÀÚ¿øÀÌ ÇÑÁ¤µÈ ȯ°æ¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¥´õ Á߸³ÀûÀÎ ÀÚµ¿È­ ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ ¼­·Î ´Ù¸¥ Á¦Á¶¾÷üÀÇ Àåºñ °£ »óÈ£ ¿î¿ë¼ºÀÌ °¡´ÉÇÏ¿© ½ÇÇè½Ç¿¡¼­ Àü¸éÀûÀÎ Á¡°Ë ¾øÀ̵µ ´Ü°èÀûÀ¸·Î ÀÚµ¿È­¸¦ ½±°Ô µµÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£¿î¿ë¼º Æ®·»µå´Â ½ÅÈï½ÃÀå°ú Áß°ß ÀÓ»óÇöÀå¿¡¼­ÀÇ Ã¤ÅÃÀ» È®´ëÇϸç Àü ¼¼°è ½ÃÀå ħÅõ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿È­ µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ´Â ÃÖÁ¾ ¿ëµµ ¹× Áø´Ü ¾ÖÇø®ÄÉÀ̼ÇÀº ¹«¾ùÀΰ¡?

IVD °Ë»ç½Ç ÀÚµ¿È­ µµÀÔÀº Çмú ÀÇ·á ¼¾ÅÍ, ¹Î°£ Áø´Ü ¿¬±¸¼Ò, º´¿ø ³×Æ®¿öÅ©, °ø°ø º¸°Ç ±â°ü µî ´Ù¾çÇÑ ÀÇ·á ¼­ºñ½º Á¦°ø ¸ðµ¨¿¡¼­ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ´ë±Ô¸ð Áß¾Ó °Ë»ç½ÇÀº ¿©ÀüÈ÷ °¡Àå ´«¿¡ ¶ç´Â äÅÃÀÚÀ̸ç, ¸ÅÀÏ ¼ö¸¸ °³ÀÇ »ùÇÃÀ» ó¸®Çϱâ À§ÇØ Ç® Æ®·¢ ÀÚµ¿È­ ½Ã½ºÅÛÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª º´¿ø ±â¹Ý °Ë»ç½ÇÀº ƯÈ÷ ÀüÇ÷±¸ °è»ê, °©»ó¼± ±â´É °Ë»ç, °¨¿° ÆÐ³Î°ú °°Àº ´ë·® °Ëü °Ë»ç¸¦ À§ÇØ ¸ðµâ½Ä ÀÚµ¿È­¿¡ ´ëÇÑ ÅõÀÚ¸¦ Á¡Á¡ ´õ ¸¹ÀÌ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼­´Â ¿öÅ©Ç÷οì È¿À²¼º Çâ»ó, ½Ã·á Ãë±Þ ½Ç¼ö °¨¼Ò, ÀÀ±Þ »óȲÀ̳ª ÀÔ¿ø ȯÀÚ Ä¡·á¿¡ Áß¿äÇÑ ½Å¼ÓÇÑ ´ëÀÀ ½Ã°£ µîÀÇ ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù.

ºÐÀÚÁø´ÜÀº PCR ±â¹Ý ¹× Â÷¼¼´ë ½ÃÄö½Ì(NGS) ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ÀÚµ¿È­ ÀÀ¿ë ºÐ¾ß Áß ÇϳªÀÔ´Ï´Ù. ÀÚµ¿È­µÈ ÇÙ»ê ÃßÃâ, ¿­ »çÀÌŬ¸µ, °á°ú ÅëÇÕÀº ¿¬±¸¼Ò°¡ Á¤È®¼º°ú ±ÔÁ¤ Áؼö¸¦ À¯ÁöÇϸ鼭 ºÐÀÚ °Ë»ç Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸é¿ªÁø´ÜÇÐÀº ƯÈ÷ È£¸£¸ó, ¾Ë·¹¸£±â, ÀÚ°¡¸é¿ª ÆÐ³Î¿¡¼­ ÀÚµ¿È­ÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ºÐ¾ßÀÔ´Ï´Ù. ÇÑÆí, ¹Ì»ý¹° ½ÇÇè½ÇÀº ÀÚµ¿ ¹è¾ç±â, ÄÝ·Î´Ï ÇÇÄ¿, °¨¼ö¼º °Ë»ç ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© º´¿øÃ¼ ½Äº°À» °¡¼ÓÈ­Çϰí Ç×±ÕÁ¦ ³»¼º ÇÁ·ÎÆÄÀϸµÀ» °£¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù.

´ÙÁß Áúȯ °Ë»ç ÆÐ³Î ¹× ÁõÈıº °Ë»ç(ÇϳªÀÇ »ùÇÿ¡¼­ ¿©·¯ º´¿øÃ¼ ¹× ¹ÙÀÌ¿À¸¶Ä¿¸¦ ºÐ¼®ÇÏ´Â °Ë»ç)ÀÇ µîÀåÀº IVD¿¡¼­ ÀÚµ¿È­ÀÇ ¸Å·ÂÀ» ´õ¿í ³ô¿©ÁÖ°í ÀÖ½À´Ï´Ù. ¸ÖƼÇ÷º½Ì ±â´ÉÀ» °®Ãá ÀÚµ¿È­ Ç÷§ÆûÀº ½ÇÇè½Ç¿¡¼­ º¸´Ù ±¤¹üÀ§ÇÑ ºÐ¼®À» µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© Áø´Ü ¼öÀ²°ú ÀÚ¿ø Ȱ¿ëµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. °øÁß º¸°Ç °¨½Ã ÇÁ·Î±×·¥, ƯÈ÷ Àü¿°º´ ÇÖ½ºÆÌ¿¡¼­´Â ´ëÀÀ ½Ã°£ °³¼±, µ¥ÀÌÅÍ Àϰü¼º º¸Àå, °Ë»ç ´É·Â È®ÀåÀ» À§ÇØ ÀÚµ¿È­¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ ±â¼úÀº ±âÁ¸ µµ½É»Ó¸¸ ¾Æ´Ï¶ó Àü ¼¼°è Tier-2, Tier-3 µµ½Ã·Î ±× Àúº¯À» ³ÐÇô°¡°í ÀÖ½À´Ï´Ù.

ü¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è ü¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀåÀÇ ¼ºÀåÀº ¸¸¼ºÁúȯ ¹× °¨¿°¼º ÁúȯÀÇ Áõ°¡, °í󸮷® Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä, ÀÓ»ó ½ÇÇè½ÇÀÇ ³ëµ¿·Â Á¦¾à µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °Ë»ç·®ÀÌ ±ÞÁõÇÏ´Â °¡¿îµ¥, ƯÈ÷ Æ÷½ºÆ® ÆÒµ¥¹Í ½Ã´ë¿¡ °Ë»ç½ÇÀº ¾÷¹«¸¦ ÃÖÀûÈ­Çϰí Àη ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇÑ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀÚµ¿È­¿¡ ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. Áø´Ü °Ë»çÀÇ º¹À⼺Àº ªÀº ½Ã°£ ³»¿¡ Á¤È®ÇÑ °á°ú¸¦ µµÃâÇØ¾ß ÇÑ´Ù´Â ¾Ð¹Ú°ú ÇÔ²² ¹ÝÀÚµ¿È­¿¡¼­ ¿ÏÀü ÀÚµ¿È­ Ç÷§ÆûÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°æÁ¦ÀûÀÎ ÃËÁø¿äÀÎÀ¸·Î´Â ÀÚµ¿È­ ½Ã½ºÅÛÀÇ ºñ¿ë Àý°¨°ú ¸®½º ¸ðµ¨ÀÇ È°¿ëÀ» µé ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÁßÇü ½ÇÇè½ÇÀÇ ÁøÀÔÀ庮À» ³·Ãß°í ÀÖ½À´Ï´Ù. Áúº´ °¨½Ã, Áý´Ü °ËÁø, °Ë»ç½Ç ÀÎÇÁ¶ó Çö´ëÈ­¸¦ Áö¿øÇÏ´Â Á¤ºÎ Áö¿ø ÇÁ·Î±×·¥Àº ¼±Áø±¹°ú °³¹ßµµ»ó±¹ ¸ðµÎ¿¡¼­ À¯¸®ÇÑ Á¶´Þ ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. °Ë»ç Ç¥ÁØÈ­, ÀüÀÚ ÃßÀû¼º, µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ±ÔÁ¦Àû Àμ¾Æ¼ºê´Â ÀÓ»ó ¹× ¾÷¹«Àû Àǹ«¸¦ ÁؼöÇϱâ À§ÇÑ ÀÚµ¿È­ÀÇ ¿ªÇÒÀ» ´õ¿í °ËÁõÇϰí ÀÖ½À´Ï´Ù.

»ó¾÷Àû ¼ºÀå ¶ÇÇÑ ÀÚµ¿È­ Á¦°ø¾÷ü, IVD ½Ã¾à Á¦Á¶¾÷ü, LIS °ø±Þ¾÷ü °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÈÞ¸¦ ÅëÇØ ÀÎÅÍÆäÀ̽º ¸¶ÂûÀ» ÁÙÀÌ°í ¿£µåÅõ¿£µå ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÏ´Â ÅëÇÕ Áø´Ü »ýŰ踦 °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­ ÅõÀÚ¼öÀÍ·ü(ROI) - ½Ã¾à ³¶ºñ °¨¼Ò, ÀçÀÛ¾÷ ÃÖ¼ÒÈ­, ȯÀÚ ¸¸Á·µµ Çâ»ó -¿¡ ´ëÇÑ ÇコÄÉ¾î °ü¸®ÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ÀÚµ¿È­ ¾÷±×·¹À̵忡 ´ëÇÑ ¿¹»ê ½ÂÀÎÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇÐÀÌ °áÇյǾî ü¿ÜÁø´Ü¿ë ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ Çõ½Å ÁÖµµÇü ¼ºÀåÀ» À§ÇÑ ÅºÅºÇÑ Åä´ë°¡ ¸¶·ÃµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Àåºñ(ÀÚµ¿ Ç÷¹ÀÌÆ® Çڵ鷯, ÀÚµ¿ ¸®Äûµå Çڵ鷯, ·Îº¿ ¾Ï, ÀÚµ¿ â°í(ASRS), ºÐ¼®±â), ÃÖÁ¾»ç¿ëÀÚ(Çмú ÃÖÁ¾»ç¿ëÀÚ, ½ÇÇè½Ç ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Lab Automation for In-Vitro Diagnostics Market to Reach US$7.4 Billion by 2030

The global market for Lab Automation for In-Vitro Diagnostics estimated at US$5.6 Billion in the year 2024, is expected to reach US$7.4 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2024-2030. Automated Plate Handler, one of the segments analyzed in the report, is expected to record a 4.0% CAGR and reach US$2.9 Billion by the end of the analysis period. Growth in the Automated Liquid Handler segment is estimated at 5.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 7.5% CAGR

The Lab Automation for In-Vitro Diagnostics market in the U.S. is estimated at US$1.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 7.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.4% and 4.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.1% CAGR.

Global Lab Automation For In-Vitro Diagnostics Market - Key Trends & Drivers Summarized

Why Is Lab Automation Transforming the In-Vitro Diagnostics Landscape at an Unprecedented Pace?

Lab automation in the field of in-vitro diagnostics (IVD) is emerging as a pivotal driver of operational efficiency, diagnostic accuracy, and high-throughput capabilities in clinical laboratories worldwide. The surge in diagnostic demand-exacerbated by aging populations, chronic disease prevalence, and the global emphasis on personalized medicine-is compelling healthcare institutions to deploy scalable automation systems. From sample processing and reagent handling to result interpretation and data integration, automation is reducing human error and turnaround times while ensuring consistency across high-volume testing environments. Automation is no longer confined to high-end central labs; it is steadily permeating mid-size hospital labs and decentralized point-of-care (PoC) settings through modular, customizable systems.

An additional factor accelerating automation is the increasing complexity and volume of diagnostic tests, including molecular diagnostics, immunoassays, and clinical chemistry panels. To keep pace, laboratories are adopting end-to-end automation solutions encompassing pre-analytical, analytical, and post-analytical stages. Instruments such as automated liquid handlers, robotic sample sorters, and integrated chemistry-analyzer systems are being adopted not only to boost throughput but also to manage biosafety risks and labor shortages. Automation is also contributing to standardization-a crucial requirement in multi-center clinical trials and national disease surveillance networks. The global push for pandemic preparedness and antimicrobial resistance monitoring is further reinforcing the importance of automated diagnostic infrastructures.

How Are Technological Innovations Reshaping Automation Workflows in IVD Labs?

Technological advancements are reshaping automation workflows in IVD by integrating robotics, AI-driven decision support, and cloud-based laboratory information systems (LIS). Robotics plays a key role in sample sorting, tube labeling, centrifugation, aliquoting, and archiving-functions that previously relied on skilled personnel. Robotic arms, conveyor tracks, and barcode scanners are now synchronized through middleware solutions, ensuring traceability and real-time analytics throughout the diagnostic pipeline. High-end automation tracks, such as Siemens' Aptio Automation and Roche’s cobas® connection modules, offer customizable configurations that allow labs to build scalable and modular systems tailored to fluctuating test volumes.

Artificial intelligence and machine learning are increasingly embedded within automation platforms to support result interpretation, flagging of abnormal patterns, and predictive maintenance of equipment. In particular, AI algorithms are being trained on large datasets to reduce false positives and improve diagnostic specificity, particularly in fields like hematology and infectious disease diagnostics. Cloud-based LIS platforms are facilitating seamless data exchange across departments, institutions, and geographies, fostering collaborative diagnostics and remote monitoring. Furthermore, predictive analytics tools are helping labs forecast demand surges, optimize reagent inventory, and allocate resources dynamically-critical functions during public health emergencies.

Miniaturization and microfluidic innovations are enabling the development of compact automation systems tailored for decentralized diagnostics. These systems are particularly valuable in resource-limited settings, where infrastructure constraints previously precluded advanced diagnostics. Additionally, vendor-neutral automation interfaces are enabling interoperability among instruments from different manufacturers, making it easier for labs to adopt automation incrementally without complete overhauls. This interoperability trend is broadening adoption across emerging markets and mid-tier clinical settings, driving global market penetration.

Which End-Use Settings and Diagnostic Applications Are Accelerating Automation Adoption?

The adoption of lab automation in IVD is accelerating across various healthcare delivery models, including academic medical centers, private diagnostic labs, hospital networks, and public health agencies. Large centralized laboratories remain the most prominent adopters, utilizing full track automation systems to process tens of thousands of samples daily. However, hospital-based labs are increasingly investing in modular automation-especially for high-volume assays such as complete blood counts, thyroid function tests, and infectious disease panels. These settings benefit from improved workflow efficiency, reduced sample handling errors, and rapid response times critical for emergency and inpatient care.

Molecular diagnostics is one of the fastest-growing application areas for automation, fueled by increasing demand for PCR-based and next-generation sequencing (NGS) assays. Automated nucleic acid extraction, thermal cycling, and result integration are helping labs scale their molecular testing portfolios while maintaining accuracy and compliance. Immunodiagnostics is another major segment benefiting from automation, particularly for hormone, allergy, and autoimmune panels. Meanwhile, microbiology labs are deploying automated incubators, colony pickers, and susceptibility testing systems to accelerate pathogen identification and streamline antimicrobial resistance profiling.

The rise of multi-disease test panels and syndromic testing-where multiple pathogens or biomarkers are analyzed from a single sample-is further boosting the appeal of automation in IVD. Automation platforms equipped with multiplexing capabilities enable labs to process a broader range of assays simultaneously, improving diagnostic yield and resource utilization. Public health surveillance programs, especially in infectious disease hotspots, are adopting automation to improve response times, ensure data consistency, and scale up testing capacity. As a result, the technology is extending its footprint beyond traditional urban hubs into tier-2 and tier-3 cities globally.

What Is Driving Growth in the Lab Automation for In-Vitro Diagnostics Market?

The growth in the global lab automation for in-vitro diagnostics market is driven by several factors including the rising burden of chronic and infectious diseases, demand for high-throughput diagnostics, and labor constraints in clinical laboratories. As testing volumes surge across the globe, especially in the post-pandemic era, laboratories are turning to automation as a sustainable solution to optimize operations and reduce human dependency. The increasing complexity of diagnostic tests, coupled with pressure to deliver accurate results in shorter timeframes, is fueling the transition from semi-automated to fully automated platforms.

Economic drivers include the falling cost of automation systems and the availability of leasing models, which are lowering the entry barriers for mid-size labs. Government-funded programs supporting disease surveillance, population health screening, and laboratory infrastructure modernization are creating favorable procurement environments in both developed and developing regions. Regulatory encouragement for test standardization, electronic traceability, and data security is further validating the role of automation in ensuring compliance with clinical and operational mandates.

Commercial growth is also being spurred by strategic partnerships between automation providers, IVD reagent manufacturers, and LIS vendors. These collaborations are enabling the development of integrated diagnostic ecosystems that reduce interface friction and streamline end-to-end workflows. Additionally, rising awareness among healthcare administrators about return on investment (ROI) from automation-measured in terms of reduced reagent wastage, minimized reruns, and improved patient satisfaction-is accelerating budget approvals for automation upgrades. Together, these dynamics are creating a robust foundation for sustained, innovation-led growth in the lab automation for in-vitro diagnostics market.

SCOPE OF STUDY:

The report analyzes the Lab Automation for In-Vitro Diagnostics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Equipment (Automated Plate Handler, Automated Liquid Handler, Robotic Arm, Automated Storage & Retrieval System, Analyzer Equipment); End-User (Academic End-User, Laboratory End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â