¼¼°èÀÇ °ø¿ª ¹× ÀýÂ÷ ¼³°è ½ÃÀå
Airspace and Procedure Designs
»óǰÄÚµå : 1796072
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 381 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°ø¿ª ¹× ÀýÂ÷ ¼³°è ¼¼°è ½ÃÀåÀº 2030³â±îÁö 120¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 99¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °ø¿ª ¹× ÀýÂ÷ ¼³°è ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 3.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 120¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ç×°ø·Î °üÁ¦ ¼¾ÅÍ´Â CAGR 2.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 50¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Å͹̳Π·¹ÀÌ´õ ÁøÀÔ °üÁ¦ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 27¾ï ´Þ·¯, Áß±¹Àº CAGR 5.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °ø¿ª ¹× ÀýÂ÷ ¼³°è ½ÃÀåÀº 2024³â¿¡ 27¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 5.9%·Î 2030³â±îÁö 23¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.3%¿Í 2.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °ø¿ª ¹× ÀýÂ÷ ¼³°è ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°ø¿ª ¹× ÀýÂ÷ ¼³°è°¡ ¾ÈÀüÇϰí È¿À²ÀûÀÎ Ç×°ø ±³Åë °ü¸®¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

°ø¿ª ¹× ÀýÂ÷ ¼³°è´Â ±¹³»¿Ü Ç×°ø±³Åë ½Ã½ºÅÛ¿¡¼­ Ç×°ø±â°¡ ¾ÈÀüÇϰí È¿À²ÀûÀ̸ç Áú¼­Á¤¿¬ÇÏ°Ô À̵¿Çϱâ À§ÇÑ ±âÃʰ¡ µË´Ï´Ù. ÀÌ·¯ÇÑ ¼³°è´Â ºñÇà °æ·Î, Ç×°ø°üÁ¦ ±¸°£, Ç×¹ý»óÀÇ ¿þÀÌÆ÷ÀÎÆ®, Ãâ¹ß, °æ·Î À̵¿, µµÂø ´Ü°è¿¡¼­ Ç×°ø±â¸¦ À¯µµÇÏ´Â ¿îÇ× ÀýÂ÷ÀÇ ±¸Á¶Àû Á¶Á÷À» Æ÷°ýÇÕ´Ï´Ù. ÀûÀýÇÏ°Ô ¼³°èµÈ °ø¿ªÀº Ç×°ø±â°¡ »óÇÏÁ¿ì·Î ¾ÈÀüÇÏ°Ô ºÐ¸®µÇ¾î °øÁß Ãæµ¹ÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÏ°í °üÁ¦»çÀÇ ºÎ´ãÀ» ´ú¾îÁÝ´Ï´Ù. Àü ¼¼°è Ç×°ø ±³Åë·®ÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ÁÖ¿ä °øÇ×°ú ±³Åë·®ÀÌ ¸¹Àº Ç×°ø·Î ±Ùó¿¡¼­ Ç×°ø È¥ÀâÀÌ Á¡Á¡ ´õ ½ÉÇØÁö¸é¼­ ½ÅÁßÇÏ°Ô Á¶Á¤µÈ °ø¿ª ¼³°èÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼³°è´Â ¿¬·á ¼Òºñ, ºñÇà ½Ã°£, ¹è±â°¡½º ¹èÃâ·®¿¡µµ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àß Â¥¿©Áø °æ·Î´Â º¸´Ù Á÷Á¢ÀûÀÎ °æ·Î¿Í ÃÖÀûÈ­µÈ °íµµ º¯È­¸¦ °¡´ÉÇÏ°Ô Çϱ⠶§¹®ÀÔ´Ï´Ù. °ø¿ªÀº ¹Î°£ Ç×°ø, ±º¿ë ºñÇà, ÀÏ¹Ý Ç×°ø, ¹«ÀÎÇ×°ø±â ½Ã½ºÅÛ µî ´Ù¾çÇÑ Á¾·ùÀÇ ¿îÇ× ÅëÇÕÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, Ç¥ÁØ °æ·Î¿¡¼­ ¹þ¾î³­ ÀÌÅ»À» ¾ÈÀü¼ºÀ» ÇØÄ¡Áö ¾Ê°í °ü¸®ÇØ¾ß ÇÏ´Â ±ä±Þ »óȲÀ̳ª ¾ÇõÈÄ ½Ã¿¡´Â ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÕ´Ï´Ù. ÀýÂ÷ ¼³°è¿¡´Â Ç¥ÁØ °è±â Ãâ¹ß(SID), Ç¥ÁØ Å͹̳ΠµµÂø °æ·Î(STAR), °øÇ×À» ÃâÀÔÇÏ´Â Áú¼­Á¤¿¬ÇÑ ±³Åë È帧À» º¸ÀåÇÏ´Â ÁøÀÔ ÀýÂ÷¸¦ Á¤ÀÇÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. À̵éÀº Á¤ÀûÀÎ ¿ä¼Ò°¡ ¾Æ´Ï¶ó ±â¼ú, Ç×°ø±â ´É·Â, Ç×°ø±³Åë·®ÀÇ º¯È­¿¡ µû¶ó ÁøÈ­ÇØ¾ß ÇÕ´Ï´Ù. ÀûÀýÇÏ°Ô ½ÇÇàµÈ °ø¿ª ¹× ÀýÂ÷ ¼³°è Àü·«Àº ¾ÈÀü°ú ´É·ÂÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ±¹Á¦ Á¶Á¤À» Áö¿øÇÏ°í ¿øÈ°ÇÑ ¼¼°è ¿î¿µÀ» º¸ÀåÇϱâ À§ÇØ ´Ù¾çÇÑ ±¹°¡ÀÇ Ç×°ø ±³Åë ½Ã½ºÅÛÀ» Á¶Á¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ °ø¿ª ¼³°è´Â ±â¼úÀûÀ¸·Î ÇÊ¿äÇÑ °ÍÀÎ µ¿½Ã¿¡ ¹Ì·¡ÀÇ Ç×°øÀ» °ü¸®Çϱâ À§ÇÑ Àü·«Àû ÀÚ»êÀ̱⵵ ÇÕ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº °ø¿ª ¼³°è¿Í ºñÇà ÀýÂ÷¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ¿µ°ø°ú ºñÇà ÀýÂ÷°¡ Çö´ë Ç×°ø ȯ°æ¿¡ ¸Â°Ô ¼³°è, °ü¸® ¹× ÃÖÀûÈ­µÇ´Â ¹æ½ÄÀ» À籸¼ºÇÏ´Â µ¥ ÀÖ¾î Çõ½ÅÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áö»ó ±â¹Ý Ç×¹ý ½Ã½ºÅÛ¿¡¼­ À§¼º ±â¹Ý Ç×¹ý ½Ã½ºÅÛÀ¸·ÎÀÇ Àüȯ, ƯÈ÷ ¼º´É ±â¹Ý Ç×¹ý(PBN)À¸·Î ÀÎÇØ ºñÇà °æ·ÎÀÇ Á¤È®¼º°ú À¯¿¬¼ºÀÌ ±ØÀûÀ¸·Î È®´ëµÇ¾ú½À´Ï´Ù. PBNÀº Ç×°ø±â¿¡ žÀçµÈ GPS¿Í °ü¼ºÇ×¹ý½Ã½ºÅÛÀ» ÅëÇØ º¸´Ù Á÷Á¢ÀûÀÌ°í ¿¹Ãø °¡´ÉÇÑ °æ·Î·Î ºñÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ¹èÃâ°¡½º¸¦ ÁÙÀ̸ç, ºñÇà½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÷´Ü ¼ÒÇÁÆ®¿þ¾î µµ±¸¿Í ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§ÆûÀ» ÅëÇØ ¿µ°ø °èȹ ´ã´çÀÚ´Â ±³Åë È帧À» ¸ðµ¨¸µÇϰí, ÀýÂ÷»ó Ãæµ¹À» Æò°¡Çϰí, ´Ù¾çÇÑ ±³Åë ½Ã³ª¸®¿À¿¡¼­ »õ·Î¿î °æ·Î ¼³Á¤À» Å×½ºÆ®ÇÑ ÈÄ ½ÃÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¿ªµ¿ÀûÀÎ ¼½ÅÍÈ­¿Í ½Ç½Ã°£ ±³Åë È帧 °ü¸®¸¦ °¡´ÉÇϰÔÇÔÀ¸·Î½á ¿µ°ø ±¸Á¶ÀÇ ÃÖÀûÈ­¸¦ Áö¿øÇÕ´Ï´Ù. °ø¿ª °èȹ¿¡ ÀÚµ¿È­¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¸é °ú°Å ºñÇà µ¥ÀÌÅ͸¦ ½±°Ô ºÐ¼®ÇÒ ¼ö ÀÖ¾î ¼³°èÀÚ°¡ ºñÈ¿À²ÀûÀÎ ºÎºÐÀ» ã¾Æ³»¾î 󸮷®À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ Àü¹ÝÀÇ Á¤º¸ °ü¸®(SWIM)¸¦ ÅëÇØ Ç×°ø Ç×¹ý ¼­ºñ½º Á¦°ø¾÷ü(ANSP), Ç×°ø»ç, ±ÔÁ¦ ´ç±¹ °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ °øÀ¯¸¦ ÃËÁøÇϰí Çù·ÂÀû ÀÇ»ç°áÁ¤À» °­È­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¿ìÁÖ ±â¹Ý ADS-B ¹× µðÁöÅРŸ¿ö ¼Ö·ç¼Ç°ú °°Àº ½Å±â¼úÀº ¿ø°ÝÁö³ª ÇØ¾ç Áö¿ª¿¡¼­µµ Ç×°ø±âÀÇ ¿òÁ÷ÀÓÀ» º¸´Ù ¼¼¹ÐÇÏ°Ô ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº »õ·Î¿î µµ½Ã °³¹ß, ¼ÒÀ½ Àú°¨ ±¸¿ª, È¥Çձ⠼º´É¿¡ ´ëÀÀÇϱâ À§ÇÑ ÁøÀÔ ¹× Ãâ¹ß ÀýÂ÷ÀÇ Àç¼³°è¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¹«ÀÎÇ×°ø±â ½Ã½ºÅÛ(UAS)°ú ÷´ÜÇ×°ø±âµ¿(AAM) Ç÷§ÆûÀÌ µîÀåÇÔ¿¡ µû¶ó °ø¿ª ¼³°èµµ ÀÚÀ²ÁÖÇàÂ÷¸¦ ±âÁ¸ ±³Åë ȯ°æ¿¡ ¾ÈÀüÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ¼öÁ÷Ãþ°ú Åë·Î¸¦ ÅëÇÕÇÏ´Â ¹æÇâÀ¸·Î ÁøÈ­ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ À¶ÇÕÀº °ø¿ª ¼³°è¸¦ Á¤ÀûÀÎ ±ÔÄ¢ ±â¹Ý ¸ðµ¨¿¡¼­ ¹Ì·¡ÁöÇâÀûÀÎ Ç×°ø ½Ã½ºÅÛÀ» Áö¿øÇÏ´Â µ¿Àû µ¥ÀÌÅÍ ±â¹Ý ÇÁ·Î¼¼½º·Î ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù.

Áö¿ª Ư¼º°ú °ø¿ª ÀÌ¿ëÀÚ´Â ¾î¶»°Ô ¼³°è Àü·«À» Çü¼ºÇÒ±î?

°ø¿ª ¹× ÀýÂ÷ÀÇ ¼³°è Àü·«Àº Áö¿ªÀÇ Áö¸®Àû Ư¼º, ±³ÅëÀÇ º¹À⼺, ÀÌ¿ëÀÚÀÇ ´Ù¾ç¼º, Á¤Ä¡Àû °í·Á»çÇ׿¡ Å©°Ô ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¼­À¯·´À̳ª ¹Ì±¹ µ¿ºÎ¿Í °°ÀÌ ¿©·¯ °³ÀÇ ÁÖ¿ä °øÇ×ÀÌ ÀÎÁ¢ÇÑ Àα¸ ¹Ðµµ°¡ ³ôÀº Áö¿ª¿¡¼­´Â ¿µ°ø ¼³°è°¡ È¿À²¼ºÀ» ±Ø´ëÈ­ÇÏ°í ¾ÈÀüÇÑ ºÐ¸®¸¦ º¸ÀåÇÏ´Â µ¿½Ã¿¡ °æÀïÇÏ´Â ÀÌÇØ°ü°èÀÇ ±ÕÇüÀ» ¸ÂÃç¾ß ÇÕ´Ï´Ù. È¥ÀâÇÑ ´ëµµ½Ã±Ç °ø¿ª¿¡¼­´Â º¹ÀâÇÑ »óÇÏÁÂ¿ì ºÐ¸® ü°è, º¹ÀâÇÑ ¹ßÂø ÆÐÅÏ, ¿©·¯ °üÁ¦¼¾ÅÍ °£ÀÇ Á¶Á¤ÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¹Ý¸é, ¾ÆÇÁ¸®Ä« ÀϺÎ, È£ÁÖ, ºÏ±Ø±Ç µî Àα¸°¡ ÀûÀº Áö¿ª¿¡¼­´Â Á¦ÇÑµÈ Áö»ó ÀÎÇÁ¶ó·Î ±¤È°ÇÑ °Å¸®¸¦ Ä¿¹öÇØ¾ß Çϱ⠶§¹®¿¡ ´Ü¼ø¼º°ú Àå°Å¸® Ç×ÇØ ´É·ÂÀ» ¿ì¼±½ÃÇÏ´Â °æ¿ì°¡ ÀÖ½À´Ï´Ù. °ø¿ª ÀÌ¿ëÀÚÀÇ À¯Çüµµ ¼³°è ¼±Åÿ¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¹Î°£ ¿©°´±â´Â ÀϰüµÈ °íµµ ¹× ¼Óµµ ÇÒ´ç°ú ÇÔ²² ±¸Á¶È­µÈ ´ë¿ë·® º¹µµ¸¦ ¿ä±¸ÇÕ´Ï´Ù. ÇÑÆí, ±º»ç ÀÛÀü¿¡¼­´Â ÈÆ·ÃÀ̳ª Àü¼úÀû ¿¬½ÀÀ» À§ÇØ Á¦ÇÑÀûÀ̰ųª ºÐ¸®µÈ °ø¿ªÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. µå·Ð°ú ÀÚÀ² Ç×°ø±âÀÇ »ç¿ëÀÌ È®´ëµÊ¿¡ µû¶ó »õ·Î¿î º¯¼ö°¡ µµÀԵǰí, ¼³°èÀÚ´Â °í¼Ó »ó¾÷ ±³Åë°ú º´ÇàÇÏ¿© Àú¼ÓÀ¸·Î À̵¿ÇÏ´Â Àú°øºñÇà Â÷·®À» ¼ö¿ëÇØ¾ß ÇÕ´Ï´Ù. Á¤Ä¡Àû, ±ÔÁ¦Àû ¿äÀεµ ƯÈ÷ ÁÖ±Ç, ±¹¹æ, Á¶Á¤ ÇÁ·ÎÅäÄݰú °ü·ÃµÈ ±¹°æ °£ Áö¿ªÀÇ ¼³°è °æ°è¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÀ½¿¡ ¹Î°¨ÇÑ Áö¿ª »çȸ ¹× ¾ß»ý µ¿¹° ±¸¿ª°ú °°Àº ȯ°æÀû °í·Á´Â Á¢±Ù ¹× Ãâ¹ß ÀýÂ÷ÀÇ °èȹÀ» ´õ¿í ±¸Ã¼È­ÇÕ´Ï´Ù. °èÀýdz, ´«º¸¶ó, »êºÒ µî °èÀýÀû ¿äÀο¡ µû¶ó ÀϽÃÀûÀÎ °æ·Î Á¶Á¤ÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹®È­Àû, ÀÎÇÁ¶óÀû Áغñ »óÅ´ »õ·Î¿î ÀýÂ÷¸¦ ¾ó¸¶³ª »¡¸® ½ÃÇàÇÒ ¼ö ÀÖ´ÂÁö¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀÚÀ¯Ç×·Î °ø¿ªÀ̳ª ±ËÀû ±â¹Ý ¿îÇ×°ú °°Àº ¼±ÁøÀûÀÎ °³³äÀ» ºü¸£°Ô äÅÃÇÏ´Â Áö¿ªÀÌ Àִ°¡ Çϸé, ´ë±Ô¸ð ÈÆ·Ã, ÅõÀÚ, ±ÔÁ¦ ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇÑ Áö¿ªµµ ÀÖ½À´Ï´Ù. µû¶ó¼­ ÇöÀç ¼ö¿ä, ¹Ì·¡ ¼ºÀå, °¢ °ø¿ª ÀÌ¿ëÀÚ ±×·ìÀÇ °íÀ¯ÇÑ ¿î¿µ Ư¼ºÀ» °í·ÁÇÑ Áö¿ª ¸ÂÃãÇü ¼³°è Àü·«ÀÌ ÇʼöÀûÀÔ´Ï´Ù.

°ø¿ª ¹× ÀýÂ÷ ¼³°èÀÇ ¼¼°è È®Àå ¹× Çö´ëÈ­ÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è °ø¿ª ¹× ÀýÂ÷ ¼³°è ½ÃÀåÀÇ ¼ºÀåÀº Ç×°ø ±³Åë ¼ö¿ä Áõ°¡, Ç×¹ý ±â¼ú ¹ßÀü, ±ÔÁ¦ Á¶È­, »õ·Î¿î À¯ÇüÀÇ Ç×°ø ¾÷¹«ÀÇ ÃâÇö µî ¿©·¯ °¡Áö ±³Â÷ÇÏ´Â Ãß¼¼¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå ¿µÇâ·Â ÀÖ´Â ¿øµ¿·Â Áß Çϳª´Â »ó¾÷ ºñÇà°ú È­¹° ºñÇàÀÇ ²ÙÁØÇÑ Áõ°¡·Î ±âÁ¸ °ø¿ª ±¸Á¶¿¡ ºÎ´ãÀ» ÁÖ¸ç ´õ ³ôÀº È¿À²¼º°ú ¾ÈÀü¼ºÀ¸·Î ´õ ¸¹Àº ºñÇà·®À» ¼ö¿ëÇϱâ À§ÇØ Àç ¼³°è¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿©°´ ¼ö°¡ ±ÞÁõÇÔ¿¡ µû¶ó °øÇ× ÀÎÇÁ¶óÀÇ È®Àå ¹× »õ·Î¿î Ç×°ø±â¸¦ Áö¿øÇÏ´Â ÃֽŠºñÇà ÀýÂ÷ÀÇ Çʿ伺ÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« ¿äÀÎÀº ICAO ¹× IATA¿Í °°Àº Á¶Á÷ÀÌ °æ·ÎÀÇ Á¤È®¼º°ú ¿îÇ× ¿¹Ãø °¡´É¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Àǹ«È­Çϰí ÀÖ´Â ¼º´É ±â¹Ý Ç×¹ý(Performance Based Navigation)À¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ¸¹Àº ±¹°¡µéÀÌ PBNÀ» µµÀÔÇϰí, ƯÈ÷ Å͹̳Π°ø¿ª¿¡¼­ Áߺ¹µÇ´Â ±³Åë È帧À» ÇØ¼ÒÇϱâ À§ÇØ ´ë±Ô¸ð °ø¿ª Àç¼³°è ÇÁ·Î±×·¥¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÈÄ º¯È­ ¸ñÇ¥°¡ º¸´Ù ¿¬·á È¿À²ÀûÀÎ °æ·Î¸¦ Ãß±¸ÇÏ´Â ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, °ø¿ª ¼³°è´Â ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ´õ ª°í Á÷Á¢ÀûÀÎ °æ·Î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µµ½É¿¡¼­ÀÇ Ç×°ø ¸ðºô¸®Æ¼, µå·Ð, ¿ìÁÖ ºñÇàÀÇ ºÎ»óÀº °ø¿ª ÀÌ¿ëÀÇ ¼öÁ÷Àû, ¼öÆòÀû ¹üÀ§¸¦ È®ÀåÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Ç÷§ÆûÀ» ¾ÈÀüÇÏ°Ô ÅëÇÕÇϱâ À§ÇÑ »õ·Î¿î Åë·Î, °íµµ, ±ÔÄ¢ÀÇ ¼ö¸³À» ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. À¯·´ÀÇ ´ÜÀÏ À¯·´ ÇÏ´Ã ÀÌ´Ï¼ÅÆ¼ºê(Single European Sky initiative)³ª ¹Ì±¹ÀÇ NextGen ÇÁ·Î±×·¥(NextGen program)°ú °°Àº ±¹Á¦ Çù·ÂÀû ³ë·ÂÀº ¿øÈ°ÇÑ ¼¼°è ¿©Çà¿¡ ÇʼöÀûÀÎ ÅëÀÏµÈ ÇÁ·¹ÀÓ¿öÅ©¿Í ±¹°æÀ» ÃÊ¿ùÇÑ Á¶È­·Î¿òÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¸¦ À°¼ºÇϰí ÀÖ½À´Ï´Ù. ÈÆ·Ã, ¼ÒÇÁÆ®¿þ¾î °³¹ß, Ç×°ø ±³Åë °ü¸® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ´Â ÀÌ·¯ÇÑ ÁøÈ­¸¦ µÞ¹ÞħÇÏ¸ç °ø¿ª ¼³°è¸¦ ¿ªµ¿ÀûÀÌ°í °¡Ä¡ ÀÖ´Â ½ÃÀåÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. Ç×°øÀÌ ´õ¿í º¹ÀâÇØÁö°í »óÈ£¿¬°á¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó °ø¿ª ¹× ÀýÂ÷ ¼³°è´Â ¾ÈÀü, Áö¼Ó°¡´É¼º ¹× Àå±âÀûÀÎ ¿ë·® È®ÀåÀ» º¸ÀåÇϱâ À§ÇÑ Àü·«Àû µµ±¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù.

ºÎ¹®

°ø¿ª(Ç×°ø·Î °üÁ¦ ¼¾ÅÍ, Å͹̳Π·¹ÀÌ´õ ÁøÀÔ °üÁ¦, Ç×°ø °üÁ¦Å¾, ¿ø°Ý Ÿ¿ö, Ç×°ø Á¤º¸ °ü¸®), ±¸¼º¿ä¼Ò(Çϵå¿þ¾î ±¸¼º¿ä¼Ò, ¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò), ÃÖÁ¾»ç¿ëÀÚ(±º»ç ÃÖÁ¾»ç¿ëÀÚ, »ó¾÷ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Airspace and Procedure Designs Market to Reach US$12.0 Billion by 2030

The global market for Airspace and Procedure Designs estimated at US$9.9 Billion in the year 2024, is expected to reach US$12.0 Billion by 2030, growing at a CAGR of 3.2% over the analysis period 2024-2030. Air Route Traffic Control Centers, one of the segments analyzed in the report, is expected to record a 2.5% CAGR and reach US$5.0 Billion by the end of the analysis period. Growth in the Terminal Radar Approach Control segment is estimated at 2.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.7 Billion While China is Forecast to Grow at 5.9% CAGR

The Airspace and Procedure Designs market in the U.S. is estimated at US$2.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.3 Billion by the year 2030 trailing a CAGR of 5.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.3% and 2.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.8% CAGR.

Global Airspace and Procedure Designs Market - Key Trends & Drivers Summarized

Why Are Airspace and Procedure Designs Critical to Safe and Efficient Air Traffic Management?

Airspace and procedure designs are foundational to the safe, efficient, and orderly movement of aircraft within national and international air traffic systems. These designs encompass the structured organization of flight routes, air traffic control sectors, navigational waypoints, and operational procedures that guide aircraft during departure, enroute travel, and arrival phases. Properly designed airspace ensures that aircraft are safely separated vertically and laterally, minimizing the risk of mid-air collisions and reducing controller workload. As global air traffic continues to grow and skies become increasingly congested, especially near major airports and busy air corridors, the need for carefully coordinated airspace design becomes more pressing. These designs also impact fuel consumption, flight times, and emissions, as well-structured routes allow for more direct paths and optimized altitude changes. They support the integration of various types of operations, including commercial aviation, military flights, general aviation, and unmanned aircraft systems. Additionally, they are crucial during emergencies or severe weather events when deviations from standard routes must be managed without compromising safety. Procedural designs involve defining standard instrument departures (SIDs), standard terminal arrival routes (STARs), and approach procedures that ensure orderly traffic flow into and out of airports. These are not static elements but must evolve with changing technologies, aircraft capabilities, and air traffic volumes. A well-executed airspace and procedure design strategy not only enhances safety and capacity but also supports international harmonization, aligning different countries’ air traffic systems to ensure seamless global operations. In this context, airspace design becomes both a technical necessity and a strategic asset in managing the future of aviation.

How Are Technological Advancements Transforming Airspace Design and Flight Procedures?

Technological advancements are playing a transformative role in reshaping how airspace and flight procedures are designed, managed, and optimized for the modern aviation environment. The shift from ground-based to satellite-based navigation systems, particularly through Performance-Based Navigation (PBN), has dramatically expanded the precision and flexibility of flight routing. PBN enables aircraft to fly more direct, predictable paths using onboard GPS and inertial navigation systems, which reduces fuel burn, lowers emissions, and shortens flight durations. Advanced software tools and simulation platforms now allow airspace planners to model traffic flows, evaluate procedural conflicts, and test new route configurations under various traffic scenarios before implementing them. These tools support the optimization of airspace structure by enabling dynamic sectorization and real-time traffic flow management. The integration of automation and machine learning in airspace planning also facilitates the analysis of historical flight data, helping designers identify inefficiencies and improve throughput. The global push toward system-wide information management (SWIM) is promoting real-time data sharing among air navigation service providers (ANSPs), airlines, and regulators, enhancing collaborative decision-making. Moreover, new technologies such as space-based ADS-B and digital tower solutions allow for more granular monitoring of aircraft movements, even in remote or oceanic regions. These capabilities are especially valuable in redesigning approach and departure procedures to accommodate new urban developments, noise abatement zones, and mixed aircraft performance. As Unmanned Aircraft Systems (UAS) and Advanced Air Mobility (AAM) platforms emerge, airspace designs must also evolve to incorporate vertical layers and corridors that can safely integrate autonomous vehicles into existing traffic environments. The convergence of these technologies is pushing airspace design from a static, rule-based model to a dynamic, data-driven process that supports a future-ready aviation system.

How Do Regional Characteristics and Airspace Users Shape Design Strategies?

Airspace and procedure design strategies are highly influenced by regional geographic characteristics, traffic complexity, user diversity, and political considerations. In densely populated regions with multiple major airports in close proximity, such as Western Europe or the Eastern United States, airspace design must balance competing interests while maximizing efficiency and ensuring safe separation. Congested metropolitan airspace often requires complex vertical and lateral separation schemes, intricate arrival and departure patterns, and coordination among multiple control centers. In contrast, sparsely populated regions such as parts of Africa, Australia, or the Arctic may prioritize simplicity and long-range navigation capabilities to cover vast distances with limited ground-based infrastructure. The type of airspace users also greatly affects design choices. Commercial airliners demand structured, high-capacity corridors with consistent altitude and speed assignments. General aviation requires flexible access and entry points, while military operations may necessitate restricted or segregated airspace for training and tactical exercises. The growing use of drones and autonomous aircraft introduces new variables, requiring designers to accommodate slow-moving, low-altitude vehicles alongside high-speed commercial traffic. Political and regulatory factors can also influence design boundaries, particularly in cross-border regions where sovereignty, defense, and coordination protocols come into play. Environmental concerns including noise-sensitive communities and wildlife zones are further shaping approach and departure procedure planning. Seasonal factors such as monsoon winds, snowstorms, or wildfire risks may necessitate temporary route adjustments. Additionally, cultural and infrastructural readiness impacts how quickly new procedures can be implemented. Some regions adopt advanced concepts like Free Route Airspace or trajectory-based operations quickly, while others may require extensive training, investment, and regulatory updates. A regionally tailored design strategy is therefore essential, one that considers current demand, future growth, and the unique operational characteristics of each airspace user group.

What Is Driving the Global Expansion and Modernization of Airspace and Procedure Designs?

The growth in the global airspace and procedure design market is being propelled by multiple intersecting trends, including rising air traffic demand, advances in navigation technology, regulatory harmonization, and the emergence of new types of aerial operations. One of the most influential drivers is the steady increase in commercial and cargo flights, which is straining existing airspace structures and prompting redesigns to accommodate higher volumes with better efficiency and safety. Rapid growth in passenger numbers, particularly in Asia-Pacific, the Middle East, and Africa, is accelerating the need for updated flight procedures that support expanding airport infrastructure and newer aircraft types. Another major factor is the global transition to Performance-Based Navigation, which is being mandated by organizations like ICAO and IATA to improve route precision and operational predictability. Many countries are investing in large-scale airspace redesign programs to implement PBN and deconflict overlapping traffic flows, especially in terminal airspace. Additionally, climate goals are driving the demand for more fuel-efficient routing, and airspace design plays a critical role in enabling shorter, direct paths that reduce carbon emissions. The rise of urban air mobility, drones, and spaceflight operations is also expanding the vertical and lateral scope of airspace use, necessitating the creation of new corridors, altitudes, and rules to integrate these platforms safely. Collaborative international efforts such as the Single European Sky initiative and the NextGen program in the United States are fostering unified frameworks and cross-border harmonization, which is essential for seamless global travel. Investments in training, software development, and air traffic management infrastructure are supporting this evolution, making airspace design a dynamic, high-value market. As aviation becomes more complex and interconnected, airspace and procedure designs are increasingly viewed as strategic tools for ensuring safety, sustainability, and long-term capacity growth.

SCOPE OF STUDY:

The report analyzes the Airspace and Procedure Designs market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Airspace (Air Route Traffic Control Centers, Terminal Radar Approach Control, Air Traffic Control Towers, Remote Towers, Aeronautical Information Management); Component (Hardware Component, Software Component); End-User (Military End-User, Commercial End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â