¼¼°èÀÇ ¹ÝµµÃ¼ °Ë»ç Àåºñ ½ÃÀå
Semiconductor Inspection Systems
»óǰÄÚµå : 1794727
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 213 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹ÝµµÃ¼ °Ë»ç Àåºñ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 93¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 69¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹ÝµµÃ¼ °Ë»ç Àåºñ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 5.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 93¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿þÀÌÆÛ °Ë»ç ½Ã½ºÅÛÀº CAGR 5.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 60¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¶½ºÅ© °Ë»ç ½Ã½ºÅÛ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 3.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 18¾ï ´Þ·¯, Áß±¹Àº CAGR 4.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ÝµµÃ¼ °Ë»ç Àåºñ ½ÃÀåÀº 2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 15¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.9%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.8%¿Í 4.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹ÝµµÃ¼ °Ë»ç Àåºñ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹ÝµµÃ¼ °Ë»ç Àåºñ°¡ ¼öÀ²°ú °øÁ¤ ÃÖÀûÈ­ÀÇ ÇÙ½ÉÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¹ÝµµÃ¼ °Ë»ç Àåºñ´Â ÁýÀûȸ·Î(IC) Á¦Á¶ °øÁ¤¿¡¼­ ³ª³ë½ºÄÉÀÏ ¼öÁØÀÇ ±¸Á¶Àû, ±â´ÉÀû ¹«°á¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Àü°øÁ¤ ¹× ÈİøÁ¤ Á¦Á¶¿¡¼­ ¿þÀÌÆÛ, Æ÷Å丶½ºÅ©, ÆÐŰ¡ÀÇ °áÇÔÀ» °¨ÁöÇÕ´Ï´Ù. ¹ÝµµÃ¼°¡ ´õ ¹Ì¼¼ÇÑ ³ëµå¿Í 3D ¾ÆÅ°ÅØÃ³·Î ÁøÈ­ÇÔ¿¡ µû¶ó °Ë»ç °øÁ¤Àº Á¡Á¡ ´õ Á¤¹ÐÇÏ°í ºñÆÄ±«ÀûÀÌ¸ç ´Ù¾çÇÑ º¹ÀâÇÑ °øÁ¤¿¡ ÀûÀÀÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. ¸®¼Ò±×·¡ÇÇ, ¿¡Äª, µðÆ÷Áö¼Å´×, ´ÙÀÌ½Ì °øÁ¤¿¡¼­ ¹Ì¼¼ÇÑ °áÇÔÀ̳ª ¿À¿°À¸·Î ÀÎÇÑ ¼öÀ² ÀúÇϴ ƯÈ÷ ¼­ºê¸¶ÀÌÅ©·Ð ´ÜÀ§ÀÇ ÆíÂ÷µµ ¼º´ÉÀ» ÀúÇϽÃŰ´Â ´ë·® »ý»ê ȯ°æ¿¡¼­´Â »ó´çÇÑ °æÁ¦Àû ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

°Ë»ç »ýŰ迡´Â ±¤ÇÐ °Ë»ç, ÀüÀÚºö °Ë»ç(e-beam), ÷´Ü ÃøÁ¤ µµ±¸ µî ¸î °¡Áö ÁÖ¿ä À¯ÇüÀÌ ÀÖ½À´Ï´Ù. ±¤ÇÐ ½Ã½ºÅÛÀº °í󸮷® °áÇÔ °ËÃâ¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖÀ¸¸ç, ÀüÀÚºö °Ë»ç´Â ÷´Ü ³ëµå(10nm ÀÌÇÏ)ÀÇ Áß¿äÇÑ Ä¡¼ö ÆíÂ÷ ¹× Ãʹ̼¼ °áÇÔÀ» Æ÷ÂøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ °áÇÔ ºÐ·ù(ADC), °áÇÔ °ËÅä ½Ã½ºÅÛ, ÀζóÀÎ ÃøÁ¤ÀÌ ½º¸¶Æ® ÆÕ¿¡ ÅëÇÕµÇ¾î ½Ç½Ã°£ °øÁ¤ Á¦¾î ¹× ÀûÀÀÇü Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ Á¤¹Ðµµ´Â AI, ÀÚµ¿Â÷, 5G ¾ÖÇø®ÄÉÀ̼ǿ¡ »ç¿ëµÇ´Â ·ÎÁ÷, ¸Þ¸ð¸®, ¾Æ³¯·Î±× ICÀÇ Ã³¸®·® Çâ»ó, »ý»ê ¼öÀ² °³¼±, ½Å·Ú¼º Çâ»óÀ» ½ÇÇöÇÕ´Ï´Ù.

ÇÁ·Î¼¼½º ³ëµåÀÇ ¹ßÀüÀÌ °Ë»ç ±â¼ú Çõ½ÅÀ» ¾î¶»°Ô ÃËÁøÇÒ °ÍÀΰ¡?

EUV(±ØÀڿܼ±) ¸®¼Ò±×·¡ÇÇ·ÎÀÇ Àüȯ°ú ÇÔ²² 5nm, 3nm ¹× ±× ÀÌ»óÀÇ Ã·´Ü ¹ÝµµÃ¼ ³ëµå·ÎÀÇ ÀüȯÀº °Ë»ç ½Ã½ºÅÛÀÇ ±â´É°ú ¾ÆÅ°ÅØÃ³¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÇѰè Ä¡¼öÀÇ Ãà¼Ò¿Í ¸ÖƼÆÐÅÍ´×ÀÇ Áõ°¡¿¡ µû¶ó, ±âÁ¸ÀÇ ±¤ÇÐ ½Ã½ºÅÛÀº º¹ÀâÇÑ °áÇÔ ¸ðµå¿Í ÇÁ·Î¼¼½º º¯µ¿À» °¨ÁöÇÏ´Â °ÍÀÌ ºÒÃæºÐÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ½ÉÀڿܼ±(DUV), ÀüÀÚºö, ±¤Á¶»ç¿¡ ÀÇÇÑ °Ë»ç ±â´ÉÀ» °áÇÕÇÏ¿© ·¹À̾ ³Ñ¾î ¼Óµµ¿Í °¨µµ¸¦ ¸ðµÎ À¯ÁöÇÏ´Â ÇÏÀ̺긮µå °Ë»ç ½Ã½ºÅÛ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¿ÀŽÁö¸¦ ÁÙÀÌ°í °áÇÔ ºÐ·ùÀÇ Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ °Ë»ç Ç÷§Æû¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´ë·®ÀÇ À̹ÌÁö µ¥ÀÌÅÍ¿Í °øÁ¤ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °áÇÔ°ú ±Ùº» ¿øÀÎÀ» ¿¬°ü½ÃÄÑ ¿¹ÃøÀû °øÁ¤ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, °í´ë¿ªÆø ¸Þ¸ð¸®(HBM), °ÔÀÌÆ® ¿Ã ¾î¶ó¿îµå FET(GAAFET), 3D ÆÐŰ¡ÀÇ ÃâÇöÀ¸·Î ºñÆò¸é, ´ÙÃþ, ¼­ºê¼­Çǽº °áÇÔ °ËÃâÀÌ °¡´ÉÇÑ »õ·Î¿î °Ë»ç ÆÐ·¯´ÙÀÓÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¸ÖƼºö ÀüÀÚºö °Ë»ç ¹× µö·¯´× Áö¿ø ADC Ç÷§Æû°ú °°Àº Çõ½ÅÀº ÇÏÀÌ¿£µå ÆÄ¿îµå¸® ¹× IDM¿¡¼­ ÁÖ·ù°¡ µÇ°í ÀÖÀ¸¸ç, °Ë»ç »ýŰ踦 ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇÀÇ µ¥ÀÌÅÍ Á᫐ ÀÚµ¿È­ ¸ðµ¨·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ °Ë»ç ÀåºñÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â ºÐ¾ß¿Í Áö¿ªÀº?

ÁÖÁ¶ ¹× ÁýÀû ¼ÒÀÚ Á¦Á¶¾÷ü(IDM)°¡ °Ë»ç ½Ã½ºÅÛ µµÀÔÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ÷´Ü ·ÎÁ÷ ¹× ¸Þ¸ð¸® Ĩ Á¦Á¶¿¡ Á¾»çÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °í¼º´É ÄÄÇ»ÆÃ(HPC), ½º¸¶Æ®Æù SoC, DRAM, NAND, AI °¡¼Ó±â¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°°ú µ¥ÀÌÅͼ¾ÅÍ ¼ö¿ä°¡ ±ÞÁõÇÏ´Â °¡¿îµ¥, Á¦Á¶¾÷üµéÀº ǰÁúÀ» ÃÖÀûÈ­Çϰí ÀçÀÛ¾÷ ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ °Ë»ç ÀÎÇÁ¶ó¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹ÝµµÃ¼ »ý»ê, ƯÈ÷ ADAS, EV, Â÷·®¿ë ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿ë ¹ÝµµÃ¼ »ý»êµµ ¹«°áÁ¡ Çã¿ë ¿ÀÂ÷¹üÀ§ ¹× AEC-Q100°ú °°Àº ¾ö°ÝÇÑ ½Å·Ú¼º Ç¥ÁØÀ¸·Î ÀÎÇØ ÁÖ¿ä °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Áö¿ªÀûÀ¸·Î´Â ´ë¸¸, Çѱ¹, ¹Ì±¹ÀÌ ¹ÝµµÃ¼ °Ë»çÀåºñÀÇ ÃÖ´ë ¼Òºñ±¹À̸ç, TSMC, »ï¼º, ÀÎÅÚ µî ÁÖ¿ä ÆÕ°ú ¼¼°è À¯¼öÀÇ Ä¨ Á¦Á¶¾÷ü¸¦ º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀϺ»Àº °Ë»ç Çϵå¿þ¾î ¹× ±¤ÇÐ ºÎǰ °ø±Þ¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, Áß±¹Àº Á¤ºÎ Áö¿ø ÇÁ·Î±×·¥À» ÅëÇØ ±¹³» ¹ÝµµÃ¼ »ý»ê´É·ÂÀ» °­È­Çϰí ÀÖ¾î °Ë»ç º¥´õ¿¡°Ô ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â EU Ĩ½º¹ý ¹× ÀÚµ¿Â÷ ¹ÝµµÃ¼ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ±â¹ÝÇÑ ÅõÀÚ°¡ R&D Á᫐ ¹× »ý»ê¿ë °Ë»ç Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ¸®¼î¾î¸µ, °øÀå È®Àå, ±â¼ú ¹Ì¼¼È­ÀÇ ÇÕ·ù´Â ¸ðµç Áö¿ª¿¡¼­ °ßÁ¶ÇÑ ¼ö¿ä¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ °Ë»ç Àåºñ ½ÃÀåÀÇ ¼ºÀå Ã˸ÅÁ¦´Â?

¹ÝµµÃ¼ °Ë»ç Àåºñ ½ÃÀåÀÇ ¼ºÀåÀº µð¹ÙÀ̽ºÀÇ Áö¼ÓÀûÀÎ ¹Ì¼¼È­, °øÁ¤ÀÇ º¹À⼺, ÷´Ü ÆÕ¿¡¼­ ½Ç½Ã°£ °áÇÔ Á¦¾îÀÇ Çʿ伺 µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. EUV ¸®¼Ò±×·¡ÇÇ·ÎÀÇ Àüȯ, NAND ¹× ·ÎÁ÷ÀÇ 3D ¾ÆÅ°ÅØÃ³ÀÇ º¸±ÞÀ¸·Î °øÁ¤ °øÁ¤°ú »óÈ£¿¬°á ÃþÀÇ ¼ö°¡ Áõ°¡ÇÏ¿© °áÇÔ ÀüÆÄ °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µû¶ó¼­ 󸮷®À» À¯ÁöÇϸ鼭 ÀÌÀü¿¡´Â °ËÃâÇÒ ¼ö ¾ø¾ú´ø °áÇÔÀ» °ËÃâÇÒ ¼ö ÀÖ´Â °í¼Ó, °íÇØ»óµµ °Ë»ç µµ±¸°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

ƯÈ÷ ¹Ì±¹, ´ë¸¸, Áß±¹À» Áß½ÉÀ¸·Î ÇÑ ´ëÇü ÁÖÁ¶¾÷ü¿Í IDMÀÇ °øÀå »ý»ê´É·Â È®Àå¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â Â÷¼¼´ë °Ë»ç ¹× ÃøÁ¤ Åø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÝµµÃ¼ ºÐ¾ßÀÇ '½º¸¶Æ® Á¦Á¶'¿Í Àδõ½ºÆ®¸® 4.0ÀÇ ÃßÁøÀº ÀÚ°¡ ÇнÀ ¹× µ¿Àû º¸Á¤ÀÌ °¡´ÉÇÑ AI ÅëÇÕ °Ë»ç ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. °áÇÔ °øÂ÷°¡ ÃÖ¼ÒÈ­µÈ Â÷·®¿ë ¹ÝµµÃ¼¿Í 5G ¹× AI ÀÎÇÁ¶ó ±¸Ã൵ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °øÀåÀÌ µðÁöÅÐÈ­µÇ°í º¹ÀâÇØÁü¿¡ µû¶ó °Ë»ç ½Ã½ºÅÛÀº ÷´Ü ¹ÝµµÃ¼ Á¦Ç°ÀÇ ¼öÀ² Çâ»ó, ºñ¿ë È¿À²¼º ¹× ½ÃÀå Ãâ½Ã ½Ã°£À» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¿þÀÌÆÛ °Ë»ç ½Ã½ºÅÛ, ¸¶½ºÅ© °Ë»ç ½Ã½ºÅÛ), ±â¼ú(±¤ÇÐ ±â¼ú, Eºö ±â¼ú), ÃÖÁ¾»ç¿ëÀÚ(ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü¡¤ÃÖÁ¾»ç¿ëÀÚ, ÁÖÁ¶ ÃÖÁ¾»ç¿ëÀÚ, ¸Þ¸ð¸® Á¦Á¶¾÷ü¡¤ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Semiconductor Inspection Systems Market to Reach US$9.3 Billion by 2030

The global market for Semiconductor Inspection Systems estimated at US$6.9 Billion in the year 2024, is expected to reach US$9.3 Billion by 2030, growing at a CAGR of 5.1% over the analysis period 2024-2030. Wafer Inspection System, one of the segments analyzed in the report, is expected to record a 5.9% CAGR and reach US$6.0 Billion by the end of the analysis period. Growth in the Mask Inspection System segment is estimated at 3.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.8 Billion While China is Forecast to Grow at 4.9% CAGR

The Semiconductor Inspection Systems market in the U.S. is estimated at US$1.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.5 Billion by the year 2030 trailing a CAGR of 4.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.8% and 4.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Semiconductor Inspection Systems Market - Key Trends & Drivers Summarized

Why Are Semiconductor Inspection Systems Central to Yield and Process Optimization?

Semiconductor inspection systems are critical in the manufacturing process of integrated circuits (ICs), as they ensure structural and functional integrity at nanoscale levels. These systems detect defects in wafers, photomasks, and packaging during front-end and back-end manufacturing. As semiconductors evolve toward smaller nodes and 3D architectures, the inspection process must be increasingly precise, non-destructive, and adaptable to a range of process complexities. Yield loss due to minor defects or contamination during lithography, etching, deposition, or dicing stages can lead to substantial economic losses, especially in high-volume production environments where even sub-micron deviations compromise performance.

The inspection ecosystem comprises several key types, including optical inspection, electron beam inspection (e-beam), and advanced metrology tools. Optical systems are dominant for high-throughput defect detection, while e-beam inspection plays a vital role in capturing critical dimension variances and ultra-fine defects in advanced nodes (sub-10nm). Automated defect classification (ADC), defect review systems, and in-line metrology are integrated into smart fabs to enable real-time process control and adaptive manufacturing. This precision ensures better throughput, improved production yield, and higher reliability of logic, memory, and analog ICs used in AI, automotive, and 5G applications.

How Are Advancements in Process Nodes Driving Innovation in Inspection Technologies?

The shift toward advanced semiconductor nodes such as 5nm, 3nm, and beyond, along with the transition to EUV (extreme ultraviolet) lithography, is transforming the capabilities and architecture of inspection systems. As critical dimensions shrink and multi-patterning increases, traditional optical systems are becoming inadequate to detect complex defect modes and process variabilities. This has prompted the development of hybrid inspection systems that combine deep ultraviolet (DUV), e-beam, and actinic inspection capabilities to maintain both speed and sensitivity across layers.

AI and machine learning algorithms are being embedded into inspection platforms to reduce false positives and enhance defect classification accuracy. These systems can analyze large volumes of image and process data to correlate defects with root causes, enabling predictive process control. Furthermore, the emergence of High Bandwidth Memory (HBM), gate-all-around FETs (GAAFET), and 3D packaging has necessitated new inspection paradigms capable of non-planar, multi-layer, and sub-surface defect detection. Innovations like multi-beam e-beam inspection and deep learning-enabled ADC platforms are becoming mainstream in high-end foundries and IDMs, pushing the inspection ecosystem toward software-defined, data-centric automation models.

Which Sectors and Regions Are Driving Demand for Semiconductor Inspection Systems?

Foundries and integrated device manufacturers (IDMs) account for the majority of inspection system adoption, particularly those engaged in advanced logic and memory chip fabrication. These systems are indispensable for high-performance computing (HPC), smartphone SoCs, DRAM, NAND, and AI accelerators. With consumer electronics and data center demands surging globally, manufacturers are scaling inspection infrastructure to optimize quality and reduce rework costs. Automotive semiconductor production-especially for ADAS, EVs, and in-vehicle infotainment-is also a major driver due to zero-defect tolerance and stringent reliability standards like AEC-Q100.

Regionally, Taiwan, South Korea, and the U.S. are the largest consumers of semiconductor inspection systems, housing major fabs and leading global chipmakers such as TSMC, Samsung, and Intel. Japan plays a critical role in supplying inspection hardware and optics, while China is ramping up domestic semiconductor capacity under government-backed programs, creating opportunities for inspection vendors. In Europe, investments under the EU Chips Act and automotive semiconductor initiatives are generating demand for both R&D-centric and production-grade inspection platforms. The confluence of geopolitical reshoring, fab expansion, and technological miniaturization is keeping demand robust across all regions.

What Are the Growth Catalysts for the Semiconductor Inspection Systems Market?

The growth in the semiconductor inspection systems market is driven by several factors, including the continuous miniaturization of devices, growing process complexity, and the need for real-time defect control in advanced fabs. The transition to EUV lithography and the proliferation of 3D architectures in NAND and logic have increased the number of process steps and interconnect layers, raising the probability of defect propagation. This necessitates high-speed, high-resolution inspection tools that can capture previously undetectable defects while maintaining throughput.

Rising investments in fab capacity expansions by leading foundries and IDMs-especially in the U.S., Taiwan, and China-are propelling demand for next-generation inspection and metrology tools. Moreover, the push toward “smart manufacturing” and Industry 4.0 within the semiconductor sector has created demand for AI-integrated inspection systems capable of self-learning and dynamic calibration. Automotive-grade semiconductors, where defect tolerance is minimal, and the rollout of 5G and AI infrastructure are additional demand drivers. As fabs become more digitized and complex, inspection systems are playing an increasingly central role in ensuring yield enhancement, cost efficiency, and time-to-market for advanced semiconductor products.

SCOPE OF STUDY:

The report analyzes the Semiconductor Inspection Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Wafer Inspection System, Mask Inspection System); Technology (Optical Technology, E-Beam Technology); End-Use (Integrated Device Manufacturers End-Use, Foundry End-Use, Memory Manufacturers End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â