¼¼°èÀÇ ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀå
Knock Out Mouse Model
»óǰÄÚµå : 1797349
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 368 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 17¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±¸¼ºÀû ³ì¾Æ¿ô ¸¶¿ì½º´Â CAGR 3.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 8,680¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¶°ÇºÎ ³ì¾Æ¿ô ¸¶¿ì½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 6,180¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀåÀº 2024³â¿¡ 3¾ï 6,180¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 7.3%·Î 2030³â±îÁö 3¾ï 4,110¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.6%¿Í 3.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

³ì¾Æ¿ô ¸¶¿ì½º°¡ »ýÀÇÇÐ ¿¬±¸¿¡ ÇʼöÀûÀÎ µµ±¸ÀÎ ÀÌÀ¯

³ì¾Æ¿ô(KO) ¸¶¿ì½º ¸ðµ¨Àº ƯÁ¤ À¯ÀüÀÚ¸¦ ¿ÏÀüÈ÷ ºñȰ¼ºÈ­½ÃÄÑ À¯ÀüÀÚ ±â´ÉÀ» ±Ô¸íÇÒ ¼ö Àֱ⠶§¹®¿¡ Áß°³¿¬±¸ ¹× ±âÃÊ »ýÀÇÇÐ ¿¬±¸¿¡ ÇʼöÀûÀÎ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ¿¬±¸Àڵ鿡°Ô À¯ÀüÀÚ °á¼ÕÀÇ »ý¸®Àû °á°ú¸¦ Á¶»çÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ Ç÷§ÆûÀ» Á¦°øÇϰí, Áúº´ ¸ÞÄ¿´ÏÁò, ½Å¾à °³¹ß Ç¥Àû, Ä¡·á °æ·Î¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. ¹è¾ÆÁٱ⼼Æ÷¿¡¼­ »óµ¿ÀçÁ¶ÇÕÀ» ÅëÇÑ À¯ÀüÀÚ Ç¥ÀûÈ­ ±â¼úÀÌ µµÀÔµÈ ÀÌÈÄ, KO ¸¶¿ì½º ¸ðµ¨Àº ´Ü¹ß¼º Áúȯ, ¾Ï, ¸é¿ªÁúȯ, ´ë»çÁõÈıº ¸ðµ¨¸µ¿¡ ÇʼöÀûÀÎ µµ±¸·Î ¹ßÀüÇØ ¿Ô½À´Ï´Ù. À¯ÀüÀÚ Á¶ÀÛÀÇ ¿ëÀ̼º°ú Àΰ£°ú »ý¸®Àû À¯»ç¼ºÀ¸·Î ÀÎÇØ ÀüÀÓ»ó °ËÁõ ¹× µ¶¼º ¿¬±¸¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

ÃÖ±Ù À¯ÀüÀÚ Ä§¹¬À» ƯÁ¤ Á¶Á÷À̳ª ½Ã°£´ë¿¡ ÇÑÁ¤ÇÒ ¼ö ÀÖ´Â Á¤±³ÇÑ Á¶°ÇºÎ ¹× À¯µµ °¡´ÉÇÑ KO ¸ðµ¨ÀÇ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼¹ÐÇÔÀº Àü½ÅÀûÀ¸·Î ³ì¾Æ¿ôµÇ¸é Ä¡¸íÀûÀÏ ¼ö ÀÖ´Â À¯ÀüÀÚ ±â´ÉÀ» ±Ô¸íÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À¸·Î KO ¸¶¿ì½ºÀÇ Àû¿ë ¹üÀ§´Â Ãʱ⠹߻ý ¿¬±¸»Ó¸¸ ¾Æ´Ï¶ó ³ëÈ­, Àç»ý»ý¹°ÇÐ, ¸¸¼ºÁúȯ ¸ðµ¨¸µÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í󸮷® À¯ÀüÀÚ ÆíÁý ¹× ½ÃÄö½ÌÀÇ Çõ½ÅÀº ´ë±Ô¸ð KO ¸¶¿ì½º ¶óÀ̺귯¸®ÀÇ »ý¼ºÀ» °¡´ÉÇÏ°Ô Çϰí, À¯ÀüÀÚÇü°ú Ç¥ÇöÇüÀÇ »ó°ü°ü°è¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. International Knockout Mouse Consortium(IKMC) ¹× Knockout Mouse Project(KOMP)¿Í °°Àº ¼¼°è ÀÌ´Ï¼ÅÆ¼ºêÀÇ °¡¿ë¼ºÀº ÀÚ¿øÀÇ ÁýÁßÈ­ ¹× Á¢±ÙÀÇ ¹ÎÁÖÈ­¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ±× °á°ú ÇÐ°è ¹× ÇÐ°è ¹× »ý¸í°øÇÐ ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ ¿¬±¸ ±Ô¸ð°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

CRISPR°ú ÇÏÀ̽º·çDz ¿£Áö´Ï¾î¸µÀº ¾î¶»°Ô ¸ðµ¨ °³¹ßÀ» À籸¼ºÇϰí Àִ°¡?

CRISPR/Cas9 ±â¼úÀÇ µîÀåÀ¸·Î KO ¸¶¿ì½º ¸ðµ¨ Á¦ÀÛ¿¡ ÇÊ¿äÇÑ ½Ã°£°ú ºñ¿ëÀÌ Å©°Ô Àý°¨µÇ¾î ¼Ò±Ô¸ð ½ÇÇè½Ç ¹× »ó¾÷Àû CRO¿¡¼­ »ç¿ëÀÌ ´ëÁßÈ­µÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ »óµ¿ ÀçÁ¶ÇÕ ±â¼úÀº ¾ÈÁ¤ÀûÀÎ KO ±ÕÁÖ¸¦ °³¹ßÇÏ´Â µ¥ 1³âÀÌ °É¸®±âµµ ÇßÁö¸¸, ÇöÀç´Â CRISPR ±â¹Ý ½Ã½ºÅÛ¿¡ ÀÇÇØ º¸¿ÏµÇ°Å³ª ´ëüµÇ¾î ´Ü½Ã°£¿¡ Á¤È®ÇÑ ºÎÀ§º° À¯ÀüÀÚ ÆÄ±«°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ¿©·¯ À¯ÀüÀÚ¸¦ µ¿½Ã¿¡ Ç¥ÀûÀ¸·Î ÇÏ´Â ´ÙÁß À¯ÀüÀÚ ÆíÁýÀº ´ç´¢º´, ¾ËÃ÷ÇÏÀ̸Ӻ´, ÀÚ°¡¸é¿ªÁúȯ µî º¹ÀâÇÑ ´ÙÀ¯ÀüÀÚ ÁúȯÀÇ ¸ðµ¨¸µ¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, Á¤¹ÐÀÇ·á ¿¬±¸ÀÇ »õ·Î¿î ±æÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

ÇÏÀ̽º·çDz ÆÄÀÌÇÁ¶óÀΰú ÀÚµ¿È­ ±â¼ú ¶ÇÇÑ KO ¸¶¿ì½º »ý»ê¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ·Îº¿ ¸¶ÀÌÅ©·Î ÀÎÁ§¼Ç ½Ã½ºÅÛ, ÀÚµ¿ ¹è¾Æ À̽Ä, µðÁöÅÐ Æä³ëŸÀÌÇÎ Ç÷§ÆûÀ» °®Ãá ½Ã¼³Àº ¸®µå ŸÀÓÀ» ´ÜÃàÇÏ°í ¸ðµ¨ ÀçÇö¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´ÉÀ» Ç¥ÇöÇü ½ºÅ©¸®´×¿¡ ÅëÇÕÇÔÀ¸·Î½á °üÂû °¡´ÉÇÑ ÇüÁúÀ» ´õ ºü¸£°Ô ½Äº°ÇÒ ¼ö ÀÖ°Ô µÇ¾î ¹ß°ß°ú °ËÁõ ´Ü°è ¸ðµÎ¿¡¼­ 󸮷®À» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. CRO¿Í À°Á¾ À§Å¹¾÷üµéÀº ±â¼ºÇ° ¹× ¸ÂÃãÇü KO ¸ðµ¨À» Á¦°øÇϰí ÀÖÀ¸¸ç, Á¾Á¾ Ç¥ÇöÇü °ËÁõ, ÇÏ¿ì¡, Á¶Á÷ ¼öÁý ¼­ºñ½º¿Í ÇÔ²² ¹øµé·Î Á¦°øµÇ¾î Á¦¾à»ç ¹× ÇÐ°è ¿¬±¸ÀÚµéÀÇ R&D ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù.

Á¶°ÇºÎ ¹× Á¶Á÷ ƯÀÌÀû KO ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä´Â Cre-loxP ¹× FLP/FRT¿Í °°Àº ÇÁ·Î¸ðÅÍ ¼³°è ¹× À¯µµ¼º ÀçÁ¶ÇÕ ½Ã½ºÅÛÀÇ ¹ßÀü°ú ÇÔ²² Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¸ðµ¨µéÀº ¹è¾Æ »ç¸êÀ» ±Øº¹Çϰí, »ýÈÄ »ý¸®ÇÐ ¹× ¼ºÃ¼ Áúº´ »óÅ¿¡¼­ÀÇ À¯ÀüÀÚ ±â´ÉÀ» ¿¬±¸ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µà¾ó ¸®Äĺñ³ªÁ¦ ½Ã½ºÅÛÀº À¯ÀüÀÚ-À¯ÀüÀÚ »óÈ£ÀÛ¿ë°ú °æ·Î-Å©·Î½ºÅäÅ©¸¦ Á¦¾îµÈ ȯ°æ¿¡¼­ ¿¬±¸ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î Àα⸦ ¾ò°í ÀÖÀ¸¸ç, ±â´É À¯ÀüüÇÐÀÇ Åø¹Ú½º¸¦ ´õ¿í dz¼ºÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¾î¶² ¿¬±¸ ºÐ¾ß¿Í ¿¬±¸±â°üÀÇ µ¿ÇâÀÌ ¸ðµ¨ Ȱ¿ëÀ» ÃËÁøÇϰí Àִ°¡?

KO¸¶¿ì½ºÀÇ È°¿ëÀº Á¾¾çÇÐ, ½Å°æÇÐ, ¸é¿ªÇÐ, ´ë»çÇÐ ¿¬±¸ ºÐ¾ß¿¡¼­ ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¾Ï »ý¹°Çп¡¼­ KO ¸¶¿ì½º´Â ¾Ï ¾ïÁ¦ À¯ÀüÀÚ °ËÁõ, ¾Ï À¯ÀüÀÚ ±â´É ¿¬±¸, Ç¥Àû Ä¡·áÁ¦¿¡ ´ëÇÑ ÀúÇ×¼º ¸ÞÄ¿´ÏÁò ¸ðµ¨¸µ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸ÁøÀº Á¾¾ç°ú ¸é¿ªÀÇ »óÈ£ÀÛ¿ë°ú ¸é¿ªÁ¾¾çÇÐ Èĺ¸¹°ÁúÀÇ È¿´ÉÀ» Æò°¡Çϱâ À§ÇØ ¸é¿ªÃ¼°è¸¦ Àΰ£È­ÇÑ KO ¸¶¿ì½º °èÅëÀ» Á¦ÀÛÇϰí ÀÖ½À´Ï´Ù. ½Å°æ°úÇп¡¼­ KO ¸ðµ¨Àº ƯÈ÷ ¿µ¿ª ƯÀÌÀû À¯ÀüÀÚ ºñȰ¼ºÈ­¸¦ ÅëÇØ ÀÚÆóÁõ, ÆÄŲ½¼º´, °£Áú°ú °°Àº ½Å°æ ¹ß´Þ Àå¾Ö ¹× ½Å°æ ÅðÇ༺ Áúȯ¿¡ À¯ÀüÀÚÀÇ °ü¿©¸¦ ¿¬±¸ÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

Çмú±â°ü, Á¤ºÎÅõÀÚ ÀÌ´Ï¼ÅÆ¼ºê, Á¦¾à»çµéÀº ¸ðµÎ KO ¸ðµ¨ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. Áß¾ÓÁýÁßÈ­µÈ ¸¶¿ì½º ÀúÀå¼Ò ¹× ¹ø½Ä ½Ã¼³Àº ÇÁ·ÎÅäÄÝÀÇ Ç¥ÁØÈ­¿Í ÀçÇö¼º È®º¸¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ¿ÀÇ »çÀÌ¾ð½º¿Í µ¥ÀÌÅÍ °øÀ¯°¡ Á¡Á¡ ´õ °­Á¶µÇ¸é¼­ KO °èÅëÀÇ Ç¥ÇöÇü µ¥ÀÌÅÍ °ø°³ ¸®Æ÷ÁöÅ丮°¡ ±¸ÃàµÇ°í, ½ÇÇè½Ç °£ °øµ¿ ¿¬±¸°¡ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. European Mouse Mutant Archive(EMMA) ¹× Mouse Genome Informatics(MGI) Ç÷§Æû°ú °°Àº ÀÌ´Ï¼ÅÆ¼ºê´Â Àü ¼¼°è ¿¬±¸Àڵ鿡°Ô °Ë»ö °¡´ÉÇÑ µ¥ÀÌÅͺ£À̽º¸¦ Á¦°øÇÏ¿© ÁÖ¼®ÀÌ ´Þ¸° KO °èÅë, Ç¥ÇöÇü µ¥ÀÌÅÍ ¹× À°Á¾ ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ Á¢±ÙÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â ¾à¹°ÀÇ ¸®Æ÷Áö¼Å´×°ú µ¶¼ºÀ¯ÀüüÇп¡¼­ KO ¸ðµ¨¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀüÀÓ»ó ¸ðµ¨¿¡¼­ ¾à¹° Ç¥Àû À¯ÀüÀÚ¸¦ ³ì¾Æ¿ô½ÃÅ´À¸·Î½á ¿¬±¸ÀÚµéÀº ÀáÀçÀûÀÎ ¿ÀÇÁ Ÿ°Ù È¿°ú¸¦ °áÁ¤Çϰí, º¸»ó °æ·Î¸¦ ±Ô¸íÇϰí, Á¶±â ÅðÇà·üÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹µµ µ¶¼ºÇÐ ÆÐŰÁö¿¡¼­ KO ¸ðµ¨ÀÇ °¡Ä¡¸¦ ÀνÄÇϰí ÀÖÀ¸¸ç, ¾ÈÀü¼º ¾à¸®ÇÐ ¹× ¹ÙÀÌ¿À¸¶Ä¿ °ËÁõ¿¡ KO ¸ðµ¨ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÏ¹Ý °úÇÐÀÇ ¼ö¿ä Áõ°¡¿Í ¸ÂÃãÇü KO ¼­ºñ½ºÀÇ °¡¿ë¼º Áõ°¡°¡ °áÇյǾî ÀÌ ºÐ¾ßÀÇ ¼­ºñ½º Á¦°ø¾÷ü¿¡°Ô Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.

³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¸¦ °ßÀÎÇÏ´Â °ÍÀº ¹«¾ùÀϱî?

¼¼°è ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀº CRISPR À¯ÀüÀÚ ÆíÁý ±â¼ú µµÀÔ °¡¼ÓÈ­, Á¤¹ÐÀÇ·á ¿¬±¸ Ȱµ¿ Áõ°¡, Àΰ£È­ ¹× Á¶Á÷ ƯÀÌÀû µ¿¹° ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¸¸¼ºÁúȯ°ú Èñ±ÍÁúȯÀÇ È®»êÀ¸·Î ÀÎÇØ À¯ÀüÀÚ¿Í Áúº´ÀÇ °ü°è¿¡ ´ëÇÑ ±âÀüÀû ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ±â´ÉÀ¯ÀüüÇÐ µµ±¸¿¡ ´ëÇÑ Å½»öÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. KO ¸¶¿ì½º ¸ðµ¨Àº ƯÈ÷ Á¾¾çÇÐ ¹× ½Å°æÇÐ ¿¬±¸ ÆÄÀÌÇÁ¶óÀο¡¼­ »õ·Î¿î Ç¥Àû ¹× ¹ÙÀÌ¿À¸¶Ä¿ÀÇ in vivo °ËÁõ Ç÷§Æû ¿ªÇÒÀ»ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ³ë·Â¿¡ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¹è¾Æ Á¶ÀÛ, Áٱ⼼Æ÷¹è¾ç, in vivo À̹Ì¡ÀÇ ±â¼ú ¹ßÀüÀ¸·Î º¸´Ù ½Å¼ÓÇÑ ¸ðµ¨ Á¦ÀÛ°ú Á¾´ÜÀû ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ® ÀüÀÓ»ó½ÃÇèÀÇ È¿À²¼º°ú Ÿ´ç¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. »ó¾÷¿ë CRO ¹× À¯ÀüÀÚ µµÀÔ ¼­ºñ½º Á¦°ø¾÷üµéÀº ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ºÏ¹Ì¿¡¼­ Áõ°¡ÇÏ´Â °í°´ ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ »ç¾÷À» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦¾àȸ»çµéÀÌ ½Å¾à°³¹ß Ãʱ⠴ܰ迡¼­ Ÿ°Ù µðÄÁº¼·ç¼Ç ¹× °æ·Î ±Ô¸í Àü·«À» äÅÃÇÔ¿¡ µû¶ó, KO ¸ðµ¨Àº µ¿±Þ ÃÖ°­ÀÇ ºÐÀÚ¸¦ ¼³°èÇÏ´Â µ¥ ÇʼöÀûÀÎ ÀÎDzÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. »ý¹°ÇÐÀû Á¦Á¦ ¹× À¯ÀüÀÚ Ä¡·áÀÇ Áõ°¡´Â Àΰ£ÀÇ À¯ÀüÀÚ ¹ßÇö ȯ°æÀ» ÀçÇöÇÏ´Â Á¤¹ÐÇÑ µ¿¹° ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °­È­½Ã۰í ÀÖ½À´Ï´Ù.

Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ¹Î°ü ÆÄÆ®³Ê½ÊÀº KO ¸ðµ¨ »ýŰ踦 À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±¹¸³ ¹ÙÀÌ¿À¹ðÅ©, ¸ðµ¨»ý¹° ÄÁ¼Ò½Ã¾ö, Áß°³¿¬±¸¼¾ÅÍ´Â À¯ÀüüÇÐ, Àü»çüÇÐ, ´ë»çüÇÐÀ» °áÇÕÇÑ ¸ÖƼ¿À¹Í½º ÆÄÀÌÇÁ¶óÀο¡ KO¸¦ ÅëÇÕÇÏ¿© KOÀÇ Ã¤ÅÃÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. À±¸®Àû ¿ì·Á¿Í µ¿¹° º¹Áö ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó µ¿¹° »ç¿ëÀ» ÁÙÀ̰í, °³¼±Çϰí, ´ëüÇÏ´Â ¹æÇâÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ÀÌ´Â KO ¸ðµ¨À» º¸´Ù Çö¸íÇϰí È¿À²ÀûÀ¸·Î »ç¿ëÇϰí, º¸´Ù ½º¸¶Æ®ÇÑ ¿¬±¸ ¼³°è·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÇÐÀû, »ó¾÷Àû, ±ÔÁ¦Àû ÈûÀÌ ³ì¾Æ¿ô ¸¶¿ì½º ¸ðµ¨ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀå°ú Çõ½ÅÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(±¸¼ºÀû ³ì¾Æ¿ô ¸¶¿ì½º, Á¶°ÇºÎ ³ì¾Æ¿ô ¸¶¿ì½º, ´Ü¹éÁú ±â´É ³ì¾Æ¿ô ¸¶¿ì½º), ¿ëµµ(Á¾¾çÇÐ ¿ëµµ, ½Å°æÇÐ ¿ëµµ, ½ÉÇ÷°ü ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ »ç¿ëÀÚ(ÀÓ»ó ¿¬±¸ ±â°ü ÃÖÁ¾ »ç¿ëÀÚ, Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ ÃÖÁ¾ »ç¿ëÀÚ, ±âŸ ÃÖÁ¾ »ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Knock Out Mouse Model Market to Reach US$1.7 Billion by 2030

The global market for Knock Out Mouse Model estimated at US$1.3 Billion in the year 2024, is expected to reach US$1.7 Billion by 2030, growing at a CAGR of 4.0% over the analysis period 2024-2030. Constitutive Knockout Mouse, one of the segments analyzed in the report, is expected to record a 3.8% CAGR and reach US$886.8 Million by the end of the analysis period. Growth in the Conditional Knockout Mouse segment is estimated at 4.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$361.8 Million While China is Forecast to Grow at 7.3% CAGR

The Knock Out Mouse Model market in the U.S. is estimated at US$361.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$341.1 Million by the year 2030 trailing a CAGR of 7.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.6% and 3.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.3% CAGR.

Global Knock Out Mouse Model Market - Key Trends & Drivers Summarized

Why Are Knock Out Mouse Models Considered Indispensable Tools in Biomedical Research?

Knock out (KO) mouse models have become indispensable assets in translational and fundamental biomedical research due to their ability to elucidate gene function by completely inactivating specific genes. These models offer researchers a powerful platform to study the physiological consequences of gene deletion, providing insight into disease mechanisms, drug targets, and therapeutic pathways. Since the introduction of gene targeting techniques via homologous recombination in embryonic stem cells, KO mouse models have evolved into essential tools for modeling monogenic diseases, cancer, immunological disorders, and metabolic syndromes. Their genetic manipulability and physiological resemblance to humans make them especially valuable in preclinical validation and toxicological studies.

Recent advancements have led to the development of sophisticated conditional and inducible KO models, wherein gene silencing can be restricted to specific tissues or timeframes. This granularity is vital for dissecting gene functions that may be lethal if knocked out systemically. Such refinements have expanded the applicability of KO mice beyond early developmental studies into aging, regenerative biology, and chronic disease modeling. Additionally, innovations in high-throughput gene editing and sequencing are enabling the generation of large-scale KO mouse libraries, further accelerating genotype-to-phenotype correlations. The availability of global initiatives like the International Knockout Mouse Consortium (IKMC) and the Knockout Mouse Project (KOMP) is helping centralize resources and democratize access, thus scaling research across academia and biotech sectors.

How Are CRISPR and High-Throughput Engineering Reshaping Model Development?

The advent of CRISPR/Cas9 technology has significantly lowered the time and cost required to generate KO mouse models, thereby democratizing their use across smaller labs and commercial CROs. Traditional homologous recombination techniques, which could take up to a year to develop a stable KO line, have now been supplemented or replaced by CRISPR-based systems that enable precise, site-specific gene disruption in a fraction of the time. Multiplex gene editing-targeting multiple genes simultaneously-is increasingly being used to model complex, polygenic diseases such as diabetes, Alzheimer’s, and autoimmune conditions, offering new avenues for precision medicine research.

High-throughput pipelines and automation technologies are also transforming KO mouse production. Facilities equipped with robotic microinjection systems, automated embryo transfer, and digital phenotyping platforms are shortening lead times and increasing model reproducibility. Furthermore, the integration of artificial intelligence into phenotypic screening is allowing for faster identification of observable traits, thereby enhancing throughput in both discovery and validation phases. CROs and contract breeding companies are increasingly offering off-the-shelf and custom KO models, often bundled with phenotypic validation, housing, and tissue collection services, which are streamlining R&D workflows for pharmaceutical companies and academic researchers alike.

The demand for conditional and tissue-specific KO models is growing in tandem with advancements in promoter design and inducible recombination systems, such as Cre-loxP and FLP/FRT. These models are instrumental in overcoming embryonic lethality and studying gene function in postnatal physiology or adult disease states. Additionally, dual recombinase systems are gaining traction for their ability to study gene-gene interactions and pathway cross-talk in a controlled environment, further enriching the functional genomics toolbox.

Which Research Domains and Institutional Trends Are Driving Model Utilization?

The utilization of KO mouse models is seeing rapid growth across oncology, neurology, immunology, and metabolic research domains. In cancer biology, KO mice are used extensively to validate tumor suppressor genes, study oncogene function, and model resistance mechanisms to targeted therapies. Researchers are creating isogenic KO mouse strains with humanized immune systems to evaluate tumor-immune interactions and the efficacy of immuno-oncology candidates. In neuroscience, KO models are being leveraged to study gene involvement in neurodevelopmental and neurodegenerative disorders such as autism, Parkinson’s disease, and epilepsy, particularly through region-specific gene inactivation.

Academic institutions, government-funded initiatives, and pharmaceutical companies are all scaling investments in KO model infrastructure. Centralized mouse repositories and breeding facilities are helping standardize protocols and ensure reproducibility. Meanwhile, the increasing emphasis on open science and data sharing is leading to public repositories of KO strain phenotypic data, facilitating cross-laboratory collaboration. Initiatives like the European Mouse Mutant Archive (EMMA) and the Mouse Genome Informatics (MGI) platform provide searchable databases for researchers worldwide, allowing access to annotated KO lines, phenotypic data, and breeding protocols.

Another key trend is the growing reliance on KO models in drug repositioning and toxicogenomics. By knocking out drug target genes in preclinical models, researchers can determine potential off-target effects, elucidate compensatory pathways, and improve early attrition rates. Regulatory bodies, too, are recognizing the value of KO models in toxicology packages and are encouraging their use in safety pharmacology and biomarker validation. Increasing demand from regulatory science, coupled with the growing availability of tailored KO services, is significantly expanding the commercial opportunity for service providers in this space.

What Is Fueling the Growth Trajectory of the Knock Out Mouse Model Market?

The growth in the global knock out mouse model market is driven by several factors, including the accelerated adoption of CRISPR gene editing, rising research activity in precision medicine, and growing demand for humanized and tissue-specific animal models. The expanding prevalence of chronic and rare diseases has intensified the search for functional genomics tools that offer mechanistic insights into gene-disease relationships. KO mouse models are playing a central role in this effort by serving as in vivo validation platforms for novel targets and biomarkers, particularly in oncology and neurological research pipelines.

Technological advances in embryo manipulation, stem cell culturing, and in vivo imaging are enabling faster model generation and longitudinal monitoring, which are improving the efficiency and relevance of preclinical trials. Commercial CROs and transgenic service providers are scaling operations to cater to growing client demand, particularly in Asia-Pacific and North America. Moreover, as pharmaceutical firms adopt target deconvolution and pathway elucidation strategies earlier in the discovery phase, KO models are being positioned as essential inputs in the design of first-in-class molecules. The global rise in biologics and gene therapies is further reinforcing the demand for precise animal models that replicate human gene expression environments.

Government funding and public-private partnerships continue to play a vital role in sustaining the KO model ecosystem. National biobanks, model organism consortia, and translational research centers are driving KO adoption by integrating them into multi-omics pipelines that combine genomics, transcriptomics, and metabolomics. As ethical concerns and animal welfare regulations become more stringent, there is also a shift toward reducing, refining, and replacing animal use-leading to smarter study designs where KO models are used more judiciously and efficiently. Together, these scientific, commercial, and regulatory forces are underpinning sustained growth and innovation in the knock out mouse model market.

SCOPE OF STUDY:

The report analyzes the Knock Out Mouse Model market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Constitutive Knockout Mouse, Conditional Knockout Mouse, Protein Function Knockout Mouse); Application (Oncology Application, Neurology Application, Cardiovascular Application, Other Applications); End-User (Clinical Research Organizations End-User, Pharma & Biotechnology Companies End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â