¼¼°èÀÇ ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ½ÃÀå
Automated Cell Culture Systems
»óǰÄÚµå : 1795808
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 491 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 192¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 128¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 192¾ï ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼¼Æ÷¹è¾ç ÇÁ·Î¼¼½º ÀÚµ¿È­ Àåºñ´Â CAGR 5.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 42¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿ ¹ÙÀÌ¿À¸®¾×ÅÍ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 35¾ï ´Þ·¯, Áß±¹Àº CAGR 10.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 35¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 39¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.7%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.6%¿Í 6.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚµ¿È­´Â ¼¼Æ÷¹è¾ç °úÁ¤ÀÇ ±âº»À» ¾î¶»°Ô º¯È­½Ãų±î?

ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛÀº Àϰü¼º, È®À强, Á¤È®¼ºÀ» ±âÁ¸ÀÇ ¼öÀÛ¾÷ ¹× ³ëµ¿Áý¾àÀû °øÁ¤¿¡ µµÀÔÇÔÀ¸·Î½á ¼¼Æ÷»ý¹°ÇÐ ¿¬±¸ ¹× ¹ÙÀÌ¿À Á¦Á¶ÀÇ ±âÁØÀ» ºü¸£°Ô ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â ¹Ýº¹ÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ÇÇÆêÆÃ°ú ¹èÁö ±³Ã¼ ÀÛ¾÷¿¡ ÀÇÁ¸Çß´ø ¼¼Æ÷¹è¾çÀº ÀÌÁ¦ ¼¼Æ÷ÀÇ ÆÄÁ¾, ¹è¾ç, äÃë, ºÐ¼®±îÁö ¸ðµç °úÁ¤À» ·Îº¿ Ç÷§ÆûÀÌ Ã³¸®Çϸ鼭 Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ƯÈ÷ Áٱ⼼Æ÷, ÀÏÂ÷¼¼Æ÷, À¯ÀüÀÚ Á¶ÀÛÁÖ¸¦ Æ÷ÇÔÇÑ ¼¶¼¼ÇÑ ½ÇÇè¿¡¼­ ¼öÀÛ¾÷¿¡ µû¸¥ º¯¼ö¸¦ Á¦°ÅÇÏ¿© ¿À¿°ÀÇ À§ÇèÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛÀº ·Îº¿ °øÇÐ, À̹Ì¡ ±â¼ú, ȯ°æ Á¦¾î ¹× °í±Þ ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇÕÇÏ¿© ÃÖÀûÀÇ Áõ½Ä Á¶°ÇÀ» Á¤È®ÇÏ°Ô À¯ÁöÇÏ°í ½Ç½Ã°£À¸·Î ¼¼Æ÷ÀÇ °Åµ¿À» ¸ð´ÏÅ͸µÇÏ°í »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­´Â ¿¬±¸¼ÒÀÇ »ý»ê¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀϰüµÈ ǰÁúÀÌ °¡Àå Áß¿äÇÑ ´ë±Ô¸ð Á¦¾à ¹× ¹ÙÀÌ¿ÀÀǾàǰ »ý»ê¿¡¼­µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ½Å¾à °³¹ß ¹× µ¶¼º ½ÃÇè¿¡¼­, ÇÏÀ̽º·çDz ÀÚµ¿È­ Ç÷§ÆûÀº ¿¬±¸ÀÚµéÀÌ ¼ö¹é °³ÀÇ ¼¼Æ÷ÁÖ¸¦ µ¿½Ã¿¡ ¹è¾çÇÏ°í ½ºÅ©¸®´×ÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ó¸® ½Ã°£À» ´ÜÃàÇÏ°í µ¥ÀÌÅÍÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½ÇÇè Á¶°ÇÀÇ Á¤È®ÇÑ ÀçÇöÀÌ Áß¿äÇÑ Àç»ýÀÇ·á, ¹é½Å °³¹ß, ¸ÂÃãÇü Ä¡·á¿¡ ƯÈ÷ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É ¹× ¸Ó½Å·¯´×°úÀÇ ÅëÇÕÀ» ÅëÇØ ¼¼Æ÷ Áõ½Ä ÆÐÅÏÀÇ ¿¹Ãø ¸ðµ¨¸µ°ú ¹è¾ç °ü¸®ÀÇ ÀÇ»ç°áÁ¤ ÀÚµ¿È­°¡ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­°¡ ´õ¿í »ç¿ëÇϱ⠽±°í ¸ðµâÈ­µÊ¿¡ µû¶ó Áß±Ô¸ð ½ÇÇè½Ç°ú Çмú ±â°ü¿¡¼­µµ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» äÅÃÇÏ¿© °úÇÐ ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ Ã·´Ü ¹è¾ç ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­Çϰí ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿ÀÁ¦¾à ¹× Àç»ýÀÇ·á ºÐ¾ß°¡ ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀÌ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

»ý¹°ÇÐÀû Á¦Á¦, ¼¼Æ÷ ±â¹Ý Ä¡·á, ¸ÂÃãÇü ÀÇ·áÀÇ º¹À⼺À¸·Î ÀÎÇØ ¹ÙÀÌ¿ÀÀǾàǰ ¹× Àç»ýÀÇ·á ºÎ¹®Àº ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ ÀǾàǰ°ú ´Þ¸® CAR-T Ä¡·áÁ¦, Áٱ⼼Æ÷ Ä¡·áÁ¦, Á¶Á÷°øÇÐ ±¸Á¶¹° µî ¼¼Æ÷ ±â¹Ý Á¦Ç°Àº ¾ö°ÝÇÑ ±ÔÁ¦¿Í ǰÁú °ü¸® ±âÁØ ÇÏ¿¡ »ì¾ÆÀÖ´Â ¼¼Æ÷¸¦ Á¤È®ÇÏ°Ô ¹è¾çÇØ¾ß ÇÕ´Ï´Ù. ¼öÀÛ¾÷À¸·Î´Â ÀÌ·¯ÇÑ Ä¡·áÁ¦ÀÇ »ó¾÷Àû »ý»ê¿¡ ÇÊ¿äÇÑ ±Ô¸ð, Àϰü¼º, ¹«±Õ¼ºÀ» ÃæÁ·½Ãų ¼ö ¾ø½À´Ï´Ù. ÀÚµ¿È­ ½Ã½ºÅÛÀº GMP(Good Manufacturing Practice) Áؼö¸¦ Áö¿øÇÏ´Â Æó¼âÀûÀ̰í ÅëÁ¦µÈ ȯ°æÀ» Á¦°øÇÏ¿© ÀÓ»ó µî±ÞÀÇ ¼¼Æ÷ Á¦Ç°À» ¿øÈ°ÇÏ°Ô »ý»êÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Àç»ýÀÇ·áÀÇ ¸Æ¶ô¿¡¼­ Áٱ⼼Æ÷¸¦ Áõ½Ä½ÃŰ°Å³ª Ư¼öÇÑ ¼¼Æ÷ À¯ÇüÀ¸·Î ºÐÈ­½ÃÄÑ¾ß Çϱ⠶§¹®¿¡ ÀÚµ¿È­°¡ È®½ÇÇÏ°Ô ½ÇÇàµÉ ¼ö ÀÖ´Â ÀçÇö¼º ³ôÀº ÇÁ·ÎÅäÄÝÀÌ ¿ä±¸µË´Ï´Ù. ¹ÙÀÌ¿À Á¦¾à»ç¿¡°Ô ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹èÄ¡ °£ ÆíÂ÷¸¦ ÃÖ¼ÒÈ­ÇÏ°í °³¹ß ±â°£À» ´ÜÃàÇÏ´Â µ¿½Ã¿¡ ÀΰǺñ¸¦ Àý°¨ÇÒ ¼ö ÀÖ´Â Ãß°¡ÀûÀÎ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­´Â ½Å¼ÓÇÑ ´ëÀÀ ´É·ÂÀ» Áö¿øÇϸç, ÃÖ±Ù ¹é½Å Á¦Á¶ ³ë·Â¿¡¼­ º¼ ¼ö ÀÖµíÀÌ Àü¿°º´À̳ª °øÁß º¸°Ç ºñ»ó»çŰ¡ ¹ß»ýÇßÀ» ¶§ ±â¾÷ÀÌ ½Å¼ÓÇÏ°Ô »ý»êÀ» È®´ëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ½ÂÀÎµÈ ¼¼Æ÷ Ä¡·áÁ¦ ¹× À¯ÀüÀÚ Ä¡·áÁ¦ÀÇ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ÀÚµ¿È­ µÈ ¾÷½ºÆ®¸² ¹× ´Ù¿î½ºÆ®¸² °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀº Å« À籸¼ºÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í ´Ù¾çÇÑ ¼¼Æ÷ÁÖ ¹× Ä¡·á Ç¥Àû¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâÇü ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¹è¾ç °úÁ¤ÀÇ °¢ ´Ü°è¿¡ ´ëÇÑ »ó¼¼ÇÑ µ¥ÀÌÅÍ ·Î±×¸¦ »ý¼ºÇÒ ¼ö ÀÖ´Â ±â´ÉÀº ±ÔÁ¦ ´ç±¹¿¡ ´ëÇÑ ½Åû ¹× °¨»ç¿¡ ÇʼöÀûÀÎ ¿ä°ÇÀÎ °ß°íÇÑ ¹®¼­È­¸¦ Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀÇ °áÇÕÀ¸·Î ÀÚµ¿È­´Â ¹Ù¶÷Á÷ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÁøÈ­Çϴ ÷´Ü ÀǾàǰ Á¦Á¶ ȯ°æ¿¡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°Ô µÇ¾ú½À´Ï´Ù.

±â¼ú Çõ½Å°ú µðÁöÅÐ ±â¼úÀÇ ÅëÇÕÀº Â÷¼¼´ë ¼¼Æ÷¹è¾ç Ç÷§ÆûÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

Â÷¼¼´ë ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛÀº ±â¼ú Çõ½Å°ú µðÁöÅÐ ÅëÇÕÀÇ À¶ÇÕÀ¸·Î Çü¼ºµÇ¾î º¸´Ù ½º¸¶Æ®ÇÏ°í »óÈ£¿¬°áµÈ ½ÇÇè½Ç ȯ°æÀÇ ¹«´ë°¡ µÇ°í ÀÖ½À´Ï´Ù. °³¹ßÀÚµéÀº ±â°èÀûÀ¸·Î È¿À²ÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó µðÁöÅÐÀûÀ¸·Î Áö´ÉÀûÀ̰í, ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS), µ¥ÀÌÅÍ ºÐ¼® Ç÷§Æû, Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ µµ±¸¿Í Åë½ÅÇÒ ¼ö ÀÖ´Â Ç÷§ÆûÀ» ¸¸µå´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ ½Ã³ÊÁö¸¦ ÅëÇØ ¿£µåÅõ¿£µå ÃßÀû¼º, ¿ø°ÝÁ¶ÀÛ, ¿¹Áöº¸Á¸ÀÌ °¡´ÉÇØÁ® ¼¼Æ÷¹è¾ç µ¥ÀÌÅÍÀÇ ¼öÁý, ÇØ¼®, Ȱ¿ë ¹æ¹ýÀÌ ¿ÏÀüÈ÷ ´Þ¶óÁý´Ï´Ù. ÀΰøÁö´ÉÀº ½Ç½Ã°£ ¿µ»ó°ú ¼ºÀå ÁöÇ¥¸¦ ºÐ¼®ÇÏ¿© ¿µ¾ç È帧, ¿Âµµ, CO2 ¼öÁØ µî ¹è¾ç Á¶°ÇÀ» »çÀü¿¡ Á¶Á¤ÇÏ´Â µî Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ¿¬°áÀ» ÅëÇØ ÀÎÅ¥º£ÀÌÅÍ, Çö¹Ì°æ, ¹ÙÀÌ¿À¼¾¼­¿ÍÀÇ ¿Ïº®ÇÑ ÅëÇÕÀ» ÅëÇØ ¿ÏÀü ÀÚµ¿È­µÇ°í ¹ÝÀÀ¼ºÀÌ ³ôÀº ¼¼Æ÷¹è¾ç »ýŰ踦 ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º´Â ÅÍÄ¡½ºÅ©¸° ´ë½Ãº¸µå¿Í »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÑ ¿öÅ©ÇÃ·Î¿ì µî ´õ¿í Á÷°üÀûÀ¸·Î º¯È­Çϰí ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº ÃÖ¼ÒÇÑÀÇ ±³À°¸¸À¸·Î ½ÇÇèÀ» ¼³°è, ÀúÀå, ÀçÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­ ¶ÇÇÑ Áß¿äÇÑ Æ®·»µå·Î ¶°¿À¸£°í ÀÖÀ¸¸ç, º¥Ä¡Å¾ ÇüÅÂÀÇ Àåºñ·Î °ú°Å¿¡´Â »ê¾÷ ±Ô¸ðÀÇ ½Ã¼³¿¡¼­¸¸ °¡´ÉÇß´ø °í󸮷® ¹è¾ç ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ¿Í µ¿½Ã¿¡ ´Ù¾çÇÑ ÀÔ·ÂÀ» ±â¹ÝÀ¸·Î ¹è¾ç °á°ú¸¦ ½Ã¹Ä·¹À̼ÇÇÏ´Â ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀÌ °³¹ßµÇ¾î ¿¬±¸ÀÚµéÀÌ ½ÇÁ¦ ½ÃÇè Àü¿¡ ÇÁ·ÎÅäÄÝÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â°è ÇнÀ ¾Ë°í¸®ÁòÀº ´ë±Ô¸ð ¼¼Æ÷ °Åµ¿ µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÇ¾î ÀÌ»óÀ» °¨ÁöÇÏ°í ½ÇÆÐÀ²À» ³·Ãß¸ç ¼öÀ²À» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ó¾÷Àû ¹× ÇмúÀû ȯ°æ¿¡¼­ ÀÚµ¿È­ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ¿© ¼¼Æ÷¹è¾ç °úÇÐÀÇ ¼Óµµ, Á¤È®¼º ¹× Çõ½Å¿¡ ´ëÇÑ »õ·Î¿î ±âÁØÀ» È®¸³Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿ ¼¼Æ÷¹è¾ç ºÐ¾ßÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ½ÃÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÚµ¿ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ¿¬±¸ ¼ö¿ä, ÇコÄÉ¾î Æ®·»µå, ±â¼ú ¹ßÀü, ±ÔÁ¦ ¹ßÀü°ú °ü·ÃµÈ ¸î °¡Áö »óÈ£ ¿¬°üµÈ Èû¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·ÂÀº »ý¹°ÇÐÀû Á¦Á¦ ¹× ¼¼Æ÷ ±â¹Ý Ä¡·á¹ýÀÇ ±ÞÁõÀ̸ç, ÀÌ·¯ÇÑ Ä¡·á¹ýÀº Ž»ö, ÀÓ»ó½ÃÇè ¹× »ó¾÷Àû »ý»êÀ» Áö¿øÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ°í È®Àå °¡´ÉÇÑ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸¸¼ºÁúȯ, ¾Ï, ¸é¿ªÁúȯÀÇ À¯º´·ü Áõ°¡·Î ÀÎÇØ »õ·Î¿î Ä¡·á Á¢±Ù¹ýÀÌ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖÁö¸¸, ´ëºÎºÐ º¹ÀâÇÑ ¼¼Æ÷ Á¶ÀÛ¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ¼öÀÛ¾÷º¸´Ù ÀÚµ¿È­°¡ ´õ È¿À²ÀûÀ̰í ÀçÇö¼ºÀÌ ³ô½À´Ï´Ù. ƯÈ÷ Á¾¾çÇÐ ¹× Àç»ýÀÇ·á ºÐ¾ß¿¡¼­ ¸ÂÃãÇü ÀÇ·áÀÇ È®´ë´Â ¾ö°ÝÇÏ°Ô °ü¸®µÇ°í ¹®¼­È­µÇ¾î¾ß ÇÏ´Â ¸ÂÃãÇü ¹è¾ç ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½ÃÄ×½À´Ï´Ù. µ¿½Ã¿¡ ·Îº¿ °øÇÐ, ¼¾¼­, À̹ÌÁö ó¸®, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ±â¼ú Çâ»óÀ¸·Î ÀÚµ¿È­ ½Ã½ºÅÛÀº ´õ ¸¹Àº »ç¿ëÀÚ°¡ ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°í ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁ³½À´Ï´Ù. Á¦¾à»ç, Çмú¿¬±¸±â°ü, À§Å¹°³¹ß ¹× Á¦Á¶¼öʱâ°ü(CDMO)Àº ¸ðµÎ 󸮷®À» ´Ã¸®°í ¾÷¹«ÀÇ º´¸ñÇö»óÀ» ÁÙÀ̱â À§ÇØ ÀÌ·¯ÇÑ Ç÷§Æû¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ ¶ÇÇÑ ÀÚµ¿È­ ½Ã½ºÅÛÀÌ ´ç¿¬È÷ Áö¿øÇÏ´Â ¼¼Æ÷ Á¦Á¶ ÇÁ·ÎÅäÄÝÀÇ Ç¥ÁØÈ­, ÃßÀû¼º, ÀçÇö¼ºÀ» °­Á¶Çϸç ÀÚµ¿È­·ÎÀÇ ÀüȯÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ Áö¿ø Çõ½Å º¸Á¶±Ý°ú »ý¸í°øÇÐ ÀÚ±Ý Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê µî »ý¸í°úÇÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÅõÀڴ ÷´Ü ¼¼Æ÷¹è¾ç ±â¼úÀ» ȹµæÇÏ°í µµÀÔÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀÚº»À» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±³À°±â°ü°ú ¿¬¼ö±â°ü¿¡¼­µµ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» Ä¿¸®Å§·³¿¡ Æ÷ÇÔ½ÃÄÑ ÀÚµ¿È­ µÈ ½ÇÇè½Ç ȯ°æ¿¡¼­ ¿î¿µÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë °úÇÐÀÚ¸¦ ¾ç¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ °áÇյǾî ÀÚµ¿ ¼¼Æ÷¹è¾çÀº »ý¸í°úÇÐ ¹× Ä¡·á °³¹ßÀÇ ¹Ì·¡ ±â¹Ý ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(¼¼Æ÷¹è¾ç ÇÁ·Î¼¼½º ÀÚµ¿È­ Àåºñ, ÀÚµ¿ ¹ÙÀÌ¿À¸®¾×ÅÍ, ÀÚµ¿ ¼¼Æ÷¹è¾ç, ¹èÁö ±³È¯ ½Ã½ºÅÛ, ÀÚµ¿ ¹èÁö ºÐ¼®±â, ÀÚµ¿ ¼¿ Ä«¿îÅÍ, ±âŸ ¼¼Æ÷¹è¾ç ÀÚµ¿È­ Á¦Ç°), ¼¼Æ÷¹è¾ç À¯Çü(À¯ÇÑ ¼¼Æ÷ÁÖ ¹è¾ç, ¹«ÇÑ ¼¼Æ÷ÁÖ ¹è¾ç), ¿ëµµ(¾Ï ¿¬±¸ ¿ëµµ, ÀǾàǰ °³¹ß ¿ëµµ, Áٱ⼼Æ÷ ¿¬±¸ ¿ëµµ, Àç»ýÀÇ·á ¿ëµµ, ¼¼Æ÷ Ä¡·á ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(Á¦¾à ±â¾÷ ÃÖÁ¾»ç¿ëÀÚ, ¹ÙÀÌ¿Àº£ÅÍ ±â¾÷ ÃÖÁ¾»ç¿ëÀÚ, CDMO/CMO ÃÖÁ¾»ç¿ëÀÚ, ¿¬±¸±â°ü ¹× Çмú±â°ü ÃÖÁ¾»ç¿ëÀÚ, º´¿ø ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automated Cell Culture Systems Market to Reach US$19.2 Billion by 2030

The global market for Automated Cell Culture Systems estimated at US$12.8 Billion in the year 2024, is expected to reach US$19.2 Billion by 2030, growing at a CAGR of 7.0% over the analysis period 2024-2030. Cell Culture Process Automation Instrument, one of the segments analyzed in the report, is expected to record a 5.5% CAGR and reach US$4.2 Billion by the end of the analysis period. Growth in the Automated Bioreactor segment is estimated at 8.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.5 Billion While China is Forecast to Grow at 10.7% CAGR

The Automated Cell Culture Systems market in the U.S. is estimated at US$3.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.9 Billion by the year 2030 trailing a CAGR of 10.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.6% and 6.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.6% CAGR.

Global Automated Cell Culture Systems Market - Key Trends & Drivers Summarized

How Is Automation Transforming the Fundamentals of Cell Culture Processes?

Automated cell culture systems are rapidly redefining the standards of cell biology research and biomanufacturing by introducing consistency, scalability, and precision into traditionally manual and labor-intensive processes. Cell culture, once dependent on repetitive, time-consuming pipetting and media-changing tasks, is now being revolutionized through robotic platforms that handle everything from cell seeding and incubation to harvesting and analysis. These systems eliminate the variability associated with human handling and significantly reduce the risk of contamination, especially in sensitive experiments involving stem cells, primary cells, or genetically engineered lines. By integrating robotics, imaging technologies, environmental control, and advanced software, automated cell culture systems can precisely maintain optimal growth conditions, monitor cellular behavior in real-time, and trigger adjustments without human intervention. This evolution not only boosts productivity in research labs but also plays a crucial role in large-scale pharmaceutical and biopharmaceutical production, where consistent quality is paramount. In drug discovery and toxicology testing, high-throughput automated platforms are allowing researchers to culture and screen hundreds of cell lines simultaneously, reducing turnaround times and increasing data reliability. These systems are particularly advantageous in regenerative medicine, vaccine development, and personalized therapeutics, where exact replication of experimental conditions is critical. Furthermore, integration with artificial intelligence and machine learning is enabling predictive modeling of cell growth patterns and automated decision-making in culture management. As automation becomes more user-friendly and modular, even mid-sized labs and academic institutions are beginning to adopt these systems, democratizing access to advanced culture technologies across scientific disciplines.

Why Are Biopharma and Regenerative Medicine Sectors Increasingly Dependent on Automated Solutions?

The growing complexity of biologics, cell-based therapies, and personalized medicine is driving biopharmaceutical and regenerative medicine sectors toward greater reliance on automated cell culture systems. Unlike traditional drugs, cell-based products such as CAR-T therapies, stem cell treatments, and tissue-engineered constructs require precise cultivation of living cells under strict regulatory and quality control standards. Manual methods simply cannot meet the scale, consistency, and sterility required for commercial production of these therapies. Automated systems provide a closed and controlled environment that supports compliance with Good Manufacturing Practices (GMP), enabling seamless production of clinical-grade cell products. In the context of regenerative medicine, the need to expand stem cells or differentiate them into specialized cell types demands highly repeatable protocols that automation can reliably execute. For biopharma companies, these systems offer the added advantage of minimizing batch-to-batch variability and reducing labor costs while accelerating development timelines. Additionally, automation supports rapid response capabilities, allowing companies to quickly scale up production during pandemics or public health emergencies, as seen in recent vaccine manufacturing efforts. As the number of approved cell and gene therapies increases, the demand for automated upstream and downstream processing will continue to grow. Companies are also investing in modular systems that can be adapted to different cell lines and therapeutic targets without the need for significant reconfiguration. The ability to generate detailed data logs for every step of the culture process supports robust documentation, an essential requirement for regulatory submissions and audits. These combined capabilities make automation not only desirable but essential in the evolving landscape of advanced therapeutic manufacturing.

How Are Innovation and Digital Integration Shaping the Next Generation of Cell Culture Platforms?

The next generation of automated cell culture systems is being shaped by a convergence of technological innovations and digital integration, setting the stage for a smarter and more interconnected laboratory environment. Developers are focusing on creating platforms that are not only mechanically efficient but also digitally intelligent, capable of communicating with laboratory information management systems (LIMS), data analytics platforms, and cloud-based monitoring tools. This digital synergy enables end-to-end traceability, remote operation, and predictive maintenance, transforming how cell culture data is captured, interpreted, and utilized. Artificial intelligence is playing an increasingly important role by analyzing real-time imaging and growth metrics to make proactive adjustments to culture conditions such as nutrient flow, temperature, and CO2 levels. Internet of Things (IoT) connectivity allows for seamless integration with incubators, microscopes, and biosensors, creating a fully automated and responsive cell culture ecosystem. User interfaces are becoming more intuitive, with touchscreen dashboards and customizable workflows that allow researchers to design, store, and replicate experiments with minimal training. Miniaturization is also emerging as a significant trend, with benchtop units now capable of performing high-throughput culturing tasks once reserved for industrial-scale facilities. In parallel, software platforms are being developed to simulate culture outcomes based on different inputs, helping researchers optimize their protocols before physical trials. Moreover, machine learning algorithms are being trained on large cell behavior datasets to detect anomalies, reduce failure rates, and improve yield. These advancements are accelerating the adoption of automated systems in both commercial and academic settings, establishing a new benchmark for speed, accuracy, and innovation in cell culture science.

What Are the Key Market Drivers Catalyzing Growth in the Automated Cell Culture Sector?

The growth in the automated cell culture systems market is driven by several interconnected forces related to research demand, healthcare trends, technological advancement, and regulatory evolution. A major driver is the surge in biologics and cell-based therapies, which require reliable and scalable cell culture systems to support discovery, clinical trials, and commercial production. The rising prevalence of chronic diseases, cancers, and immune disorders has created urgency for new therapeutic approaches, many of which depend on complex cell manipulations that automation handles more efficiently and reproducibly than manual techniques. The expansion of personalized medicine, particularly in oncology and regenerative care, has further increased demand for individualized culture processes that must be tightly controlled and documented. At the same time, technological improvements in robotics, sensors, imaging, and data analytics are making automated systems more accessible and cost-effective for a broader range of users. Pharmaceutical companies, academic research labs, and contract development and manufacturing organizations (CDMOs) are all investing in these platforms to enhance throughput and reduce operational bottlenecks. Regulatory agencies are also reinforcing the shift toward automation by emphasizing standardization, traceability, and reproducibility in cell manufacturing protocols, which automated systems naturally support. Additionally, global investments in life sciences infrastructure, including government-backed innovation grants and biotech funding initiatives, are providing the capital needed to acquire and implement advanced cell culture technologies. Educational and training institutions are also integrating these systems into curricula, preparing the next generation of scientists to operate in automated lab environments. Collectively, these factors are establishing automated cell culture as a foundational technology in the future of life sciences and therapeutic development.

SCOPE OF STUDY:

The report analyzes the Automated Cell Culture Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Cell Culture Process Automation Instrument, Automated Bioreactor, Automated Cell Culture, Media Exchange System, Automated Culture Media Analyzer, Automated Cell Counter, Other Automated Cell Culture Products); Cell Culture Type (Finite Cell Line Cultures, Infinite Cell Line Cultures); Application (Cancer Research Application, Drug Development Application, Stem Cell Research Application, Regenerative Medicine Application, Cell Therapy Application); End-User (Pharmaceutical Companies End-User, Biotechnology Companies End-User, CDMOs / CMOs End-User, Research Organizations & Academic Institutes End-User, Hospitals End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â