¼¼°èÀÇ ½º¸¶Æ® ½ÅÈ£ ½ÃÀå
Smart Signaling
»óǰÄÚµå : 1795356
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 186 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

½º¸¶Æ® ½ÅÈ£ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 56¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 6¾ï 9,090¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ½º¸¶Æ® ½ÅÈ£ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 41.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 56¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î À¯ÇüÀº CAGR 45.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 33.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 8,160¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 39.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½º¸¶Æ® ½ÅÈ£ ½ÃÀåÀº 2024³â¿¡ 1¾ï 8,160¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 2,340¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 39.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 38.5%¿Í 35.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 28.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½º¸¶Æ® ½ÅÈ£ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½º¸¶Æ® ½ÅÈ£°¡ µµ½Ã ¸ðºô¸®Æ¼¿Í ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

½º¸¶Æ® ½ÅÈ£ ½Ã½ºÅÛÀº ±âÁ¸ÀÇ ½Ã°£ ±â¹Ý ½Ã±×³Î¸µÀ» ´ëüÇÏ´Â Áö´ÉÇü, ÀûÀÀÇü, ½Ç½Ã°£ ±³Åë ¹× µ¥ÀÌÅÍ Á¦¾î ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á µµ½Ã ±³Åë ³×Æ®¿öÅ© ¹× Åë½Å ÀÎÇÁ¶ó ¿î¿µ ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ÅëÇÕ ¼¾¼­, ¿§Áö ÄÄÇ»ÆÃ, ¹«¼± ¿¬°á, AI ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© ½ÅÈ£ ŸÀÌ¹Ö ÃÖÀûÈ­, µ¥ÀÌÅÍ È帧 ´ë±â ½Ã°£ ´ÜÃà, È¥Àâ °ü¸®, µµ½Ã ±³Â÷·Î, öµµ, Åë½Å ½ºÀ§Ä¡, ºñ»ó ´ëÀÀ ³×Æ®¿öÅ© µî ¸ÖƼ¸ð´Þ ȯ°æÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ±³Åë°ú Åë½Å ºÐ¾ß ¸ðµÎ¿¡¼­ ½º¸¶Æ® ½ÅÈ£µîÀº ÀÎÇÁ¶ó ¼º´É Çâ»óÀ» À§ÇÑ ¿ªµ¿ÀûÀÌ°í »óȲ¿¡ ¸Â´Â ÀÇ»ç°áÁ¤À¸·ÎÀÇ ÀüȯÀ» »ó¡ÇÕ´Ï´Ù.

µµ½Ã ±³Åë ³×Æ®¿öÅ©¿¡¼­ ½º¸¶Æ® ½ÅÈ£µîÀº Â÷·® È帧, º¸ÇàÀÚ À̵¿, ´ëÁß±³Åë ½ºÄÉÁÙ, ±ä±Þ Â÷·®ÀÇ °æ·Î¸¦ ½Ç½Ã°£À¸·Î Á¶Á¤ÇÏ´Â Áö´ÉÇü ½ÅÈ£µîÀ» ½ÇÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °øÈ¸Àü ½Ã°£À» ´ÜÃàÇϰí, ±³Åë üÁõÀ¸·Î ÀÎÇÑ ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í, º¸ÇàÀÚÀÇ ¾ÈÀü¼ºÀ» ³ôÀÔ´Ï´Ù. Åë½Å¿¡¼­ ½º¸¶Æ® ½ÅÈ£´Â ³×Æ®¿öÅ©ÀÇ ½Å·Ú¼ºÀ» ¿ì¼±½ÃÇÏ°í ÆÐŶ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϸç, 5G ¹× Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÆÅ°ÅØÃ³¿¡¼­ È®Àå °¡´ÉÇÑ µðÁöÅÐ ÀüȯÀ» Áö¿øÇÏ´Â °í±Þ ½Ã±×³Î¸µ ÇÁ·ÎÅäÄݰú Áö´ÉÇü ¶ó¿ìÆÃ ¸ÞÄ¿´ÏÁòÀ» ¸»ÇÕ´Ï´Ù. ½º¸¶Æ® ¸ðºô¸®Æ¼¿Í Áö´ÉÇü ³×Æ®¿öÅ© ½Ã±×³Î¸µÀÇ À¶ÇÕÀº ÇöÀç º¸´Ù ½º¸¶Æ®ÇÏ°í ¹ÝÀÀ¼ºÀÌ ³ôÀº µµ½ÃÀÇ ÁßÃ߸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

½º¸¶Æ® ½ÅÈ£ ½Ã½ºÅÛÀÇ ±â´ÉÀ» µÞ¹ÞħÇÏ´Â ±â¼úÀº ¹«¾ùÀΰ¡?

½º¸¶Æ® ½ÅÈ£ ½Ã½ºÅÛÀº AI, ¼¾¼­ À¶ÇÕ, µ¥ÀÌÅÍ ºÐ¼®, IoT Ç÷§Æû, ¿§Áö ÄÄÇ»ÆÃÀÇ Á¶ÇÕÀ¸·Î ±¸µ¿µË´Ï´Ù. µµ½Ã ¸ðºô¸®Æ¼¿¡¼­ ½º¸¶Æ® ±³Åë ½ÅÈ£µîÀº ³»ÀåµÈ Ä«¸Þ¶ó, ·¹ÀÌ´õ, Àû¿Ü¼± ¼¾¼­, ·çÇÁ °¨Áö±â¿¡ ÀÇÁ¸ÇÏ¿© ±³Åë·®, Â÷¼± Á¡À¯À², º¸ÇàÀÚ ¿òÁ÷ÀÓÀ» ½Ç½Ã°£À¸·Î Æò°¡ÇÕ´Ï´Ù. ±â°è ÇнÀ ¾Ë°í¸®ÁòÀº ÀÌ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© Á¤Ã¼ ¹ß»ýÀ» ¿¹ÃøÇÏ°í ½ÅÈ£ ´Ü°è¸¦ µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© ÀûÀÀÇü ±³Åë Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¾Á¾ V2I(Vehicle-to-Infrastructure) Åë½Å ÇÁ·ÎÅäÄݰú ÅëÇյǾî Ä¿³ØÆ¼µåÄ«¿ÍÀÇ ½Ç½Ã°£ Çù¾÷À» °¡´ÉÇÏ°Ô Çϰí, È帧ÀÇ È¿À²¼º°ú Ãæµ¹ ¹æÁö¸¦ °­È­ÇÕ´Ï´Ù.

Åë½Å¿¡¼­´Â SS7(Signaling System No.7), SIP(Session Initiation Protocol), Diameter, 5G SBA(Service-Based Architecture) ÀÎÅÍÆäÀ̽º µî Áö´ÉÇü ½ºÀ§Äª ÇÁ·ÎÅäÄÝÀÌ Æ÷ÇԵ˴ϴÙ. ÇÁ·ÎÅäÄÝÀÌ ½º¸¶Æ® ½ÅÈ£¿¡ Æ÷ÇԵ˴ϴÙ. ÀÌ ÇÁ·ÎÅäÄÝÀº µ¥ÀÌÅÍ ¼¼¼ÇÀÇ ¼³Á¤, ¶ó¿ìÆÃ, Ƽ¾î´Ù¿îÀ» °ü¸®Çϰí, ¿øÈ°ÇÑ ÇÚµå¿À¹ö, È¥Àâ ¹æÁö, °í°¡Ä¡ Åë½Å ¹× Áö¿¬¿¡ Ãë¾àÇÑ Åë½ÅÀÇ ¿ì¼±¼øÀ§¸¦ ÁöÁ¤ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ½Ã±×³Î¸µ ºÐ¼® ¿£ÁøÀº µö ÆÐŶ °Ë»ç, ÀÌ»ó °¨Áö, ¼­ºñ½º ǰÁú ¸ÞÆ®¸¯À» Ȱ¿ëÇÏ¿© ³ëµå °£ ÃÖÀûÀÇ ºÎÇÏ ºÐ»êÀ» ½ÇÇöÇÕ´Ï´Ù. 5G ¹× Â÷¼¼´ë ±¤´ë¿ª ³×Æ®¿öÅ©¿¡¼­´Â ³×Æ®¿öÅ© ±â´É °¡»óÈ­(NFV)¸¦ ÅëÇÑ ½Ã±×³Î¸µ °¡»óÈ­¸¦ ÅëÇØ ź·ÂÀûÀÎ ½ºÄÉÀϸµ°ú ½Ç½Ã°£ ÆäÀÏ¿À¹ö°¡ °¡´ÉÇÕ´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃÀÇ ÅëÇÕÀ¸·Î µ¥ÀÌÅÍ ¼Ò½º¿¡ °¡±î¿î °÷¿¡¼­ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ¾î ½º¸¶Æ® ½ÅÈ£ÀÇ ÀÀ´ä¼ºÀÌ Çâ»óµË´Ï´Ù. À̸¦ ÅëÇØ Æ®·¡ÇÈ Á¦¾î ¹× ÅëÈ­ ¶ó¿ìÆÃÀÇ ´ë±â ½Ã°£À» ÁÙÀ̰í, Ŭ¶ó¿ìµå ¿¬°áÀÌ °£ÇæÀûÀ¸·Î ²÷±â´Â °æ¿ì¿¡µµ ½Ã½ºÅÛÀ» ÀÛµ¿½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Áß¾Ó ÁýÁᫎ Ç÷§ÆûÀ» ÅëÇØ °ü¸®µÇ¸ç, ½ÅÈ£ »óÅÂ, Àå¾Ö °¨Áö, ¿¹Áöº¸Àü, ºñ»ó ÇÁ·ÎÅäÄݰúÀÇ ÅëÇÕÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ´ë½Ãº¸µå¸¦ Á¦°øÇÕ´Ï´Ù. ¹«¼± ¾÷µ¥ÀÌÆ®, ¾ÏȣȭµÈ ½ÅÈ£ ä³Î, ÆäÀÏ ¼¼ÀÌÇÁ ¸®´ø´ø½Ã ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ ¿î¿µ ¿¬¼Ó¼º°ú »çÀ̹ö º¸¾È ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇÕ´Ï´Ù.

¾î¶² ¿µ¿ª¿¡¼­ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ¾î¶² »ç¿ë»ç·Ê°¡ ÁÖ¸ñ¹Þ°í Àִ°¡?

½º¸¶Æ® ½ÅÈ£ ½Ã½ºÅÛÀº µµ½Ã ±³Åë, öµµ, ½º¸¶Æ® °í¼Óµµ·Î, °ø°ø¾ÈÀü ÀÎÇÁ¶ó, ÷´Ü Åë½Å ³×Æ®¿öÅ© µîÀÇ ºÐ¾ß¿¡¼­ ³ôÀº äÅ÷üÀ» º¸À̰í ÀÖ½À´Ï´Ù. ±³ÅëüÁõ°ú ¿À¿°µµ°¡ ³ôÀº µµ½Ã¿¡¼­´Â Áö¼Ó°¡´É¼º ¸ñÇ¥ ´Þ¼º, À̵¿½Ã°£ ´ÜÃà, °ÅÁÖ¼º Çâ»óÀ» À§ÇØ Áö´ÉÇü ±³Åë ½ÅÈ£µîÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀϺΠÁö¿ª¿¡¼­´Â ½º¸¶Æ® ±³Â÷·Î°¡ µµÀԵǰí ÀÖÀ¸¸ç, µµ½Ã Áö¿ª¿¡¼­´Â AI ±â¹Ý ½ÅÈ£µî°ú ±³Åë °ü¸® ¼¾ÅÍ ¹× ±³Åë ½ºÄÉÁÙÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¹ö½º, ±¸±ÞÂ÷, ÀÚÀü°ÅÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí Áö´ÉÇü ¸ÖƼ¸ð´Þ Åë·Î¸¦ ¸¸µé¾î³À´Ï´Ù.

öµµ »ç¾÷ÀÚ´Â ½º¸¶Æ® ½ÅÈ£¸¦ µµÀÔÇÏ¿© ¿­Â÷ ½Ã°£Ç¥ÀÇ ÃÖÀûÈ­, ¿îÇà½Ã°£ ´ÜÃà, Áö¿¬À» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ETCS(European Train Control System), CBTC(Communications-Based Train Control), PTC(Positive Train Control) µîÀÇ ±â¼úÀº ±âÁ¸ÀÇ ºí·Ï ½ÅÈ£ ½Ã½ºÅÛÀ» Çö´ëÈ­ÇÏ¿© °ÅÀÇ ½Ç½Ã°£ ¿­Â÷ ºÐ¸® ¹× ½Ç½Ã°£ ¿­Â÷ ºÐ¸®¿Í öµµ ³×Æ®¿öÅ©ÀÇ Ã³¸®·® Çâ»óÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ÇÏÀÌ¿þÀÌ ÇÁ·ÎÁ§Æ®¿¡¼­´Â Â÷·® ÇÏÁß, ³¯¾¾, »ç°í¿¡ µû¶ó ÀûÀÀÇÏ´Â ½º¸¶Æ® ½ÅÈ£ ¸ðµâÀ» ÅëÇØ µ¿Àû Â÷¼± Á¦¾î¿Í °¡º¯ ¼Óµµ Á¦ÇÑÀ» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù.

Åë½Å »ç¾÷ÀÚµéÀº 5G ÄÚ¾î ³×Æ®¿öÅ©, IoT µð¹ÙÀ̽º °ü¸®, ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ Åë½ÅÀ» Áö¿øÇϱâ À§ÇØ Áö´ÉÇü ½Ã±×³Î¸µ ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ±âÁö±¹ °£ ¿øÈ°ÇÑ ÇÚµå¿À¹ö, Á¦¾î Æò¸éÀÇ ½Ç½Ã°£ È¥Àâ °ü¸®, ¿ø°Ý ¼ö¼ú ¹× ÀÚÀ²ÁÖÇà Â÷·®°ú °°Àº »ç¿ë »ç·Ê¿¡ ´ëÇÑ ÃÊÀúÁö¿¬ Åë½Å(URLLC)ÀÇ ¿ì¼±¼øÀ§ ÁöÁ¤ µîÀ» º¸ÀåÇÕ´Ï´Ù. ºñ»ó ³×Æ®¿öÅ© ¹× °ø°ø¾ÈÀü ±â°üÀº ±âÁ¸ ä³ÎÀÌ °úºÎÇϵǴ Àç³­ »óȲ¿¡¼­ ½º¸¶Æ® ½ÅÈ£¸¦ »ç¿ëÇÏ¿© ÅëÈ­¸¦ È¿À²ÀûÀ¸·Î ¶ó¿ìÆÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À© Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ´ë±Ô¸ð ÀÎÇÁ¶ó ±¸Ãà ½Ã ½Ã±×³Î¸µ È帧ÀÇ ½Ã¹Ä·¹À̼Ç, Å×½ºÆ®, ÃÖÀûÈ­µµ ÁøÇàÇϰí ÀÖ½À´Ï´Ù.

½º¸¶Æ® ½ÅÈ£ÀÇ ½ÃÀå È®´ë¿Í Çõ½ÅÀ» ÃËÁøÇÏ´Â ÈûÀº ¹«¾ùÀϱî?

¼¼°è ½º¸¶Æ® ½ÅÈ£ ½ÃÀåÀÇ ¼ºÀåÀº µµ½ÃÈ­, ±³Åë üÁõ ¿ÏÈ­ ¼ö¿ä, Ä¿³ØÆ¼µåÄ« µµÀÔ È®´ë, 5G ÀÎÇÁ¶óÀÇ ¹ßÀü, Áö¼Ó°¡´ÉÇÑ °­°ÇÇÑ µµ½Ã¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. µµ½Ã Áö¿ªÀÇ Àα¸ ¹Ðµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¤Àû ½ÅÈ£ ½Ã½ºÅÛÀÇ ÇѰ谡 ´õ¿í ºÐ¸íÇØÁý´Ï´Ù. ÀûÀÀÇü µ¥ÀÌÅÍ ±â¹Ý ½ÅÈ£ ½Ã½ºÅÛÀº ±³Åë È帧À» °³¼±Çϰí, ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̰í, ¾ÈÀü ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.

Àü±âÀÚµ¿Â÷¿Í ÀÚÀ²ÁÖÇàÂ÷ÀÇ ±Þ¼ÓÇÑ º¸±Þµµ ½ÅÈ£ Àü·«¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÅÈ£µîÀº ÇöÀç ÁÖÇà ±ËÀû°ú ÃæÀü ÆÐÅÏÀ» ÃÖÀûÈ­Çϱâ À§ÇØ Â÷·®ÀÇ Â÷³» ½Ã½ºÅÛ°ú Åë½ÅÇØ¾ß ÇÕ´Ï´Ù. °¢±¹ Á¤ºÎ´Â ±¤¹üÀ§ÇÑ ±³Åë µðÁöÅÐÈ­ ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÀÏȯÀ¸·Î ½º¸¶Æ® ½ÅÈ£µî °³Á¶¸¦ Áö¿øÇϱâ À§ÇÑ ÀÚ±Ý Áö¿ø Á¦µµ¿Í Àǹ«¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. EUÀÇ ±×¸°µô, ¹Ì±¹ÀÇ ÀÎÇÁ¶ó ÅõÀÚ ¹× °í¿ëÃËÁø¹ý, ÀϺ»ÀÇ Society 5.0 µîÀÌ ±× ¿¹À̸ç, ¸ðµÎ ½º¸¶Æ® ¸ðºô¸®Æ¼¸¦ ±¹°¡ °æÀï·ÂÀÇ ÇÑ ÃàÀ¸·Î »ï°í ÀÖ½À´Ï´Ù.

Åë½Å ºÐ¾ß¿¡¼­´Â 5GÀÇ º¸±ÞÀÌ ¸ð¹ÙÀÏ ÄÚ¾î ³×Æ®¿öÅ©, MEC(¸ÖƼ ¾×¼¼½º ¿§Áö ÄÄÇ»ÆÃ) ³ëµå, IoT Á¦¾î Ç÷§Æû Àü¹Ý¿¡ °ÉÃÄ ½ÅÈ£ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Æ®·¡ÇÈ, ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼Ç, Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇØ ¼ö½Ê¾ï °³ÀÇ µ¿½Ã ¼¼¼ÇÀ» ÀúÁö¿¬, °í½Å·Ú¼ºÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â º¸´Ù ½º¸¶Æ®Çϰí ÀÚµ¿È­µÈ ½Ã±×³Î¸µ ÇÁ·ÎÅäÄÝÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Åë½Å º¥´õ¿Í Åë½Å »ç¾÷ÀÚµéÀº AI ±â¹Ý ½Ã±×³Î¸µ ºÐ¼®¿¡ ÅõÀÚÇÏ¿© Á¤Àü ¿¹Ãø, Æ®·¡ÇÈÀÇ µ¿Àû °æ·Î º¯°æ, Á֯ļö ´ë¿ª Ȱ¿ëµµ Çâ»óÀ» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

º¥´õ °£ °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ °¢ ¾÷üµéÀº ¸ðµâ½Ä ½Ã±×³Î¸µ Ç÷§Æû, ¿ÀÇ API, Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ÄÁÆ®·Ñ Ç÷¹ÀÎ, º¸¾ÈÀ» °­È­ÇÑ ½Ã±×³Î¸µ ¹æÈ­º®À» Á¦°øÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, ¸ðºô¸®Æ¼ ±â¼ú ±â¾÷, Åë½Å»ç °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®, Å×½ºÆ® ÇÁ·¹ÀÓ¿öÅ©, ºÐ¾ß °£ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ÀÎÇÁ¶ó, ¿¡³ÊÁö È¿À²ÀûÀÎ ¸ðºô¸®Æ¼, ÀÚÀ² ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ½º¸¶Æ® ½ÅÈ£´Â »óÈ£¿¬°áµÇ°í ¹ÝÀÀ¼ºÀÌ ³ôÀ¸¸ç ¹Ì·¡ ÁöÇâÀûÀÎ »ýŰèÀÇ ±â¹ÝÀÌ µÇ´Â Àο¡ÀÌºí·¯·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(Çϵå¿þ¾î À¯Çü, ¼ÒÇÁÆ®¿þ¾î À¯Çü, ¼­ºñ½º À¯Çü), ¿ëµµ(µµ½Ã ±³Åë ¿ëµµ, ´ëÁß ±³Åë ¿ëµµ, °í¼Óµµ·Î ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Smart Signaling Market to Reach US$5.6 Billion by 2030

The global market for Smart Signaling estimated at US$690.9 Million in the year 2024, is expected to reach US$5.6 Billion by 2030, growing at a CAGR of 41.9% over the analysis period 2024-2030. Hardware Type, one of the segments analyzed in the report, is expected to record a 45.2% CAGR and reach US$4.1 Billion by the end of the analysis period. Growth in the Software Type segment is estimated at 33.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$181.6 Million While China is Forecast to Grow at 39.4% CAGR

The Smart Signaling market in the U.S. is estimated at US$181.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$823.4 Million by the year 2030 trailing a CAGR of 39.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 38.5% and 35.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 28.1% CAGR.

Global Smart Signaling Market - Key Trends & Drivers Summarized

Why Is Smart Signaling Becoming Critical to Urban Mobility and Network Infrastructure?

Smart signaling systems are revolutionizing the way urban transportation networks and communication infrastructures operate by replacing legacy, time-based signaling with intelligent, adaptive, and real-time traffic and data control solutions. These systems utilize integrated sensors, edge computing, wireless connectivity, and AI algorithms to optimize signal timing, reduce latency in data flows, manage congestion, and improve safety across multimodal environments such as urban intersections, railways, telecom switches, and emergency response networks. In both transportation and telecommunications sectors, smart signaling represents a shift toward dynamic, context-aware decision-making for infrastructure performance enhancement.

In urban traffic networks, smart signaling enables intelligent traffic lights that adjust in real-time to vehicle flows, pedestrian movement, public transportation schedules, and emergency vehicle paths. These systems reduce idle times, decrease greenhouse gas emissions from congestion, and enhance pedestrian safety. In telecommunications, smart signaling refers to advanced signaling protocols and intelligent routing mechanisms that prioritize network reliability, minimize packet loss, and support scalable digital transformation in 5G and cloud-native architectures. The convergence of smart mobility and intelligent network signaling is now forming the backbone of smarter, more responsive cities.

What Technologies Underpin the Functionality of Smart Signaling Systems?

Smart signaling systems are powered by a mix of AI, sensor fusion, data analytics, IoT platforms, and edge computing. In urban mobility, smart traffic signals rely on embedded cameras, radar, infrared sensors, and loop detectors to assess traffic volume, lane occupancy, and pedestrian movement in real time. Machine learning algorithms process this data to predict congestion build-up and dynamically adjust light phases, enabling adaptive traffic control. These systems are often integrated with Vehicle-to-Infrastructure (V2I) communication protocols, which allow real-time coordination with connected vehicles, enhancing flow efficiency and collision avoidance.

In telecommunications, smart signaling involves intelligent switching protocols such as Signaling System No. 7 (SS7), Session Initiation Protocol (SIP), Diameter, and 5G Service-Based Architecture (SBA) interfaces. These protocols manage the setup, routing, and teardown of data sessions, enabling seamless handovers, congestion avoidance, and prioritization of high-value or latency-sensitive communications. Signaling analytics engines leverage deep packet inspection, anomaly detection, and quality-of-service metrics to ensure optimal load balancing across nodes. In 5G and next-gen broadband networks, signaling virtualization via network function virtualization (NFV) allows for elastic scaling and real-time failover.

The integration of edge computing enhances smart signaling responsiveness by allowing decisions to be made closer to the data source. This reduces latency in traffic control or call routing and enables systems to function even during intermittent cloud connectivity. These systems are managed via centralized platforms offering dashboards for monitoring signal health, outage detection, predictive maintenance, and integration with emergency protocols. Over-the-air updates, encrypted signaling channels, and fail-safe redundancy mechanisms ensure operational continuity and cybersecurity compliance.

Which Domains Are Driving Deployment and What Use Cases Are Gaining Prominence?

Smart signaling systems are seeing high adoption in domains such as urban transportation, railways, smart highways, public safety infrastructure, and advanced telecom networks. Cities with high traffic congestion and pollution levels are deploying intelligent traffic signaling to achieve sustainability targets, reduce travel times, and enhance livability. Smart intersections are being implemented across North America, Europe, and parts of Asia-Pacific, where urban centers are integrating AI-driven signals with traffic management centers and transit schedules. These systems prioritize buses, ambulances, and cyclists, creating intelligent multimodal corridors.

Railway operators are implementing smart signaling to optimize train schedules, reduce headways, and minimize delays. Technologies such as the European Train Control System (ETCS), Communications-Based Train Control (CBTC), and Positive Train Control (PTC) are modernizing legacy block signaling systems, enabling near real-time train separation and increased rail network throughput. In smart highway projects, dynamic lane control and variable speed limit enforcement are powered by smart signaling modules that adapt based on vehicle load, weather, and incidents.

In telecommunications, operators are deploying intelligent signaling solutions to support 5G core networks, IoT device management, and mission-critical communications. These systems ensure seamless handovers across base stations, real-time congestion management in control planes, and prioritization of ultra-reliable low-latency communications (URLLC) for use cases like remote surgery or autonomous vehicles. Emergency networks and public safety agencies are using smart signaling to route calls efficiently during disasters, where traditional channels become overloaded. Integration with digital twin platforms is also emerging to simulate, test, and optimize signaling flows across large-scale infrastructure deployments.

What Forces Are Fueling Market Expansion and Innovation in Smart Signaling?

The growth in the global smart signaling market is driven by several factors, including urbanization, demand for congestion mitigation, increasing deployment of connected vehicles, advancement of 5G infrastructure, and growing emphasis on sustainable and resilient cities. As urban areas become more densely populated, the limitations of static signaling systems become more evident. Adaptive, data-driven signaling improves traffic flow, reduces energy consumption, and supports safety goals-making it a priority in smart city master plans worldwide.

The rapid adoption of electric and autonomous vehicles is also influencing signaling strategies. Smart signals now need to communicate with vehicle onboard systems to optimize travel trajectories and charging patterns. Governments are introducing funding schemes and mandates that support smart signaling retrofits as part of broader transportation digitalization initiatives. Examples include the EU-s Green Deal, U.S. Infrastructure Investment and Jobs Act, and Japan-s Society 5.0 agenda-all of which earmark smart mobility as a pillar of national competitiveness.

In telecommunications, 5G rollouts are driving signaling innovation across mobile core networks, MEC (multi-access edge computing) nodes, and IoT control platforms. The exponential rise in data traffic, mobile applications, and connected devices is necessitating smarter, automated signaling protocols that can manage billions of concurrent sessions with low latency and high reliability. Telecom vendors and operators are investing in AI-based signaling analytics to predict outages, reroute traffic dynamically, and improve spectrum utilization.

Vendor competition is intensifying, with companies offering modular signaling platforms, open APIs, cloud-native control planes, and security-enhanced signaling firewalls. Strategic partnerships between governments, mobility technology firms, and telecom providers are accelerating pilot projects, testing frameworks, and cross-sector integration. With rising investments in digital infrastructure, energy-efficient mobility, and autonomous systems, smart signaling is positioned as a foundational enabler of interconnected, responsive, and future-ready ecosystems.

SCOPE OF STUDY:

The report analyzes the Smart Signaling market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Hardware Type, Software Type, Service Type); Application (Urban Traffic Application, Public Transport Application, Freeway Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â