¼¼°èÀÇ Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°Æ® ±â±â ½ÃÀå
Orthopedic 3D Printed Devices
»óǰÄÚµå : 1795304
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 136 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°Æ® ±â±â ¼¼°è ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°Æ® ±â±â ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 16.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÃ¶ó½ºÆ½ Àç·á´Â CAGR 14.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 13¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ªÀÏ·Ð ¼ÒÀç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 9,170¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°Æ® ±â±â ½ÃÀåÀº 2024³â¿¡ 3¾ï 9,170¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5¾ï 6,690¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 14.6%¿Í 14.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°Æ® ±â±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

3D ÇÁ¸°ÆÃÀÌ Á¤Çü¿Ü°ú ±â±âÀÇ µðÀÚÀΰú °³ÀÎÈ­¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â´Â ȯÀÚ ¸ÂÃãÇü ÀÓÇöõÆ®, ¸ÂÃãÇü ¼ö¼ú±â±¸, º¹ÀâÇÑ Çü»óÀÇ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ±Ù°ñ°Ý°è Ä¡·á¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÀûÃþÁ¶ÇüÀº °³º° ÇØºÎÇÐÀû ±¸Á¶¿¡ ¸Â´Â ÀÓÇöõÆ® Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ÀûÇÕ¼º, ±â´É¼º, ¼ö¼ú Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ±â±¸µéÀº °üÀý Àç°Ç, ¿Ü»ó º¹±¸, ôÃß °íÁ¤, »À °á¼Õ º¹±¸ µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

±âÁ¸ Á¦Á¶¿Í ´Þ¸® 3D ÇÁ¸°ÆÃÀº °ÝÀÚ ±¸Á¶, ´õ ³ªÀº °ñÀ¯ÂøÀ» À§ÇÑ ´Ù°ø¼º Ç¥¸é, º¹ÀâÇÑ ±â´ÉÀ» ÇÑ ¹øÀÇ Á¶Çü¿¡¼­ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿Ü°ú ÀÇ»ç´Â ¿£Áö´Ï¾î¿Í Çù·ÂÇÏ¿© ÀÓÇöõÆ® ¹× Ä¿ÆÃ °¡À̵带 °øµ¿ ¼³°èÇÒ ¼ö ÀÖ¾î ¼ö¼ú ½Ã°£À» ´ÜÃàÇϰí Á¤·ÄÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ä¿½ºÅ͸¶ÀÌ¡Àº Àç¼ö¼ú, Á¾¾ç, °ñ·® °¨¼Ò°¡ ½ÉÇÑ °æ¿ì¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

3D ÇÁ¸°ÆÃÀÌ °¡´ÉÇÏ°Ô ÇÏ´Â Àç·á¿Í µðÀÚÀÎÀÇ ÁÖ¿ä Çõ½ÅÀº ¹«¾ùÀΰ¡?

ƼŸ´½ ÇÕ±Ý, PEEK, ¹ÙÀÌ¿À ¼¼¶ó¹Í, »ýüÈí¼ö¼º Æú¸®¸Ó´Â Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ÀÓÇöõÆ®¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀçµéÀº °­µµ, »ýüÀûÇÕ¼º, µðÀÚÀÎ À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀüÀÚºö ¿ëÇØ(EBM)¿Í ¼±ÅÃÀû ·¹ÀÌÀú ¿ëÇØ(SLM)´Â ±Ý¼Ó ÀÓÇöõÆ®ÀÇ ÁÖ·ù ±â¼úÀ̸ç, ¿ëÀ¶ ÀûÃþ °¡°ø(FDM)¿Í ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ(SLA)´Â Æú¸®¸Ó¿Í ¼ö¼ú¿ë °¡À̵å Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù.

ÃÖ±Ù ±â¼ú Çõ½ÅÀ¸·Î´Â ÀÚ¿¬ »ÀÀÇ °æµµ¸¦ ¸ð¹æÇÑ °æ»ç ¹Ðµµ ±¸Á¶, Ç×±Õ ÄÚÆÃ, À̹ÌÁö¿¡¼­ À¯·¡ÇÑ Çü»ó ÅëÇÕ µîÀÌ ÀÖ½À´Ï´Ù. ȯÀÚ ¸ÂÃãÇü ôÃß ÄÉÀÌÁö, °ü°ñÄÅ, µÎ°³°ñ Ç÷¹ÀÌÆ®, °ñÀý °¡À̵尡 ÇöÀç ÀÓ»ó¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °¡»ó ¼ö¼ú °èȹ°ú µðÁöÅÐ ¿öÅ©Ç÷οì ÅëÇÕ¿¡ ÀÖ¾î ¼ÒÇÁÆ®¿þ¾îÀÇ ¹ßÀüÀº ¼³°è¿¡¼­ ÀÓÇöõÆ®±îÁöÀÇ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

3D ÇÁ¸°ÆÃÀÌ µµÀÔµÈ °÷Àº ¾îµðÀ̸ç, ¾î¶² ÀÓ»ó ºÐ¾ß¿¡¼­ °¡Àå ¸ÕÀú µµÀԵǾú½À´Ï±î?

Á¤Çü¿Ü°ú Á¾¾çÇÐ, µÎ°³¾È¸é Àç°Ç, º¹ÀâÇÑ Ã´Ãß ¼ö¼ú ¹× °üÀý Àçġȯ¼úÀÌ Ãʱ⠵µÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. º´¿ø ³» 3D ÇÁ¸°ÆÃ ½ÇÇè½ÇÀ» °®Ãá º´¿ø°ú Çмú ¼¾ÅͰ¡ ȯÀÚ ¸ÂÃãÇü ¾ÖÇø®ÄÉÀ̼ÇÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á¿ë 3D ÇÁ¸°ÆÃ Àü¹®¾÷ü¿¡ ÀÇÇÑ ¿ÜÁÖ Á¦Á¶µµ È®À强°ú ±ÔÁ¦ Áؼö¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì¿Í À¯·´Àº ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ¼÷·ÃµÈ ¿Ü°ú ÀÇ·áÁø, ÀÇ·áºñ »óȯÀÇ Áö¿øÀ» ¹Þ°í ÀÖ¾î µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤ºÎÀÇ µðÁöÅÐ ÀÇ·á¿¡ ´ëÇÑ ÅõÀÚ¿Í ¸ÂÃãÇü ¼ö¼ú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Á¤Çü¿Ü°ú ¿Ü»ó ºÐ¾ß¿¡¼­´Â ȯÀÚÀÇ ÇØºÎÇÐÀû ±¸Á¶¿¡ ¸Â°Ô ÀμâµÈ °ñÀýÆÇ°ú °íÁ¤ ½Ã½ºÅÛÀÇ »ç¿ëÀÌ °ËÅäµÇ±â ½ÃÀÛÇß½À´Ï´Ù.

Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â ½ÃÀåÀÇ ¼ºÀåÀº ¸ÂÃãÇü ÀÓÇöõÆ®¿¡ ´ëÇÑ ¼ö¿ä, ÀÇ·á¿ë ÀûÃþ °¡°ø ±â¼úÀÇ ¹ßÀü, µðÁöÅÐ ¼ö¼ú °èȹ µµ±¸ÀÇ ÅëÇÕ¿¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀÔ´Ï´Ù. ³»±¸¼ºÀÌ ¶Ù¾î³­ Á¤Çü¿Ü°úÀû ±¸Á¶¸¦ À§ÇÑ ±Ý¼Ó ÀμâÀÇ »ç¿ë Áõ°¡, »ýüÀûÇÕ¼º Æú¸®¸ÓÀÇ °¡¿ë¼º, º¹ÀâÇÑ Àç°Ç ÀýÂ÷ÀÇ Áõ°¡°¡ ÁÖ¿ä ±â¿© ¿äÀÎÀÔ´Ï´Ù.

¿Ü°ú ÀÇ»ç¿Í ¿£Áö´Ï¾îÀÇ Çù·Â, POC(Point-of-Care) 3D ÇÁ¸°ÆÃ ¿¬±¸¼ÒÀÇ Á¦µµÀû µµÀÔ, »ý»ê ¸®µå ŸÀÓ ´ÜÃàÀ¸·Î ÀÓ»ó ¿öÅ©Ç÷οìÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÓÇöõÆ® ±ÔÁ¦ °æ·ÎÀÇ È®´ë, ¿Ü»ó ¹× Á¾¾ç °ü·Ã Àç°Ç¿¡¼­ÀÇ »ç¿ë Áõ°¡, »À¸¦ ¸ð¹æÇÑ µðÀÚÀÎ ÇüÅ¿¡ ´ëÇÑ °ü½ÉÀº Àü ¼¼°èÀûÀ¸·Î º¸±ÞÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÊ¿¡ µû¶ó 3D ÇÁ¸°ÆÃ Àåºñ´Â Á¤Çü¿Ü°ú Áø·áÀÇ ÁÖ·ù·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Àç·á(ÇÃ¶ó½ºÆ½, ³ªÀÏ·Ð, ¹ÙÀÌ¿À, ±âŸ Àç·á), ¿ëµµ(Á¤Çü¿Ü°ú ÀÓÇöõÆ®, ¼ö¼ú °èȹ, ¼ö¼ú±â±¸)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Orthopedic 3D Printed Devices Market to Reach US$3.7 Billion by 2030

The global market for Orthopedic 3D Printed Devices estimated at US$1.5 Billion in the year 2024, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 16.1% over the analysis period 2024-2030. Plastics Material, one of the segments analyzed in the report, is expected to record a 14.7% CAGR and reach US$1.3 Billion by the end of the analysis period. Growth in the Nylon Material segment is estimated at 15.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$391.7 Million While China is Forecast to Grow at 15.3% CAGR

The Orthopedic 3D Printed Devices market in the U.S. is estimated at US$391.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$566.9 Million by the year 2030 trailing a CAGR of 15.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.6% and 14.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.0% CAGR.

Global Orthopedic 3D Printed Devices Market - Key Trends & Drivers Summarized

How Is 3D Printing Changing Orthopedic Device Design and Personalization?

3D printed orthopedic devices are transforming musculoskeletal care by enabling patient-specific implants, customized surgical instruments, and rapid prototyping of complex geometries. Additive manufacturing allows production of implants tailored to individual anatomy, improving fit, functionality, and surgical precision. These devices are widely used in joint reconstruction, trauma repair, spinal fixation, and bone defect restoration.

Unlike conventional manufacturing, 3D printing enables lattice structures, porous surfaces for better osseointegration, and integration of complex features in a single build. Surgeons can work with engineers to co-design implants and cutting guides, reducing operative time and improving alignment. Customization is especially useful in revision surgeries, oncology, and cases with significant bone loss.

What Are the Key Innovations in Materials and Design Enabled by 3D Printing?

Titanium alloys, PEEK, bioceramics, and bioresorbable polymers are increasingly used in 3D printed orthopedic implants. These materials offer strength, biocompatibility, and design flexibility. Electron beam melting (EBM) and selective laser melting (SLM) are the dominant technologies for metallic implants, while fused deposition modeling (FDM) and stereolithography (SLA) are used for polymer and surgical guide fabrication.

Recent innovations include gradient-density structures that mimic natural bone stiffness, antimicrobial coatings, and integration of imaging-derived geometries. Patient-matched spinal cages, acetabular cups, cranial plates, and osteotomy guides are now in clinical use. Software advances in virtual surgical planning and digital workflow integration are helping streamline the design-to-implant process.

Where Is 3D Printing Being Deployed and Which Clinical Segments Are Adopting It First?

Orthopedic oncology, craniofacial reconstruction, complex spinal surgeries, and joint revision procedures are leading early adoption. Hospitals and academic centers with in-house 3D printing labs are pioneering patient-specific applications. Outsourced manufacturing through specialized medical 3D printing companies is also enabling scalability and regulatory compliance.

North America and Europe dominate adoption due to regulatory approvals, skilled surgical workforce, and supportive healthcare reimbursement. Asia-Pacific is expanding rapidly with government-backed digital health investments and growing demand for customized surgical solutions. The orthopedic trauma segment is beginning to explore use of pre-contoured fracture plates and fixation systems printed to patient anatomy.

Growth in the Orthopedic 3D Printed Devices market is driven by several factors…

Growth in the orthopedic 3D printed devices market is driven by demand for personalized implants, advancements in medical-grade additive manufacturing, and integration of digital surgical planning tools. Increasing use of metal printing for durable orthopedic structures, availability of biocompatible polymers, and rise in complex reconstruction procedures are key contributors.

Surgeon collaboration with engineers, institutional adoption of point-of-care 3D printing labs, and reduced production lead times are enhancing clinical workflow efficiency. Expansion of regulatory pathways for custom implants, rising use in trauma and tumor-related reconstructions, and interest in bone-mimicking design geometries are accelerating global uptake. As cost-efficiency improves, 3D printed devices are expected to expand into mainstream orthopedic practice.

SCOPE OF STUDY:

The report analyzes the Orthopedic 3D Printed Devices market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Plastics Material, Nylon Material, Biomaterials, Other Materials); Application (Orthopedic Implants Application, Surgical Planning Application, Surgical Instruments Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â