¼¼°èÀÇ µµ·Î û¼Ò±â ½ÃÀå
Street Cleaning Machines
»óǰÄÚµå : 1796028
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 469 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

µµ·Î û¼Ò±â ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 8¾ï 8,910¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â µµ·Î û¼Ò±â ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½ºÆ®¸®Æ® ½ºÀ§ÆÛ´Â CAGR 9.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 9,630¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½ºÆ®¸®Æ® ¿Í¼Å ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,220¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µµ·Î û¼Ò±â ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,220¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 13.5%·Î 2030³â±îÁö 3¾ï 1,890¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.3%¿Í 8.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µµ·Î û¼Ò±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±æ°Å¸®ÀÇ ¸»¾ø´Â ¼öÈ£ÀÚ´Â ¹«¾ù¿¡ ÀÇÇØ ÁöÅʵǰí Àִ°¡? µµ·Î û¼ÒÂ÷ÀÇ ¾Ë·ÁÁöÁö ¾ÊÀº À̾߱â

µµ·Î û¼Ò±â´Â Ãʺ¸ÀûÀÎ ½ºÀ§ÆÛ¿¡¼­ Çö´ë µµ½Ã À§»ý¿¡ ÇʼöÀûÀÎ º¹ÀâÇÏ°í ±â¼úÀûÀ¸·Î Á¤±³ÇÑ ½Ã½ºÅÛÀ¸·Î ÁøÈ­ÇØ ¿Ô½À´Ï´Ù. ¼ÒÇü º¸µµ û¼Ò±âºÎÅÍ ´ëÇü Æ®·° žÀçÇü û¼Ò±â±îÁö, ÀÌ ±â°èµéÀº ȯ°æ À§»ýÀ» À¯ÁöÇÏ°í °øÁß º¸°ÇÀ» °³¼±ÇÏ¸ç µµ½Ã ¹Ì°üÀ» °³¼±ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î µµ½ÃÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ´Ù¾çÇÑ ³ë¸éÀÇ ¹Ì¼¼ ¸ÕÁö, ³«¿±ºÎÅÍ À¯ÇØ Æó±â¹°±îÁö ¸ðµç °ÍÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀ̸ç Àú¹èÃâÀÇ Ã»¼Ò Àåºñ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀå µ¿ÇâÀº GPS ³»ºñ°ÔÀ̼Ç, °æ·Î ÃÖÀûÈ­ ¾Ë°í¸®Áò, ½Ç½Ã°£ Â÷·® °ü¸®¸¦ À§ÇÑ ÅÚ·¹¸Åƽ½º¸¦ ÀåÂøÇÑ Ã·´Ü ±â°è¿¡ ÀÇÇÑ ÀÚµ¿È­¿¡ ´ëÇÑ ³¯Ä«·Î¿î ÃàÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÀÛ¾÷ È¿À²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ³ëµ¿·Â ÀÇÁ¸µµ¿Í À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼ºÀÌ Áß¿äÇÑ È­µÎ·Î ¶°¿À¸£¸é¼­ ±âÁ¸ÀÇ µðÁ© ¿£Áø ±¸µ¿ ±â°è ´ë½Å Àü±â ¹× ÇÏÀ̺긮µå ¸ðµ¨ÀÌ Ã¤ÅõǾî ÀÌ»êȭź¼Ò ¹èÃâ·®°ú ¿îÀü ¼ÒÀ½ÀÌ Å©°Ô °¨¼ÒÇϰí ÀÖ½À´Ï´Ù.

Çõ½ÅÀÌ Çö´ë û¼Ò ±â°èÀÇ ÇÙ½ÉÀΰ¡?

µµ·Î û¼Ò±â ½ÃÀåÀº Â÷¼¼´ë ±â¼úÀÇ ÅëÇÕÀ¸·Î ±Þ¼ÓÇÑ º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» µµÀÔÇÏ¿© ±â°è°¡ Àå¾Ö¹°À» °¨ÁöÇϰí, ¾²·¹±â°¡ ¸¹ÀÌ ½×ÀÎ °÷À» ÆÄ¾ÇÇϸç, ÃÖÀûÀÇ Ã»¼Ò¸¦ À§ÇØ ºê·¯½Ã ¾Ð·Â°ú ÈíÀÔ·ÂÀ» ½º½º·Î Á¶ÀýÇÏ¿© ÀÚÀ²ÀûÀ¸·Î ¿îÀüÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â ½ÇÇèÀûÀÎ ¿ëµµ·Î¸¸ »ç¿ëµÇ´ø ·Îº¿Ã»¼Ò±â°¡ °øÇ×, »ê¾÷´ÜÁö, °ÔÀÌÆ®°¡ ÀÖ´Â Ä¿¹Â´ÏƼ µî Á¤È®¼º°ú ÀÏÁ¤ Áؼö°¡ ÃÖ¿ì¼±½ÃµÇ´Â ÅëÁ¦µÈ ȯ°æ¿¡¼­´Â ·Îº¿Ã»¼Ò±â°¡ Á¡Á¡ ´õ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ºÐ¼® Ç÷§ÆûÀº ±â°è ¼º´É ÃÖÀûÈ­, ¿¹Áöº¸Àü ½ºÄÉÁÙ¸µ, ±ÔÁ¦ Áؼö ¹× ¼º´É °¨»ç¸¦ À§ÇÑ »ó¼¼ÇÑ º¸°í¸¦ Áö¿øÇÕ´Ï´Ù.

µ¿½Ã¿¡ ¼¾¼­ ±â¼ú, ƯÈ÷ LiDAR ¹× ±¤ÇÐ ÀÎ½Ä ½Ã½ºÅÛÀÇ ¹ßÀüÀº È¥ÀâÇÑ Àå¼Ò¿Í º¹ÀâÇÑ ÁöÇü¿¡¼­ ±â°èÀÇ ÀνÄÀ» °­È­ÇÏ¿© ¾ÈÀü ±âÁØÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Çõ½ÅÀº ¸ðµâ½Ä ¼³°è ¹æ½ÄÀ¸·Î, »ç¿ëÀÚ´Â Á¦¼³±â, °í¾Ð ¼¼Ã´±â, ³«¿± ¼öÁý±â µî ¿©·¯ °¡Áö ºÎÂø¹°À» ±â°è¿¡ Ãß°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¸ðµâ½ÄÀº ±â°èÀÇ ½Ç¿ë¼ºÀ» ±Ø´ëÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó °èÀý°ú Áö¿ª¿¡ µû¶ó ´Ù¸¥ ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ º°µµÀÇ ±â°è¸¦ Á¶´ÞÇÒ Çʿ䰡 ¾ø¾î ÁöÀÚü³ª ¹Î°£ ¾÷üÀÇ ÀÚº» ÁöÃâÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ëµµ°¡ È®´ëµÇ´Â ¿øµ¿·ÂÀº?

µµ·Î û¼Ò±âÀÇ ÃÖÁ¾ ¿ëµµ´Â Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸¿¡´Â ÁöÀÚü¿¡¼­¸¸ »ç¿ëµÇ¾úÀ¸³ª ÇöÀç´Â ¹Î°£±â¾÷, °øÇ×, Ç׸¸, °Ç¼³Áö¿ª, »ê¾÷½Ã¼³, Å׸¶ÆÄÅ©, ´ëÇÐ Ä·ÆÛ½º µî¿¡¼­ Æø³Ð°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °ø»ç ÇöÀåÀÇ ºÐÁø ¾ïÁ¦ ½Ã½ºÅÛ, º´¿ø ¹× ±³À° ½Ã¼³ÀÇ ÃÊÀú¼ÒÀ½ ¿îÀü µî °¢±â ´Ù¸¥ ȯ°æ¸¶´Ù ´Ù¸¥ °úÁ¦¸¦ °¡Áö°í ÀÖÀ¸¸ç, ¸ÂÃãÇü ¼Ö·ç¼ÇÀ¸·Î ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÅÈï °æÁ¦±¹¿¡¼­´Â ȯ°æ ¹× À§»ý¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÇ°í ÀÖÀ¸¸ç, ¹Î°£ ±â¾÷ ¹× °ø°ø±â°ü¿¡¼­ ¼öÀÛ¾÷º¸´Ù ±â°èÈ­µÈ û¼Ò ¹æ¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ÀÀ¿ë µ¿ÇâÀº ½º¸¶Æ® ½ÃƼÀÇ ºÎ»óÀÔ´Ï´Ù. µµ½Ã °³¹ß °èȹ¿¡ µðÁöÅÐ ÅëÇÕ ÀÎÇÁ¶ó°¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖÀ¸¸ç, ±× Áß µµ·Î û¼Ò±â´Â Áß¾Ó ÁýÁᫎ µµ½Ã °ü¸® ½Ã½ºÅÛ¿¡ ¿¬°áµÇ°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ´Ù¸¥ °ø°ø ¼­ºñ½º Â÷·®°úÀÇ µ¿±âÈ­ ¿îÀü, ÀÚ¿øÀÇ ÃÖÀû Ȱ¿ë, ºÒ¹ý Åõ±â ¹× µµ·Î ¼Õ»ó µîÀÇ ¹®Á¦¸¦ ½Ç½Ã°£À¸·Î º¸°íÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ü±¤°´ Áß½ÉÀÇ Àå¼Ò¿¡¼­´Â û°áÀÌ ¿ä±¸µÇ±â ¶§¹®¿¡ ¹Ì°üÀ» °í·ÁÇÑ µðÀÚÀΰú ºê·£µù ±â´ÉÀÌ Â÷·® ÀÚü¿¡ ³»ÀåµÇ¾î ±â´ÉÀûÀ̸鼭µµ ½Ã°¢ÀûÀ¸·Î ¸Å·ÂÀûÀÎ µµ½Ã °æ°üÀÇ ±¸¼º¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

µµ·Î û¼Ò±â ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù...

µµ·Î û¼Ò±â ¼ö¿äÀÇ °¡¼ÓÈ­´Â ±â¼úÀû, °æÁ¦ÀûÀÎ ¸î °¡Áö ¶Ñ·ÇÇÑ ¿äÀο¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. °¡Àå °­·ÂÇÑ ¿øµ¿·Â Áß Çϳª´Â ÀÚµ¿È­, Ä¿³ØÆ¼µå, Áö¼Ó°¡´ÉÇÑ µµ½Ã ÀÎÇÁ¶ó¸¦ Áß½ÃÇÏ´Â ½º¸¶Æ® ½ÃƼ °³³äÀÌ Àü ¼¼°èÀûÀ¸·Î È®»êµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. IoT ÇÁ·¹ÀÓ¿öÅ© ¹× µµ½Ã ¸ðºô¸®Æ¼ Ç÷§Æû°ú ÅëÇյǴ µµ·Î û¼Ò±â´Â ÀÌ·¯ÇÑ µðÁöÅÐ Àüȯ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µå ÃßÁø ½Ã½ºÅÛÀÇ µîÀåµµ Å« ¿äÀÎ Áß ÇϳªÀ̸ç, µµ½ÃÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¹èÃâ·® °¨Ãà Àǹ«¸¦ ÁؼöÇϱâ À§ÇÑ Àü ¼¼°èÀÇ ³ë·Â¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àú¹èÃâ ¸ðµ¨Àº ȯ°æ ±âÁØÀÌ ¾ö°ÝÇÑ Áö¿ªÀÇ ÁöÀÚü¿¡ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù.

¶ÇÇÑ, »ó¾÷¿ë ¹× »ê¾÷¿ë ºÎµ¿»êÀÇ È®ÀåÀ¸·Î ÀÎÇØ ÀϰüµÇ°í È¿À²ÀûÀÎ ½Ç¿Ü À¯Áöº¸¼ö ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇØÁö¸é¼­ ¼ºÀå¼¼°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¹°·ù Çãºê, Á¦Á¶ °øÀå, µ¥ÀÌÅͼ¾ÅͰ¡ Áõ°¡ÇÔ¿¡ µû¶ó »ç¶÷ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 ³ÐÀº ¸éÀû¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â »ê¾÷¿ë ½ºÀ§ÆÛ¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀϺΠ°æÁ¦±Ç¿¡¼­´Â ÀΰǺñ »ó½Â°ú ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ ÀÚµ¿ ¹× ¹ÝÀÚµ¿ Áø°ø û¼Ò±â°¡ ¼öÀÛ¾÷À¸·Î µµ·Î¸¦ û¼ÒÇÏ´Â ÀÛ¾÷ÀÚ ´ë½Å ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, Áö¹æÁ¤ºÎÀÇ Á¶´Þ Çö´ëÈ­(Á¾Á¾ Àå±â ¸®½º ¸ðµ¨, µ¥ÀÌÅÍ ±â¹Ý À¯Áöº¸¼ö °è¾à, ¼º°ú¿¡ µû¸¥ ÁöºÒ ±¸Á¶ µî)´Â Áö¹æÁ¤ºÎ°¡ ±â¼úÀûÀ¸·Î Áøº¸µÈ Â÷·®¿¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ÀçÁ¤Àû ¿©°ÇÀ» Á¶¼ºÇϰí, µµ½Ã ¹× ¹Ýµµ½Ã Áö¿ª¿¡¼­ äÅ÷üÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(³ë¸é û¼Ò±â, ³ë¸é ¼¼Á¤±â, ±âŸ À¯Çü), Á¦Ç° À¯Çü(º¸ÇàÇü ¸Ó½Å, ½Â¿ë ¹× Æ®·° ÀûÀçÇü ¸Ó½Å, ±âŸ Á¦Ç° À¯Çü), ¿îÀü ¸ðµå(Àüµ¿ ¸Ó½Å, ¼öµ¿ ¹× ICE ¸Ó½Å, ±âŸ ¿îÀü ¸ðµå), ¿ëµµ(µµ½Ã µµ·Î ¿ëµµ, °í¼Óµµ·Î ¿ëµµ, °øÇ× ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Street Cleaning Machines Market to Reach US$1.5 Billion by 2030

The global market for Street Cleaning Machines estimated at US$889.1 Million in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 8.6% over the analysis period 2024-2030. Street Sweeper, one of the segments analyzed in the report, is expected to record a 9.6% CAGR and reach US$896.3 Million by the end of the analysis period. Growth in the Street Washer segment is estimated at 7.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$242.2 Million While China is Forecast to Grow at 13.5% CAGR

The Street Cleaning Machines market in the U.S. is estimated at US$242.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$318.9 Million by the year 2030 trailing a CAGR of 13.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.3% and 8.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.7% CAGR.

Global Street Cleaning Machines Market - Key Trends & Drivers Summarized

What Powers the Silent Guardians of Our Streets? The Untold Story of Street Cleaning Machines

Street cleaning machines have evolved from rudimentary sweepers into complex, technologically sophisticated systems integral to modern urban sanitation. These machines-ranging from compact sidewalk sweepers to large, truck-mounted units-play a pivotal role in maintaining environmental hygiene, improving public health, and enhancing city aesthetics. The increased urbanization witnessed globally has heightened the need for reliable, efficient, and low-emission cleaning equipment that can tackle everything from fine dust and leaves to hazardous waste materials on a variety of surfaces. Current market trends reflect a sharp pivot towards automation, with advanced machines now equipped with GPS navigation, route optimization algorithms, and telematics for real-time fleet management. These innovations not only improve operational efficiency but also reduce labor dependency and maintenance costs. Moreover, sustainability has emerged as a key focal point, with electric and hybrid models replacing conventional diesel-powered machines, significantly lowering carbon emissions and operating noise.

Is Innovation the Core of Modern Cleaning Machinery?

The street cleaning machine market is undergoing a rapid transformation due to the integration of next-gen technology. The incorporation of artificial intelligence (AI) and machine learning (ML) is enabling autonomous operation, allowing machines to detect obstacles, identify areas with heavy debris accumulation, and even self-adjust brush pressure and suction power for optimal cleaning. Robotic sweepers, once confined to experimental use, are gaining traction in controlled environments like airports, industrial parks, and gated communities, where precision and schedule adherence are paramount. Cloud-based data analytics platforms further support machine performance optimization, predictive maintenance scheduling, and detailed reporting for regulatory compliance and performance audits.

Simultaneously, advancements in sensor technology-particularly LiDAR and optical recognition systems-are elevating safety standards by enhancing machine awareness in crowded or complex terrains. Another notable innovation is the modular design approach, allowing users to retrofit machines with multiple attachments such as snow plows, high-pressure washers, and leaf collectors. This modularity not only maximizes the utility of the equipment but also caters to varying seasonal and regional demands without requiring the procurement of separate machinery, thereby reducing capital expenditure for municipalities and private contractors alike.

What’s Fueling the Expanding Landscape of Applications?

The end-use spectrum of street cleaning machines is broadening considerably. Traditionally restricted to municipal usage, these machines are now widely adopted by private sector entities, airports, seaports, construction zones, industrial facilities, theme parks, and university campuses. Each of these environments presents distinct challenges that are being addressed through tailor-made solutions-such as dust suppression systems in construction zones, or ultra-quiet operation for hospital and educational premises. Additionally, stricter environmental and sanitation regulations across developing economies are pushing private businesses and public authorities to adopt mechanized cleaning methods over manual labor.

Another key application trend lies in the rise of smart cities. Urban development plans increasingly incorporate digitally integrated infrastructure, within which street cleaning machines are being connected to centralized city management systems. This allows for synchronized operations with other public service vehicles, optimized resource utilization, and real-time issue reporting-such as illegal dumping or road damage. Moreover, the demand for cleanliness in tourism-centric locations has sparked the integration of aesthetic-conscious designs and branding capabilities on the machines themselves, turning them into functional yet visually appealing components of the urban fabric.

The Growth in the Street Cleaning Machines Market Is Driven by Several Factors…

The acceleration in demand for street cleaning machines is propelled by several well-defined, technologically and economically rooted factors. One of the strongest drivers is the rise in smart city initiatives globally, which emphasize automated, connected, and sustainable urban infrastructure. Street cleaning machines that integrate with IoT frameworks and urban mobility platforms are becoming essential components of this digital shift. The advent of electric and hybrid propulsion systems is another major factor, spurred by the global push to reduce urban carbon footprints and adhere to emission reduction mandates. These low-emission models are particularly attractive to municipalities in regions with stringent environmental standards.

Further fueling growth is the expansion of commercial and industrial real estate, necessitating consistent and efficient outdoor maintenance solutions. As logistics hubs, manufacturing plants, and data centers multiply, so too does the need for industrial-grade sweepers capable of operating over large surface areas with minimal human intervention. Additionally, rising labor costs and workforce shortages in several economies are making automated and semi-automated machines a cost-effective alternative to manual street sweeping crews. Lastly, procurement modernization within municipal bodies-often involving long-term leasing models, data-driven maintenance contracts, and performance-based payment structures-is making it financially feasible for local governments to invest in technologically advanced fleets, driving adoption rates higher across urban and semi-urban territories.

SCOPE OF STUDY:

The report analyzes the Street Cleaning Machines market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Street Sweeper, Street Washer, Other Types); Product Type (Walk-Behind Machines, Ride-On & Truck Mounted Machines, Other Product Types); Operation Mode (Electric Machines, Manual & ICE Machines, Other Operation Modes); Application (Urban Road Application, Highway Application, Airport Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â