¼¼°èÀÇ ½º¸¶Æ® ±³Åë ºÐ¼® ½ÃÀå
Smart Traffic Analytics
»óǰÄÚµå : 1795359
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 179 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

½º¸¶Æ® ±³Åë ºÐ¼® ¼¼°è ½ÃÀåÀº 2030³â±îÁö ¹Ì±¹¿¡¼­ 195¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 119¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ½º¸¶Æ® ±³Åë ºÐ¼® ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 195¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½º¸¶Æ® ±³Åë ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº CAGR 10.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 91¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½º¸¶Æ® ±³Åë½ÅÈ£ Á¦¾î ½Ã½ºÅÛ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 31¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½º¸¶Æ® ±³Åë ºÐ¼® ½ÃÀåÀº 2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 8.2%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 31¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.1%¿Í 7.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½º¸¶Æ® ±³Åë ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½º¸¶Æ® ±³Åë ºÐ¼®ÀÌ µµ½Ã °èȹ°ú ¸ðºô¸®Æ¼ ÃÖÀûÈ­¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½º¸¶Æ® ±³Åë ºÐ¼®Àº AI ±â¹Ý µµ±¸, IoT ³×Æ®¿öÅ©, Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ÅëÇØ Â÷·®, º¸ÇàÀÚ, ±³Åë µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¼öÁý, ó¸®, ºÐ¼®ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇØ µµ½Ã °èȹ ´ã´çÀÚ, ±³Åë °üÁ¦ ¼¾ÅÍ, ¸ðºô¸®Æ¼ ¼­ºñ½º Á¦°ø¾÷ü´Â Á¤Ã¼ ÆÐÅÏ Æò°¡, »ç°í °¨Áö, ±³Åë È帧 ¿¹Ãø, ÀÎÇÁ¶ó »ç¿ë ÃÖÀûÈ­¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. µµ½Ã Àα¸°¡ ±ÞÁõÇÏ°í ¸ðºô¸®Æ¼ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, µµ½ÃµéÀº Áõ°Å¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤°ú ÀûÀÀÇü ±³Åë °èȹÀ» Áö¿øÇϱâ À§ÇØ ½º¸¶Æ® ±³Åë ºÐ¼®¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

½º¸¶Æ® ±³Åë ºÐ¼® Ç÷§ÆûÀº ±³Åë Ä«¸Þ¶ó, À¯µµ ·çÇÁ ¼¾¼­, ·¹ÀÌ´õ °¨Áö±â, GPS ÃßÀû, Ä¿³ØÆ¼µå Â÷·® Çǵå, ¸ð¹ÙÀÏ ¾Û µî ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅ͸¦ ¼öÁýÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ±â°è ÇнÀ ¾Ë°í¸®Áò°ú ¿¹Ãø ¸ðµ¨À» »ç¿ëÇÏ¿© ó¸®µÇ¾î ¿¹»ó ¼Ò¿ä ½Ã°£, ±³Åë üÁõ ÇÖ½ºÆÌ, ±³Åë ½ÅÈ£ ÃÖÀûÈ­ Àü·«, ´ëÁß±³Åë ÀÌ¿ë·ü µî ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. Ãâ·ÂµÈ µ¥ÀÌÅÍ´Â ´ë½Ãº¸µå, È÷Æ®¸Ê, µðÁöÅÐ Æ®À© ȯ°æÀ» ÅëÇØ °¡½ÃÈ­µÇ¾î ÁöÀÚü°¡ ¸ðºô¸®Æ¼ ¾÷¹«¸¦ º¸´Ù È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

½º¸¶Æ® Æ®·¡ÇÈ ÀÎÅÚ¸®Àü½º µµÀÔÀ» ÃËÁøÇÏ´Â ±â¼úÀº ¹«¾ùÀϱî?

½º¸¶Æ® ±³Åë ºÐ¼®ÀÇ ¹éº»Àº ¼¾¼­ ³×Æ®¿öÅ©, ¿§Áö ÄÄÇ»ÆÃ, ÀΰøÁö´É, Áß¾Ó ÁýÁᫎ ±³Åë °ü¸® ¼ÒÇÁÆ®¿þ¾î·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù. AI¸¦ žÀçÇÑ ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀº ±âÁ¸ÀÇ °è¼ö ¹æ½ÄÀ» ´ëüÇÏ¿© Â÷·® ºÐ·ù, Â÷¼± Á¡À¯À² °¨Áö, Àû»ö ½ÅÈ£ À§¹Ý ÃßÀû, ¹øÈ£ÆÇ ÀÎ½Ä µîÀ» ³ôÀº Á¤È®µµ·Î Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ ±³Åë Ä«¸Þ¶ó¿¡ µµÀԵǴ °æ¿ì°¡ ¸¹À¸¸ç, ´ë±Ô¸ð ÀÎÇÁ¶ó ±¸Ãà ¾øÀ̵µ È®Àå °¡´ÉÇÕ´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃ ±â´ÉÀ» ÅëÇØ ¿µ»ó ¹× ¼¾¼­ µ¥ÀÌÅ͸¦ ¼öÁý ÁöÁ¡ ±Ùó¿¡¼­ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ¾î ´ë±â½Ã°£°ú ³×Æ®¿öÅ© ºÎÇϸ¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â µ¿Àû ½ÅÈ£ Á¦¾î, ±ä±Þ Â÷·® ¶ó¿ìÆÃ, »ç°í °¨Áö µî ½Ã°£¿¡ ¹Î°¨ÇÑ »ç¿ë »ç·Ê¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿§Áö µð¹ÙÀ̽º´Â ºñµð¿À Çǵ带 Àüó¸®ÇÏ¿© »ç°í¸¦ ½Äº°Çϰí, Áß¾Ó Á¦¾î½ÇÀ̳ª °ø°ø °æº¸ ½Ã½ºÅÛ¿¡ °æº¸¸¦ Àü´ÞÇÕ´Ï´Ù. ¹é¿£µå¿¡¼­´Â Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÌ ÀÌ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© Àå±âÀûÀÎ ±³Åë ¿¹Ãø, ÇÇÅ© ¼ö¿ä °ü¸®, ÀÎÇÁ¶ó °èȹÀ» À§ÇÑ ¿¹Ãø ºÐ¼®À» Àû¿ëÇÕ´Ï´Ù.

V2X(Vehicle-to-Everything) ±â¼ú°úÀÇ ÅëÇÕÀ» ÅëÇØ ½º¸¶Æ® ÀÎÇÁ¶ó¿Í Ä¿³ØÆ¼µåÄ«, ÀÚÀü°Å, ´ëÁß±³Åë°úÀÇ ½Ç½Ã°£ Åë½ÅÀÌ °¡´ÉÇØÁý´Ï´Ù. ½º¸¶Æ® ±³Åë ½Ã½ºÅÛÀº ¿îÀüÀÚ¿¡°Ô µµ·ÎÀÇ À§Çè¿¡ ´ëÇØ °æ°íÇϰí, Â÷·® ±ºÁý¿¡ µû¶ó ½ÅÈ£µî ŸÀ̹ÖÀ» ÃÖÀûÈ­Çϰí, °ø»ç ÁßÀ̳ª »ç°í ¹ß»ý ½Ã È帧À» ¿ìȸÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ð¹ÙÀÏ ¾Û°úÀÇ ÅëÇÕÀ» ÅëÇØ Á¤Ã¼ ¾Ë¸², ÃÖÀû °æ·Î, Á¤Ã¼ ±¸°£ ¹× À¯·á µµ·ÎÀÇ µ¿Àû °¡°Ý µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î °øÀ¯ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ® Æ®·¡ÇÈ ºÐ¼®ÀÇ µµÀÔó¿Í Ȱ¿ë »ç·Ê´Â?

½º¸¶Æ® ±³Åë ºÐ¼® ½Ã½ºÅÛÀº ´ëµµ½Ã±Ç, ½º¸¶Æ® ½ÃƼ Á¸, »ç°í ´Ù¹ß Áö¿ª, ÁÖ¿ä ±³Â÷·Î, ±³Åë ÁöÇâÀû °³¹ß(TOD) µî¿¡¼­ ±¤¹üÀ§ÇÏ°Ô °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ½Ì°¡Æ÷¸£, ¾Ï½ºÅ׸£´ã, ·±´ø, ·±´ø, ·Î½º¾ØÁ©·¹½º, ¼­¿ï µîÀÇ µµ½Ã´Â µµ½Ã Àüü ±³Åë ºÐ¼® Ç÷§ÆûÀ» µµÀÔÇÏ¿© µµ½ÃÀÇ À̵¿¼ºÀ» ¸ð´ÏÅ͸µÇϰí, ¹èÃâ·®À» ÁÙÀ̰í, ±³Åë ¾ÈÀüÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌµé µµ½Ã´Â º´¸ñÁöÁ¡ ÆÄ¾Ç, ´Ü¼Ó Àη ¹èÄ¡, µµ·Î Á¤ºñ ¿ì¼±¼øÀ§ °áÁ¤, º¹ÇÕ ±³Åë °ÅÁ¡ÀÇ È¿À²Àû °ü¸®¸¦ À§ÇØ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÅÈï ½ÃÀå¿¡¼­´Â Á¤ºÎ°¡ ±Þ¼ÓÇÑ µµ½ÃÈ­¸¦ °ü¸®Çϱâ À§ÇØ ºÐ¼®¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±³Åë ºÐ¼®Àº ¹ö½º ü·ù½Ã°£ Á¶»ç, ¿ä±Ý ¡¼ö ½ºÄÉÁÙ ÃÖÀûÈ­, Åë±ÙÀÚ È帧¿¡ µû¸¥ ³ë¼± Àç¼³°è µî¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Àεµ¿Í ºê¶óÁú¿¡¼­´Â AI Ä«¸Þ¶ó¿Í Áß¾Ó ÁýÁᫎ ´ë½Ãº¸µå¸¦ ÀÌ¿ëÇÑ ½Ã¹ü ÇÁ·Î±×·¥À» ÅëÇØ ±³Åë üÁõ°ú »ç°í ´ëÀÀ ½Ã°£À» ÃøÁ¤ °¡´ÉÇÑ ¼öÁØÀ¸·Î ´ÜÃàÇÏ´Â °ÍÀÌ ÀÔÁõµÇ¾ú½À´Ï´Ù. ±³Åë±â°üÀº ÀÌ µ¥ÀÌÅ͸¦ ÀÌ¿ëÇØ ¹ö½º ¿îÇà ºóµµ¸¦ Á¶Á¤Çϰí, µµ½Ã°èȹ ´ã´çÀÚ´Â ÀÌ µ¥ÀÌÅ͸¦ ÀÌ¿ëÇØ µµ·Î¸Á º¯°æÀÇ ¿µÇâÀ» Æò°¡ÇÕ´Ï´Ù.

¶óÀ̵å ÇìÀϸµ ¾÷ü, ¹°·ù ¾÷ü, ÀÚÀ²ÁÖÇàÂ÷ °³¹ß ¾÷ü µî ºñ»óÀå ±â¾÷µéÀº ½º¸¶Æ® ±³Åë ºÐ¼®À» Ȱ¿ëÇÏ¿© ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ Â÷·® °æ·Î¸¦ ÃÖÀûÈ­Çϰí, ¹è¼Û Áö¿¬À» ÁÙÀ̸ç, ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¼îÇθô ¿î¿µ»ç, °æ±âÀå, °øÇ׿¡¼­´Â ±³Åë·®ÀÌ ¸¹Àº Çà»ç ½Ã ºÐ¼®À» µµÀÔÇÏ¿© Â÷·® À¯ÀÔ°ú º¸ÇàÀÚ ¾ÈÀüÀ» °ü¸®Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ¿ä±Ý ¡¼ö ½Ã½ºÅÛÀº Â÷·® °¨Áö ºÐ¼®À» »ç¿ëÇÏ¿© ¿ä±Ý ¡¼ö¸¦ °£¼ÒÈ­Çϰí, »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ ´ë±â¿­À» ÁÙÀÔ´Ï´Ù.

ÀÌ ºÎ¹®ÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ´Â ½ÃÀå ¿äÀÎÀº ¹«¾ùÀϱî?

¼¼°è ½º¸¶Æ® ±³Åë ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº µµ½Ã ±³Åë üÁõ Áõ°¡, ½º¸¶Æ® ½ÃƼ ÅõÀÚ Áõ°¡, ±³Åë ¾ÈÀü¿¡ ´ëÇÑ °ü½É Áõ°¡, Ä¿³ØÆ¼µå ¸ðºô¸®Æ¼ »ýŰè È®»ê µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ Â÷·® ¹èÃâ·®À» ÁÙÀÌ°í ´ëÁß±³ÅëÀÇ È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, ½º¸¶Æ® ¾Ö³Î¸®Æ½½º´Â µ¿Àû ±³Åë °ü¸® ¹× Á¤Ã¥ º¸Á¤¿¡ ÇÊ¿äÇÑ ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¸¦ Á¦°øÇÕ´Ï´Ù.

AI¿Í ÄÄÇ»ÅÍ ºñÀüÀÇ ¹ßÀüÀ¸·Î ±âÁ¸ Ä«¸Þ¶ó ÀÎÇÁ¶ó¿¡ ¾Ö³Î¸®Æ½½º¸¦ µµÀÔÇÏ´Â µ¥ µå´Â ºñ¿ë°ú º¹À⼺À» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú 5G ¿¬°á·Î ½Ç½Ã°£ µ¥ÀÌÅÍ È帧°ú ¿¹Ãø ºÐ¼®ÀÌ ´ë±Ô¸ð·Î °¡´ÉÇØÁö¸é¼­ ´ë±Ô¸ð Áö¿ª¿¡ °ÉÄ£ ½º¸¶Æ® ±³Åë ½Ã½ºÅÛÀÇ ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¹è±â°¡½º ±ÔÁ¦, ¼ÒÀ½ °øÇØ, ±³Åë ÇüÆò¼º °ü·Ã ±ÔÁ¦ÀÇ Àǹ«È­µµ ÁöÀÚü¿¡ ¸ðºô¸®Æ¼ °èȹÀ» À§ÇÑ µ¥ÀÌÅÍ ±â¹Ý µµ±¸ÀÇ Ã¤ÅÃÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

¹Î°ü ÆÄÆ®³Ê½Ê°ú Àü ¼¼°è ±âºÎÀÚ Áö¿øÀ¸·Î ÁøÇàµÇ´Â ½º¸¶Æ® ¸ðºô¸®Æ¼ ÇÁ·Î±×·¥Àº ¼­ºñ½º°¡ ºÎÁ·ÇÑ µµ½Ã Áö¿ª¿¡¼­ÀÇ ½Ã¹üÀû º¸±ÞÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº Á¤ºÎ°¡ ¼¾¼­ ¹èÄ¡, Ŭ¶ó¿ìµå ºÐ¼®, »çÀ̹ö º¸¾È ¾÷±×·¹À̵忡 ÀÚ±ÝÀ» Áö¿øÇÏ´Â ±¹°¡ µðÁöÅÐ ÀÎÇÁ¶ó °èȹÀ» ¼ö¸³Çϰí ÀÖ¾î ±³Åë ºÐ¼® Á¦°ø¾÷ü¿¡°Ô ºñ¿ÁÇÑ Åä¾çÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¢ ¾÷üµéÀº ¸ðµâÇü ºÐ¼® Á¦Ç°±º, ¿§Áö ¹× Ŭ¶ó¿ìµå ÅëÇÕ, ´Ù¾çÇÑ ÁöÀÚü ¿ä±¸¿¡ ¸Â´Â ´ë½Ãº¸µå Ä¿½ºÅ͸¶ÀÌ¡ µîÀ» Á¦°øÇϸç Ä¡¿­ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖ½À´Ï´Ù.

µµ½ÃÀÇ Ä¿³ØÆ¼µåÈ­, ¸ðºô¸®Æ¼ÀÇ ¸ÖƼ¸ð´ÞÈ­, ÀÚµ¿Â÷ÀÇ ÀÚÀ²ÁÖÇàÀ¸·Î ÀÎÇØ ½º¸¶Æ® ±³Åë ºÐ¼®ÀÇ ¿ªÇÒÀº ´õ¿í È®´ëµÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº ºÐ¼®»Ó¸¸ ¾Æ´Ï¶ó µµ½Ã ½Ã½ºÅÛ Àü¹ÝÀ» Á¶Á¤Çϰí, ¿¹ÃøÀû È¥Àâ ¿ÏÈ­, µ¿Àû ¿ä±Ý ¼³Á¤, ÅëÇÕµÈ ±³Åë ¿ÀÄɽºÆ®·¹À̼ÇÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ½º¸¶Æ® ¸ðºô¸®Æ¼ ½ºÅÃÀÇ ÇʼöÀûÀÎ ·¹À̾ µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(½º¸¶Æ® ±³Åë ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ½º¸¶Æ® ±³Åë½ÅÈ£ Á¦¾î ½Ã½ºÅÛ, ½º¸¶Æ® ±³Åë ´Ü¼Ó Ä«¸Þ¶ó, ½º¸¶Æ® ±³Åë Áö´ÉÇü ¿îÀüÀÚ Á¤º¸ ½Ã½ºÅÛ, ½º¸¶Æ® ±³Åë ÅëÇÕ µµ·Î °ü¸®), ÃÖÁ¾»ç¿ëÀÚ(°ü¸® Â÷¼± ÃÖÁ¾»ç¿ëÀÚ, °í¼Óµµ·Î ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Smart Traffic Analytics Market to Reach US$19.5 Billion by 2030

The global market for Smart Traffic Analytics estimated at US$11.9 Billion in the year 2024, is expected to reach US$19.5 Billion by 2030, growing at a CAGR of 8.6% over the analysis period 2024-2030. Smart Traffic Monitoring System, one of the segments analyzed in the report, is expected to record a 10.4% CAGR and reach US$9.1 Billion by the end of the analysis period. Growth in the Smart Traffic Signal Control System segment is estimated at 6.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.1 Billion While China is Forecast to Grow at 8.2% CAGR

The Smart Traffic Analytics market in the U.S. is estimated at US$3.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.1 Billion by the year 2030 trailing a CAGR of 8.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 7.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.7% CAGR.

Global Smart Traffic Analytics Market - Key Trends & Drivers Summarized

Why Is Smart Traffic Analytics Essential for Urban Planning and Mobility Optimization?

Smart traffic analytics refers to the real-time collection, processing, and analysis of vehicular, pedestrian, and transit data through AI-powered tools, IoT networks, and cloud-based platforms. These systems enable city planners, traffic control centers, and mobility service providers to assess congestion patterns, detect incidents, predict traffic flow, and optimize infrastructure usage. As urban populations surge and mobility demands intensify, cities are increasingly relying on smart traffic analytics to support evidence-based decision-making and adaptive transportation planning.

Smart traffic analytics platforms ingest data from a multitude of sources-traffic cameras, induction loop sensors, radar detectors, GPS traces, connected vehicle feeds, and mobile apps. This data is processed using machine learning algorithms and predictive models to deliver actionable insights such as estimated travel times, congestion hotspots, traffic signal optimization strategies, and public transit utilization rates. The outputs are visualized through dashboards, heat maps, and digital twin environments that help municipal agencies manage mobility operations more efficiently.

What Technologies Are Driving the Adoption of Smart Traffic Intelligence?

The backbone of smart traffic analytics is built on sensor networks, edge computing, artificial intelligence, and centralized traffic management software. Computer vision systems powered by AI are replacing traditional counting methods, offering vehicle classification, lane occupancy detection, red-light violation tracking, and license plate recognition with high accuracy. These systems are often deployed on existing traffic cameras, making them scalable without major infrastructural overhaul.

Edge computing capabilities allow real-time analysis of video and sensor data close to the collection point, reducing latency and network load. This is critical for time-sensitive use cases such as dynamic signal control, emergency vehicle routing, or accident detection. Edge devices preprocess video feeds to identify incidents and relay alerts to central control rooms or public alert systems. On the backend, cloud-based platforms aggregate this data and apply predictive analytics for long-term traffic forecasting, peak demand management, and infrastructure planning.

Integration with vehicle-to-everything (V2X) technologies enables real-time communication between smart infrastructure and connected cars, bicycles, and public transit. Smart traffic systems can alert drivers about road hazards, optimize traffic light timing based on vehicle clusters, and reroute flows during construction or accidents. Additionally, integration with mobile apps allows real-time sharing of congestion alerts, optimal routes, and dynamic pricing data for congestion zones or tolls.

Where Are Smart Traffic Analytics Being Deployed and What Are the Use Cases?

Smart traffic analytics systems are being rolled out extensively in metropolitan areas, smart city zones, high-accident corridors, major intersections, and transit-oriented developments (TODs). Cities such as Singapore, Amsterdam, London, Los Angeles, and Seoul have implemented citywide traffic analytics platforms to monitor urban mobility, reduce emissions, and enhance road safety. These cities use the data to identify bottlenecks, deploy enforcement personnel, prioritize road maintenance, and manage multimodal hubs more efficiently.

In emerging markets, governments are investing in analytics to manage rapid urbanization. Smart traffic analytics are being used to study bus dwell times, optimize fare collection schedules, and redesign routes based on commuter flow. In India and Brazil, pilot programs using AI cameras and centralized dashboards have demonstrated measurable reductions in congestion and accident response times. Transit agencies use this data to adjust bus frequency, while urban planners use it to assess the impact of road network changes.

Private players such as ride-hailing firms, logistics companies, and autonomous vehicle developers are leveraging smart traffic analytics to optimize fleet routing, reduce delivery delays, and enhance safety in dynamic environments. Mall operators, stadiums, and airports deploy analytics during high-traffic events to manage vehicle inflow and pedestrian safety. Additionally, smart tolling systems use vehicle detection analytics to streamline toll collection and reduce queueing without human intervention.

What Market Forces Are Accelerating Global Growth in This Segment?

The growth in the global smart traffic analytics market is driven by several factors, including the rise in urban congestion, increasing smart city investments, growing emphasis on road safety, and the proliferation of connected mobility ecosystems. As governments aim to reduce vehicular emissions and improve public transport efficiency, smart analytics provide the real-time intelligence needed for dynamic traffic management and policy calibration.

AI and computer vision advancements have reduced the cost and complexity of deploying analytics on existing camera infrastructure. Cloud computing and 5G connectivity enable real-time data flows and predictive analysis at scale, enhancing the appeal of smart traffic systems across large geographies. Regulatory mandates on emission controls, noise pollution, and transportation equity are also prompting municipalities to adopt data-driven tools for mobility planning.

Public-private partnerships and global donor-backed smart mobility programs are enabling pilot deployments in underserved urban areas. Many governments have also launched national digital infrastructure schemes that fund sensor deployment, cloud analytics, and cybersecurity upgrades-creating fertile ground for traffic analytics providers. Vendor competition is intense, with companies offering modular analytics suites, edge-cloud integration, and dashboard customization for diverse municipal needs.

As cities become more connected, mobility becomes multi-modal, and vehicles become autonomous, the role of smart traffic analytics will expand further. These platforms will not only analyze but also coordinate across city systems-enabling predictive congestion mitigation, dynamic fare pricing, and integrated transit orchestration-thus becoming an indispensable layer in the smart mobility stack.

SCOPE OF STUDY:

The report analyzes the Smart Traffic Analytics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Smart Traffic Monitoring System, Smart Traffic Signal Control System, Smart Traffic Enforcement Camera, Smart Traffic Intelligent Driver Information System, Smart Traffic Integrated Corridor Management); End-Use (Managed Lanes End-Use, Highway End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â