¼¼°èÀÇ ¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence (AI) in Radiology
»óǰÄÚµå : 1795851
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 380 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 135¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 24¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 33.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 135¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÈäºÎ ¿µ»ó °Ë»ç´Â CAGR 28.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ëÀå³»½Ã°æ °Ë»ç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 37.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 5,030¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 42.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 6¾ï 5,030¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 34¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 42.7%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 27.6%¿Í 29.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 28.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI°¡ ¿µ»óÀÇÇаú ÀÇ»çÀÇ ¿ªÇÒ°ú ÀÇ·á ¿µ»ó Áø´ÜÀÇ Áø´Ü Á¤È®µµ¸¦ º¯È­½ÃŰ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀΰøÁö´ÉÀº ÀÓ»óÀǰ¡ º¹ÀâÇÑ ÀÇ·á ¿µ»óÀ» Àü·Ê ¾ø´Â Á¤È®µµ¿Í ¼Óµµ·Î °¨Áö, ÇØ¼®, ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÀÓ»óÀÇÀÇ ¿ª·®À» °­È­ÇÔÀ¸·Î½á ¿µ»óÀÇÇп¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¿µ»óÀÇÇÐÀº ¿À·§µ¿¾È ¾Ï, ½Å°æÀå¾Ö, ±Ù°ñ°Ý°è ¼Õ»ó, ½ÉÇ÷°ü°è Áúȯ µî ´Ù¾çÇÑ ÁúȯÀÇ Áø´Ü¿¡ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù. ±×·¯³ª ±âÁ¸ÀÇ ÆÇµ¶Àº ½Ã°£ÀÌ ¿À·¡ °É¸®°í, ¼÷·ÃµÈ ¹æ»ç¼±»ç¶ó ÇÒÁö¶óµµ Àΰ£ÀÇ ÇÇ·Î¿Í ÀÎÁöÀû °úºÎÇÏ·Î ÀÎÇØ ¹Ì¹¦ÇÑ ÀÌ»ó ¡Èĸ¦ ³õÄ¥ ¼ö ÀÖ½À´Ï´Ù. AI´Â ¿¢½º·¹ÀÌ, CT ½ºÄµ, MRI, ¸¾¸ð±×·¥ÀÇ ¹Ì¼¼ÇÑ ÆÐÅÏÀ» °¨ÁöÇÒ ¼ö ÀÖ´Â °íµµÀÇ À̹ÌÁö ÀÎ½Ä ¾Ë°í¸®ÁòÀ» Àû¿ëÇÏ¿© ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. µö·¯´× ½Ã½ºÅÛÀº ¼ö¹é¸¸ ÀåÀÇ ÁÖ¼®ÀÌ ´Þ¸° À̹ÌÁö·Î ÇнÀ½Ãų ¼ö Àֱ⠶§¹®¿¡ Ãʱâ Á¾¾çÀ» ½Äº°Çϰí, Á¶Á÷ ÀÌ»óÀ» ºÐ·ùÇϰí, ¾ç¼º°ú ¾Ç¼ºÀÇ ¼ºÀåÀ» ³ôÀº ½Å·Úµµ·Î ±¸ºÐÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ AI µµ±¸´Â ¿µ»óÀÇÇаú Àǻ縦 ´ëüÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó ±× ´É·ÂÀ» °­È­ÇÏ´Â °ÍÀ̸ç, ¿µ»óÀÇÇаú Àǻ簡 º¹ÀâÇÑ »ç·Ê¿Í ÀÓ»óÀû ÀÇ»ç°áÁ¤¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ´Â °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, AI´Â ¿µ»ó Å¥¸¦ ºÐ·ùÇÏ¿© ±ä±ÞÇÑ »ç·ÊÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí, ³úÃâÇ÷À̳ª Æó»öÀüÁõ°ú °°Àº Áß¿äÇÑ ¼Ò°ßÀÌ °¡Àå ¸ÕÀú °ËÅäµÉ ¼ö ÀÖµµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù. AI¸¦ ¿µ»óÀÇÇп¡ ÅëÇÕÇϸé Àϰü¼º°ú Ç¥ÁØÈ­°¡ Çâ»óµÇ°í, Àǻ糪 ±â°ü¸¶´ÙÀÇ ÆíÂ÷°¡ ÁÙ¾îµé°Ô µË´Ï´Ù. º¸°í¼­ ÀÚµ¿ »ý¼º ¹× ±¸Á¶È­µÈ µ¥ÀÌÅÍ Ãâ·ÂÀ» ÅëÇØ ¿öÅ©Ç÷οìÀÇ È¿À²¼º, ¹®¼­ÀÇ Á¤È®¼º, Ÿ ºÎ¼­¿ÍÀÇ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» Çâ»ó½Ãŵ´Ï´Ù. Àα¸ °í·ÉÈ­¿Í ÀÇ·á ¼­ºñ½º Á¢±Ù¼º È®´ë¿¡ µû¶ó Àü ¼¼°èÀûÀ¸·Î ¿µ»ó Áø´ÜÀÇ ¾çÀÌ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, AI´Â ¾çÁúÀÇ Áø·á¿Í Àû½Ã Áø´ÜÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ±× ¿µÇâÀº º´¿ø»Ó¸¸ ¾Æ´Ï¶ó ¿Ü·¡ Áø·á¼Ò, ¿ø°Ý ¿µ»ó Áø´Ü ¼­ºñ½º, À̵¿ Áø·á¼Òµµ AIÀÇ È®Àå °¡´ÉÇÑ ´É·ÂÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀÇ·á ¿µ»ó Áø´Ü¿¡ ÀÖ¾î Çõ½ÅÀÇ ÈûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀüÀº ¹æ»ç¼±ÇÐ ÀÀ¿ë ºÐ¾ß¿¡¼­ AI ¾Ë°í¸®Áò¿¡ ¾î¶² ÈûÀ» ºÎ¿©Çϰí Àִ°¡?

¿µ»óÀÇÇÐ ºÐ¾ß¿¡¼­ÀÇ AIÀÇ ÁøÈ­´Â µö·¯´×, ½Å°æ¸Á, ¹æ´ëÇÑ ¿µ»ó µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â °è»ê ±â¹ÝÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÄÁº¼·ç¼Ç ½Å°æ¸Á(CNN)Àº ¿©·¯ ¿µ»ó ¾ç½Ä¿¡ °ÉÃÄ Çȼ¿ ¼öÁØÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í ¸Å¿ì Á¤È®ÇÑ ¿¹ÃøÀ» ÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ ´É·ÂÀ¸·Î ÀÎÇØ ¿µ»óÀÇÇÐ ºÐ¾ß¿¡¼­ AIÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³×Æ®¿öÅ©´Â ´Ù¾çÇÑ È¯ÀÚ ¼Ó¼º, Áúº´ À¯Çü, ¿µ»ó ¸Å°³º¯¼ö¸¦ Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ »ç¿ëÇÏ¿© ÈÆ·ÃµÇ¾î ÀϹÝÈ­ °¡´É¼º°ú Áø´Ü Á¤È®µµ¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖ¼®ÀÌ ´Þ¸° ÀÇ·á ¿µ»ó ¸®Æ÷ÁöÅ丮¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, º´¿ø°ú AI ±â¾÷°úÀÇ Çù¾÷À¸·Î ¸ðµ¨ °³¹ß ¹× °ËÁõÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ¿§Áö ÇÁ·Î¼¼½ÌÀÇ Çõ½ÅÀ¸·Î AI ½Ã½ºÅÛÀº º¹ÀâÇÑ °è»êÀ» ¿ø°ÝÀ¸·Î ¶Ç´Â ¿µ»ó Áø´Ü Àåºñ ³»¿¡¼­ Á÷Á¢ ¼öÇàÇÏ¿© ´ë±â ½Ã°£À» ÃÖ¼ÒÈ­ÇÏ°í ½Ç½Ã°£ ºÐ¼®ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, AI Ç÷§ÆûÀº ¸ÖƼ¸ð´ÞÈ­°¡ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ¿µ»ó µ¥ÀÌÅ͸¦ ÀüÀÚÀǹ«±â·Ï, °Ë»ç º¸°í¼­, À¯Àüü Á¤º¸¿Í °áÇÕÇÏ¿© º¸´Ù ¸Æ¶ô¿¡ ¸Â´Â ÀλçÀÌÆ®¸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP)´Â ¹æ»ç¼± º¸°í¼­¿¡¼­ °ü·Ã ÀÓ»ó µ¥ÀÌÅ͸¦ ÃßÃâÇϰí, Áø´Ü »ó°ü°ü°è ¹× ÈÄ¼Ó Á¶Ä¡ ÃßõÀ» °­È­Çϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼³¸í °¡´ÉÇÑ AI ¸ðµ¨ÀÌ Àα⸦ ¾ò°í ÀÖÀ¸¸ç, ¿µ»óÀÇÇаú Àü¹®Àǰ¡ AI ¼Ò°ßÀÇ ±Ù°Å¸¦ ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ½Ã°¢Àû È÷Æ®¸Ê°ú ½Å·Úµµ Á¡¼ö¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿µ»óÀúÀåÅë½Å½Ã½ºÅÛ(PACS) ¹× ¹æ»ç¼±Á¤º¸ ½Ã½ºÅÛ(RIS)°úÀÇ ÅëÇÕÀ» ÅëÇØ ±âÁ¸ ÀÓ»ó ¿öÅ©ÇÃ·Î¿ì ³»¿¡¼­ ¿øÈ°ÇÏ°Ô ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Áø´Ü ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó AI µµ±¸ÀÇ ÀûÀÀ¼º, ÇØ¼® °¡´É¼º, ±×¸®°í ºü¸£°Ô ÁøÈ­ÇÏ´Â Á¤¹ÐÀÇ·á¿Í ȯÀÚ Á᫐ ÀÇ·á¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

ÀÓ»ó ¿öÅ©Ç÷οì, Áø·á º¸»ó ¸ðµ¨, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ¾î¶»°Ô äÅÃÀ» Çü¼ºÇϰí Àִ°¡?

¿µ»óÀÇÇаú¿¡¼­ÀÇ AI µµÀÔÀº ÀÓ»ó ¿öÅ©Ç÷οìÀÇ ÅëÇÕ, »óȯÀÇ ¿ªÇÐ, ±ÔÁ¦ ¸ð´ÏÅ͸µÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. AI µµ±¸°¡ ±¸Ã¼ÀûÀÎ ÀÌÁ¡À» °¡Á® ¿À±â À§Çؼ­´Â ¸¶ÂûÀ̳ª ºñÈ¿À²¼ºÀ» ÃÊ·¡ÇÏÁö ¾Ê°í ¹æ»ç¼±°ú ÀÇ»çÀÇ ÀÏ»ó ¾÷¹«¿¡ ¿øÈ°ÇÏ°Ô ÀûÀÀÇØ¾ß ÇÕ´Ï´Ù. À̸¦ À§Çؼ­´Â Á÷°üÀûÀÎ ÀÎÅÍÆäÀ̽º, PACS¿Í °°Àº ±âÁ¸ ½Ã½ºÅÛ°úÀÇ »óÈ£ ¿î¿ë¼º, ÀÓ»ó Á÷¿ø¿¡ ´ëÇÑ ÃÖ¼ÒÇÑÀÇ ±³À° ½Ã°£ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸¹Àº AI º¥´õµéÀº ÀÎÇÁ¶ó¸¦ Å©°Ô º¯°æÇÏÁö ¾Ê°íµµ µµÀÔÇÒ ¼ö ÀÖ´Â Ç÷¯±× ¾Ø Ç÷¹ÀÌ ¼Ö·ç¼Ç °³¹ß¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í º´ÇàÇÏ¿© Áø´Ü °úÁ¤¿¡¼­ AIÀÇ »ç¿ëÀ» Áö¿øÇϱâ À§ÇØ Áø·áºñ º¸»ó ü°èµµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀϺΠÁö¿ª¿¡¼­´Â º¸Çè»ç ¹× Á¤ºÎ ÀÇ·á ÇÁ·Î±×·¥ÀÌ AI Áö¿ø ÇØ¼®À» ȯ±Þ °¡´ÉÇÑ ¼­ºñ½º·Î ÀÎÁ¤Çϱ⠽ÃÀÛÇßÀ¸¸ç, ƯÈ÷ Á¶±â Áø´ÜÀÌ Àå±âÀûÀÎ Ä¡·á ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ´Â À¯¹æ¾Ï ¹× Æó¾Ï ¹ß°ß°ú °°Àº °ËÁø¿¡¼­ AI Áö¿ø ÇØ¼®À» ÀÎÁ¤Çϱ⠽ÃÀÛÇß½À´Ï´Ù. ¹Ì±¹ FDA, À¯·´ÀǾàǰû, Áö¹æ º¸°Ç´ç±¹ µî ±ÔÁ¦±â°üÀº AI ÀÇ·á±â±âÀÇ ¾ÈÀü¼º°ú À¯È¿¼º ±âÁØÀ» ¼³Á¤ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â°üÀº AI ±â¹Ý µµ±¸¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÇнÀ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ¾Ë°í¸®Áò Åõ¸í¼º, ÀÓ»ó °ËÁõ µîÀÇ Ãø¸éÀ» ´Ù·ç´Â AI ±â¹Ý µµ±¸¿¡ ´ëÇÑ °¡À̵å¶óÀÎÀ» ¹ßÇ¥Çϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÇ·á±â±â·Î¼­ÀÇ ¼ÒÇÁÆ®¿þ¾î(SaMD) ºÐ·ùÀÇ µµÀÔµµ AI ¼Ö·ç¼ÇÀÇ ½ÂÀÎ ÇÁ·Î¼¼½º¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áø´Ü ¼º´É Çâ»ó, ¿À·ùÀ² °¨¼Ò, 󸮷® Áõ°¡¸¦ ÀÔÁõÇÏ´Â ÀÓ»ó ¿¬±¸´Â ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú ÀÇ»çÀÇ ½Å·Ú¸¦ ¾ò±â À§ÇÑ ÇÙ½É ¿ä¼ÒÀÔ´Ï´Ù. ¶ÇÇÑ, ¹æ»ç¼±°ú ÀÇ»çµé¿¡°Ô AI ¸®ÅÍ·¯½Ã¸¦ ±³À°ÇÏ´Â ±³À° ÇÁ·Î±×·¥ ¹× ±³À° Ä·ÆäÀεµ °³¹ßµÇ¾î »ç¿ëÀÚ°¡ °á°ú¸¦ ºñÆÇÀûÀ¸·Î ÇØ¼®Çϰí ÀÓ»ó ÀÇ»ç°áÁ¤¿¡ ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂµéÀÌ °áÇյǾî ÀÓ»óÀû °¡Ä¡, ȯÀÚ °á°ú, ÀÇ·á ¼­ºñ½º Á¦°øÀÇ Àå±âÀû Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â AI µµÀÔÀ» Áö¿øÇϴ ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀåÀÇ ¼ºÀå °¡¼ÓÈ­¸¦ À̲ô´Â ¿øµ¿·ÂÀº?

¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå ¼ºÀåÀº Àü ¼¼°èÀûÀ¸·Î Áø´Ü ÀÇÇÐÀ» À籸¼ºÇϰí ÀÖ´Â Áß¿äÇÑ ÇコÄÉ¾î ¿ä±¸, ±â¼ú ¹ßÀü, Àα¸Åë°èÇÐÀû º¯È­ÀÇ ¼ö·Å¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. °¡Àå µÎµå·¯Áø ÃËÁø¿äÀÎ Áß Çϳª´Â ¾Ï, ½ÉÇ÷°üÁúȯ, ½Å°æ Áúȯ°ú °°Àº ¸¸¼ºÁúȯÀÇ Áõ°¡À̸ç, ÀÌ·¯ÇÑ ÁúȯÀº ¸ðµÎ Áø´Ü ¹× Ä¡·á °èȹÀ» À§ÇØ Àû½Ã¿¡ Á¤È®ÇÑ ¿µ»ó Áø´ÜÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÏ»óÀûÀÎ °Ç°­ °ËÁø ¹× ÀÀ±Þ ÀÇ·á¿¡¼­ ¿µ»ó Áø´Ü ¾ç½ÄÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿µ»óÀÇÇаú ¾÷¹«·®ÀÌ ±ÞÁõÇÏ¿© Á¤È®¼ºÀ» À¯ÁöÇϸ鼭 »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â µµ±¸°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. AI´Â ÀÏ»óÀûÀÎ ¿µ»ó Æò°¡¸¦ ÀÚµ¿È­Çϰí, Áß¿äÇÑ ¼Ò°ßÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí, Áúº´ÀÇ Á¶±â ¹ß°ßÀ» Áö¿øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ Áö¹æÀ̳ª ÀÇ·á¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­ ¹æ»ç¼±°ú Àü¹®ÀÇ ºÎÁ·ÀÌ ½É°¢ÇØÁü¿¡ µû¶ó, ÀÇ·á ¼­ºñ½º Á¦°øÀÚµéÀº ¿ø°Ý ¿µ»ó Áø´Ü Ç÷§ÆûÀ» ÅëÇØ ¿ø°ÝÁöÀÇ »ç¶÷µé¿¡°Ô Áø´Ü ¼­ºñ½º¸¦ È®´ëÇÒ ¼ö ÀÖ´Â AI ¼Ö·ç¼Ç µµÀÔÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ Çコ ÀÎÇÁ¶ó¿Í ½º¸¶Æ® º´¿ø¿¡ ´ëÇÑ ±¹Á¦ÀûÀÎ ÅõÀÚ´Â AI ±â¹Ý ¹æ»ç¼± Áø´Ü ½Ã½ºÅÛ ±¸ÃàÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Çõ½Å º¸Á¶±Ý, ÆÄÀÏ·µ ÇÁ·Î±×·¥, ±¹°¡ AI Àü·« µî Á¤ºÎ ÁÖµµÀÇ ÇコÄɾî AI ÃßÁø ÀÌ´Ï¼ÅÆ¼ºêµµ ½ÃÀå È®´ëÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. º´¿ø ¹× ¿¬±¸±â°ü°úÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ±â¹ÝÀ¸·Î ÇÑ ÀÇ·á ±â¼ú ±â¾÷ÀÇ AI ¼Ö·ç¼Ç »ó¿ëÈ­°¡ Á¦Ç°ÀÇ °¡¿ë¼º°ú ½ÃÀå ħÅõ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. AI ÅøÀÌ Áø´Ü ǰÁú Çâ»ó, ½Ã°£ ´ÜÃà, ÀÇ·á ºñ¿ë Àý°¨¿¡ ÀÖ¾î ±× °¡Ä¡¸¦ ÀÔÁõÇÔ¿¡ µû¶ó Àü ¼¼°è º´¿ø, ¿µ»ó Áø´Ü¼¾ÅÍ, ¿Ü·¡ Áø·á¼Ò¿¡¼­ AI ÅøÀÇ µµÀÔÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº AI ½Ã½ºÅÛÀÇ ÀÓ»óÀû ½Å·Ú¼º¿¡ ´ëÇÑ ½Å·ÚÀÇ Áõ°¡¿Í ÇÔ²² ¹æ»ç¼±°ú AI ½ÃÀåÀ» ¹ßÀü½Ã۰í ÇâÈÄ ¸î ³â µ¿¾È º¸´Ù Á¤È®Çϰí È¿À²ÀûÀ̸ç Á¢±ÙÇϱ⠽¬¿î Áø´Ü Ä¡·á¸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

¹æ»ç¼± ÀÇÇÐ À¯Çü(ÈäºÎ ¿µ»ó, ´ëÀå³»½Ã°æ, ¸¾¸ð±×·¡ÇÇ, µÎºÎ ¿µ»ó), ±â¼ú(X¼±, ÀÚ±â°ø¸í¿µ»ó, ÄÄÇ»ÅÍ ´ÜÃþÃÔ¿µ, ¾çÀüÀÚ ¹æÃâ ´ÜÃþÃÔ¿µ, ÃÊÀ½ÆÄ, ±âŸ ±â¼ú), ¿ëµµ(ÄÄÇ»ÅÍ Áö¿ø Áø´Ü ¿ëµµ, ÄÄÇ»ÅÍ Áö¿ø °ËÃâ ¿ëµµ, Á¤·® ºÐ¼® Åø ¿ëµµ, Áø·á¼Ò °ËÃâ Áö¿ø ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è µµ¸ÞÀÎ Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence (AI) in Radiology Market to Reach US$13.5 Billion by 2030

The global market for Artificial Intelligence (AI) in Radiology estimated at US$2.4 Billion in the year 2024, is expected to reach US$13.5 Billion by 2030, growing at a CAGR of 33.5% over the analysis period 2024-2030. Chest Imaging, one of the segments analyzed in the report, is expected to record a 28.8% CAGR and reach US$4.1 Billion by the end of the analysis period. Growth in the Colonoscopy segment is estimated at 37.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$650.3 Million While China is Forecast to Grow at 42.7% CAGR

The Artificial Intelligence (AI) in Radiology market in the U.S. is estimated at US$650.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.4 Billion by the year 2030 trailing a CAGR of 42.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 27.6% and 29.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 28.3% CAGR.

Global Artificial Intelligence (AI) in Radiology Market - Key Trends & Drivers Summarized

Why Is AI Transforming the Role of Radiologists and Diagnostic Accuracy in Medical Imaging?

Artificial Intelligence is revolutionizing radiology by enhancing the ability of clinicians to detect, interpret, and act upon complex medical images with unprecedented accuracy and speed. Radiology has long been central to diagnosing a broad range of conditions, including cancers, neurological disorders, musculoskeletal injuries, and cardiovascular diseases. However, traditional interpretation is time-intensive, and even experienced radiologists can occasionally miss subtle abnormalities due to human fatigue or cognitive overload. AI addresses these challenges by applying advanced image recognition algorithms that can detect minute patterns in X-rays, CT scans, MRIs, and mammograms, often flagging findings invisible to the human eye. Deep learning systems can be trained on millions of annotated images, enabling them to identify early-stage tumors, classify tissue anomalies, and distinguish between benign and malignant growths with high confidence. These AI tools do not replace radiologists but augment their capabilities, allowing them to focus more on complex cases and clinical decision-making. Moreover, AI can prioritize urgent cases by triaging image queues, ensuring that critical findings like brain hemorrhages or pulmonary embolisms are reviewed first. The integration of AI into radiology also improves consistency and standardization, reducing variability across different practitioners and institutions. Automated report generation and structured data output enhance workflow efficiency, documentation accuracy, and communication with other departments. As the volume of diagnostic imaging continues to rise globally, driven by aging populations and expanded access to healthcare, AI is becoming essential in maintaining quality care and timely diagnoses. Its impact is not limited to hospitals; outpatient clinics, teleradiology services, and mobile health units are also benefiting from AI’s scalable capabilities, making it a transformative force in medical imaging.

How Are Technological Advancements Powering AI Algorithms in Radiological Applications?

The evolution of AI in radiology is being propelled by rapid advancements in deep learning, neural networks, and computational infrastructure that make it possible to process vast quantities of imaging data in real time. Convolutional neural networks (CNNs) have become a cornerstone of AI in radiology due to their unmatched ability to analyze pixel-level data across multiple image modalities and deliver highly accurate predictions. These networks are trained using extensive datasets containing diverse patient demographics, disease types, and imaging parameters, improving their generalizability and diagnostic precision. Moreover, the availability of annotated medical imaging repositories and collaborations between hospitals and AI companies have accelerated model development and validation. Innovations in cloud computing and edge processing allow AI systems to perform complex computations either remotely or directly within imaging devices, minimizing latency and enabling real-time analysis. AI platforms are also becoming increasingly multimodal, combining imaging data with electronic health records, lab reports, and genomic information to deliver more context-aware insights. Natural language processing (NLP) is being used to extract relevant clinical data from radiology reports, enhancing diagnostic correlations and follow-up recommendations. Furthermore, explainable AI models are gaining traction, providing visual heatmaps and confidence scores that help radiologists understand the rationale behind the AI’s findings, which is critical for clinical trust and regulatory approval. Integration with Picture Archiving and Communication Systems (PACS) and Radiology Information Systems (RIS) allows seamless deployment within existing clinical workflows. These technological innovations are not only increasing diagnostic performance but also ensuring that AI tools are adaptable, interpretable, and compatible with the rapidly evolving landscape of precision medicine and patient-centered care.

How Are Clinical Workflows, Reimbursement Models, and Regulatory Frameworks Shaping Adoption?

The adoption of AI in radiology is being shaped by a complex interplay of clinical workflow integration, reimbursement dynamics, and regulatory oversight. For AI tools to deliver tangible benefits, they must fit seamlessly into the daily routines of radiologists without introducing friction or inefficiencies. This requires intuitive interfaces, interoperability with existing systems like PACS, and minimal training time for clinical staff. Many AI vendors are focusing on creating plug-and-play solutions that can be deployed without major infrastructure changes. In parallel, reimbursement structures are evolving to support the use of AI in diagnostic processes. In some regions, insurers and government health programs are beginning to recognize AI-assisted interpretation as a reimbursable service, particularly for screenings such as mammography and lung cancer detection where early diagnosis significantly reduces long-term treatment costs. Regulatory bodies such as the U.S. FDA, European Medicines Agency, and local health authorities play a crucial role in setting safety and efficacy standards for AI medical devices. These agencies have begun to issue tailored guidelines for AI-based tools, covering aspects like continuous learning, data privacy, algorithm transparency, and clinical validation. The introduction of software as a medical device (SaMD) classifications has also facilitated the approval process for AI solutions. Clinical studies demonstrating improved diagnostic performance, reduced error rates, or increased throughput are key to gaining both regulatory clearance and physician confidence. Educational programs and awareness campaigns are also being developed to train radiologists in AI literacy, ensuring that users can interpret outputs critically and integrate them into clinical decision-making. Together, these efforts are creating a supportive environment for AI adoption that prioritizes clinical value, patient outcomes, and long-term sustainability in healthcare delivery.

What Is Driving the Accelerated Growth of the AI in Radiology Market Across the Globe?

The growth in the AI in radiology market is driven by a convergence of critical healthcare needs, technological advancements, and demographic shifts that are reshaping diagnostic medicine on a global scale. One of the most prominent drivers is the global rise in chronic diseases such as cancer, cardiovascular disorders, and neurological conditions, all of which require timely and accurate imaging for diagnosis and treatment planning. The increasing use of imaging modalities in routine health assessments and emergency care has led to a surge in radiology workloads, creating a need for tools that can enhance productivity without compromising accuracy. AI meets this need by automating routine image assessments, prioritizing critical findings, and supporting early disease detection. Additionally, the growing shortage of radiologists, particularly in rural and underserved areas, is prompting healthcare providers to adopt AI solutions that can extend diagnostic services to remote populations through teleradiology platforms. International investments in digital health infrastructure and smart hospitals are further accelerating the deployment of AI-powered radiology systems. Government-led initiatives to promote AI in healthcare, such as innovation grants, pilot programs, and national AI strategies, are also catalyzing market expansion. The commercialization of AI solutions by medtech companies, supported by strategic partnerships with hospitals and research institutions, is driving product availability and market penetration. As AI tools prove their value in improving diagnostic quality, reducing turnaround times, and lowering healthcare costs, their adoption is expanding across hospitals, imaging centers, and outpatient clinics worldwide. These factors, combined with growing confidence in the clinical reliability of AI systems, are propelling the radiology AI market forward, positioning it as a key enabler of more precise, efficient, and accessible diagnostic care in the years to come.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence (AI) in Radiology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Radiology Type (Chest Imaging, Colonoscopy, Mammography, Head Imaging); Technique (X-rays, Magnetic Resonance Imaging, Computed Tomography, Positron Emission Tomography, Ultrasound, Other Techniques); Application (Computer Aided-Diagnostic Application, Computer Aided-Detection Application, Quantitative Analysis Tools Application, Clinics Detection Support Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â