¼¼°èÀÇ Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀå
Low-Carbon Construction Materials
»óǰÄÚµå : 1794427
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 291 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀåÀº 2030³â±îÁö 792¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 662¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀåÀº 2024-2030³â¿¡ CAGR 3.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 792¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÇÃ¶ó½ºÆ½ Àç·á´Â CAGR 2.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 408¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Ý¼Ó Àç·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 180¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀåÀº 2024³â¿¡ 180¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 154¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 5.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.2%¿Í 2.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àúź¼Ò °ÇÃàÀÚÀç°¡ Áö¼Ó°¡´ÉÇÑ µµ½Ã °³¹ßÀÇ Áß½ÉÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Àúź¼Ò °ÇÃàÀÚÀç´Â ±âÈÄ º¯È­¸¦ ¿ÏÈ­Çϰí Áö¼Ó°¡´ÉÇÑ µµ½Ã ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇÑ Àü ¼¼°èÀûÀÎ ³ë·Â¿¡¼­ ±× Á߿伺ÀÌ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µµ½Ã°¡ È®ÀåµÇ°í ÀÎÇÁ¶ó ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °Ç¼³ ºÎ¹®Àº ¿Â½Ç°¡½º ¹èÃâÀÇ ÇÑ ÃàÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, °Ç¹° ¿î¿µ°ú ÇÔ²² Àü ¼¼°è CO2 ¹èÃâ·®ÀÇ 40%¿¡ À°¹ÚÇÏ´Â µî ¾ö°ÝÇÑ °¨½ÃÀÇ ´ë»óÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½Ã¸àÆ®, ö°­, ±âÁ¸ ÄÜÅ©¸®Æ® µî ÀüÅëÀûÀÎ Àç·á´Â ¿¡³ÊÁö Áý¾àÀûÀÎ Á¦Á¶ °øÁ¤À¸·Î ÀÎÇØ ÀÌ»êȭź¼Ò ¹èÃâ·®ÀÌ Æ¯È÷ ¸¹½À´Ï´Ù. ÇöÀç, ¼º´ÉÀ̳ª ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ȯ°æ ºÎÇϸ¦ ÁÙÀ̱â À§ÇØ Àúź¼Ò ´ëü ¼ÒÀ縦 äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á¿¡´Â ÇöóÀÌ ¾Ö½Ã ±â¹Ý ½Ã¸àÆ®, Àç»ý °­Ã¶, Àΰø ¸ñÀç, Áö¿ÀÆú¸®¸Ó ÄÜÅ©¸®Æ®, ź¼Ò Æ÷Áý º®µ¹ µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ Àç·áµéÀº »ý»ê¿¡¼­ ¿î¼Û, ¼³Ä¡, ÇØÃ¼±îÁö Àü °úÁ¤¿¡¼­ ¹èÃâ·®ÀÌ Àûµµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±ÔÁ¦±â°üÀº ģȯ°æ °ÇÃà ±âÁØ, ¼¼Á¦ ÇýÅÃ, ±âÈÄ º¯È­ ¼­¾à¼­¸¦ ÅëÇØ ÀÌ·¯ÇÑ ÀÚÀç »ç¿ëÀ» Àå·ÁÇϰí ÀÖÀ¸¸ç, ±¹Á¦±â±¸´Â ³ÝÁ¦·Î °ÇÃàÀ» ½ÇõÇÒ °ÍÀ» ±Ç°íÇϰí ÀÖ½À´Ï´Ù. µµ½Ã °èȹ°¡¿Í °³¹ßÀÚµéÀº Çб³, º´¿ø, »ó¾÷½Ã¼³, ÁÖÅà ¼³°è¿¡ Àúź¼Ò ¼ÒÀ縦 µµÀÔÇÏ¿© ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ÀÌ Á¦Ç°µéÀº ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÏ »Ó¸¸ ¾Æ´Ï¶ó ´Ü¿­¼º, Á¶½À¼º, ³»¸¶¸ð¼º, ³»½Ä¼º µîÀÇ ÀåÁ¡À» °¡Áö°í ÀÖ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ °ÇÃàÀÌ ¹®È­Àû, °æÁ¦ÀûÀ¸·Î ź·ÂÀ» ¹ÞÀ¸¸é¼­ Àúź¼Ò ¼ÒÀç´Â ´Ü¼øÇÑ È¯°æÀû ¼±ÅÃÀÌ ¾Æ´Ñ Ã¥ÀÓ°¨ ÀÖ´Â °ÇÃàÀÇ ¹Ì·¡¿¡ ÀÖÀ¸¸ç, Àü·«ÀûÀ¸·Î ÇÊ¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

Àç·á °úÇÐÀÇ Çõ½ÅÀº Àúź¼Ò ´ëü Àç·áÀÇ ¼º´ÉÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Àç·á°úÇÐÀÇ ¹ßÀüÀº ÇöÀç ÁøÇà ÁßÀÎ Àúź¼Ò °ÇÃàÀÇ º¯È­ÀÇ ÇÙ½ÉÀ̸ç, Áö¼Ó°¡´É¼º°ú ¿£Áö´Ï¾î¸µ Ãø¸é¿¡¼­ ±âÁ¸ Àç·á¸¦ ´É°¡ÇÏ´Â »õ·Î¿î ¹èÇÕ°ú º¹ÇÕÀç·á¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµé°ú Á¦Á¶¾÷üµéÀº Æ÷Ʋ·£µå ½Ã¸àÆ®¿Í °°Àº ź¼Ò Áý¾àÀû ¼ººÐÀÇ Çʿ伺À» ±ØÀûÀ¸·Î °¨¼Ò½ÃŰ´Â ´ëü ¹ÙÀδõ¿Í °ñÀç¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ¾ËÄ®¸® Ȱ¼ºÈ­ Àç·á, ¹ÚÅ׸®¾Æ À¯·¡ ¹ÙÀÌ¿À ½Ã¸àÆ®, ³ª³ë ¼ÒÀç °­È­ ÄÜÅ©¸®Æ® µî Çõ½ÅÀûÀÎ Àç·á°¡ °í¼º´É, ģȯ°æÀûÀÎ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ¾ÐÃà °­µµ °­È­, ³»¼ö¼º Çâ»ó, ¿­ ¼º´É Çâ»ó µî ƯÁ¤ ±¸Á¶Àû ¿ä±¸ »çÇ× ¹× ȯ°æ ¿ä±¸ »çÇ׿¡ ¸Â°Ô »ç¿ëÀÚ Á¤ÀÇ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ź¼Ò Æ÷Áý ¹× ÀÌ¿ë(CCU)À» Á¦Á¶ °øÁ¤¿¡ Á÷Á¢ Á¢¸ñÇÏ´Â ±â¼úµµ ½Ç¿ëÈ­µÇ°í ÀÖÀ¸¸ç, °Ç¼³ÀÚÀç´Â ź¼Ò ¹ß»ý¿øÀÌ ¾Æ´Ñ ź¼Ò Èí¼ö¿øÀÌ µÇ°í ÀÖ½À´Ï´Ù. °ÇÃà¿¡¼­ÀÇ 3D ÇÁ¸°ÆÃÀº Àúź¼Ò Àç·áÀÇ È¥ÇÕ¹°À» Á¤È®ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 Æó±â¹°À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Á¶¸³½Ä °ÇÃà°ú ¸ðµâ½Ä °ÇÃà ¹æ½Äµµ ÷´Ü Àúź¼Ò º¹ÇÕÀç·á¸¦ »ç¿ëÇϰí ÀÚ¿ø È¿À²À» ³ôÀÏ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý°ñÀç, ÆÄ¼âÀ¯¸®, ÇÃ¶ó½ºÆ½ Æó±â¹°, ½½·¡±× ¹× ÇöóÀÌ ¾Ö½Ã¿Í °°Àº »ê¾÷ Á¦Ç°º° µî ÀçȰ¿ë Àç·á°¡ º¸´Ù È¿°úÀûÀ¸·Î ½Å¼ÒÀç¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ °ÇÃà°¡¿Í ¿£Áö´Ï¾îµéÀº ¹èÃâ·®À» Å©°Ô ÁÙÀ̸鼭 ¾ö°ÝÇÑ °ÇÃà¹ý ¹× ¼º´É ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¥ÀÌÅͺ£À̽º ¼³°è Åø¿Í ¼ö¸íÁÖ±â Æò°¡ ¼ÒÇÁÆ®¿þ¾îÀÇ È°¿ëµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌÇØ°ü°èÀÚµéÀÌ ÇÁ·ÎÁ§Æ®ÀÇ Àç·á¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó Àúź¼Ò ´ëü Àç·á ½ÃÀå Ÿ´ç¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

Àúź¼Ò °ÇÃàÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÏ´Â »ê¾÷ ¹× ¼ÒºñÀÚ µ¿ÇâÀº?

°Ç¼³ ¾÷°è¿¡¼­´Â Àü¹® ÀÌÇØ°ü°èÀÚ¿Í ÃÖÁ¾»ç¿ëÀÚ ¸ðµÎ °ÇÃà ½Ç¹«¿¡¼­ Áö¼Ó°¡´É¼ºÀ» Á¡Á¡ ´õ ¿ì¼±¼øÀ§¿¡ µÎ¸é¼­ ¹®È­Àû, ¾÷¹«ÀûÀ¸·Î Å« º¯È­°¡ ÀϾ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ȯ°æÀû Ã¥ÀÓ°ú ±âÈÄ º¯È­ ´ëÀÀÀ» Áß½ÃÇÏ´Â ÀþÀº ¼¼´ë¸¦ Áß½ÉÀ¸·Î ģȯ°æ °ÇÃ๰¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. LEED, BREEAM, WELL°ú °°Àº ģȯ°æ ÀÎÁõÀº ºÎµ¿»ê ¼±È£µµ¿Í ÅõÀÚ °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç, Àúź¼Ò ÀÚÀç äÅÃÀ» ÅëÇØ ´õ ³ôÀº ȯ°æ ±âÁØÀ» ÃæÁ·Çϵµ·Ï °³¹ß¾÷ü¸¦ µ¶·ÁÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ȯ°æ, »çȸ, Áö¹è±¸Á¶(ESG) ¸ñÇ¥¸¦ »ç¾÷ ¿î¿µ¿¡ ÅëÇÕÇϰí ÀÖÀ¸¸ç, Áö¼Ó°¡´ÉÇÑ °Ç¼³Àº ±â¾÷ Ã¥ÀÓÀÇ Áß¿äÇÑ ÁöÇ¥°¡ µÇ°í ÀÖ½À´Ï´Ù. °ø°ø ºÎ¹®, ¹Î°£ºÎ¹®À» ¸··ÐÇÏ°í °í°´µéÀº Àú¹èÃâ ÀÚÀ縦 ±ÇÀåÇÏ´Â Á¶´Þ Áö½Ã¸¦ ³»¸®°í ÀÖÀ¸¸ç, »ó¾÷, ½Ã¼³, ÁÖÅà ÇÁ·ÎÁ§Æ® Àü¹Ý¿¡ °ÉÃÄ Àú¹èÃâ ÀÚÀç »ç¿ëÀÌ ´õ¿í ÀÏ»óÈ­µÇ°í ÀÖ½À´Ï´Ù. µµ½Ã Áö¿ª¿¡¼­´Â µµ½Ã Àüü ÀÌ»êȭź¼Ò °¨Ãà °èȹÀÇ ÀÏȯÀ¸·Î Àúź¼Ò ¼ÒÀ縦 Æ÷ÇÔÇÑ ³ì»ö ÀÎÇÁ¶ó ¹× ±âÈÄ È¸º¹ Àü·«À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ±³À°Àû ³ë·Â°ú µðÁöÅÐ ÅøÀ» ÅëÇØ °è¾àÀÚ, °ÇÃà°¡, ¿£Áö´Ï¾îµé »çÀÌ¿¡¼­ Àúź¼Ò °ÇÃà ±â¼ú¿¡ ´ëÇÑ Àνİú Á¢±Ù¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºôµù Á¤º¸ ¸ðµ¨¸µ(BIM)Àº ¿¡³ÊÁö ¹× ź¼Ò ¼º´É ½Ã¹Ä·¹À̼ǿ¡ Ȱ¿ëµÇ¾î ÇÁ·ÎÁ§Æ® ÆÀÀÌ Ãʱ⠼³°è ´Ü°èºÎÅÍ Àúź¼Ò ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚµéÀº Á¦Ç°ÀÇ ¶óº§¸µ°ú °ø±ÞóÀÇ Åõ¸í¼º¿¡ ¹Î°¨ÇÏ°Ô ¹ÝÀÀÇϰí ÀÖÀ¸¸ç, ¼ÒÀç °ø±Þ¾÷ü¿¡ ź¼Ò¹ßÀÚ±¹ °ø°³¿Í ¿¡ÄÚ¶óº§ Ã¤ÅÃÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿Í ÇÔ²² ½ÃÀåÀÇ ±â´ëÄ¡°¡ Å©°Ô º¯È­Çϸ鼭 ȯ°æ ģȭÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó ½º¸¶Æ®Çϰí Çö´ëÀûÀÌ¸ç °æÁ¦ÀûÀ¸·Îµµ À¯¸®ÇÑ Àúź¼Ò °ÇÃà ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀåÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ Àǹ«È­, ±âÈÄ º¯È­ ´ëÀÀ, ±â¼úÀû Áغñ, ÀÌÇØ°ü°èÀÚÀÇ ¿ì¼±¼øÀ§ º¯È­ µîÀÇ ¼ö·Å¿¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀÔ´Ï´Ù. °¡Àå Áß¿äÇÑ ¿øµ¿·Â Áß Çϳª´Â Á¤ºÎ¿Í ±¹Á¦±â±¸ÀÇ ¼ø¹èÃâ·® Á¦·Î ¸ñÇ¥ ´Þ¼ºÀ» À§ÇÑ ³ë·ÂÀ̸ç, ±× Áß ¸¹Àº ºÎºÐÀÌ °Ç¼³ ºÎ¹®ÀÇ Åº¼Ò °¨Ãà¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¹èÃâ ±ÔÁ¦ °­È­, üÀû ź¼Ò º¸°í ¿ä°Ç, ³ì»ö °ÇÃà ±âÁØ µîÀÇ ÀÔ¹ý Á¶Ä¡·Î Àúź¼Ò ¼ÒÀ縦 °­·ÂÇÏ°Ô ÁöÁöÇÏ´Â Á¤Ã¥ ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¾ÆÇÁ¸®Ä« µî µµ½ÃÈ­°¡ ±Þ¼ÓÈ÷ ÁøÇàµÇ´Â Áö¿ª¿¡¼­´Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áö¼Ó°¡´ÉÇÑ »õ·Î¿î °ÇÃà ±â¼úÀ» ±¤¹üÀ§ÇÏ°Ô Ã¤ÅÃÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ¿¡³ÊÁö ºñ¿ë »ó½Â°ú ÀÚÀç ºÎÁ·À¸·Î ÀÎÇØ °Ç¼³¾÷üµéÀº À¯Áöº¸¼ö °¨¼Ò, ¿î¿µ È¿À²¼º Çâ»ó, ¼ö¸íÁֱ⠹èÃâ·® °¨¼Ò¸¦ ÅëÇØ Àå±âÀûÀÎ °æÁ¦Àû ÀÌÁ¡À» Á¦°øÇÏ´Â ´ëü ÀÚÀ縦 °í·ÁÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶±â°ü°ú ÅõÀÚÀÚµéÀº ȯ°æ ±âÁØÀ» ÃæÁ·ÇÏ´Â ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» ÅõÀÔÇÏ´Â °æÇâÀÌ °­È­µÇ°í ÀÖÀ¸¸ç, ±×¸°º»µå ¹× Áö¼Ó°¡´É¼º °ü·Ã ´ëÃâÀ» ÅëÇØ ½ÃÀåÀÇ ¼ºÀåÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. °Ç¼³»ç, ±â¼ú ½ºÅ¸Æ®¾÷, ÇаèÀÇ Àü·«Àû Çù·ÂÀ¸·Î È®Àå °¡´ÉÇÑ Àúź¼Ò ¼ÒÀçÀÇ ¿¬±¸¿Í ½ÃÀå Áغñ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °Ç¼³ »ê¾÷ÀÇ µðÁöÅÐ ÀüȯÀº ź¼Ò ¼º´ÉÀ» ÃøÁ¤, °ËÁõ ¹× ÃÖÀûÈ­ÇÏ´Â ÅøÀ» ÅëÇØ ÀÌ·¯ÇÑ Àç·áÀÇ ÅëÇÕÀ» ´õ¿í °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ »çȸÀû Àνİú ¿ËÈ£µµ ºê·£µå¿Í °³¹ß¾÷ü°¡ ȯ°æ °üÇàÀ» °ø°³ÇÏ°í º¸´Ù ģȯ°æÀûÀÎ °ø±Þ¸ÁÀ» äÅÃÇϵµ·Ï ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¼ºÀå ÃËÁø¿äÀεéÀÌ ¸Â¹°·Á Àúź¼Ò °ÇÃàÀÚÀç ½ÃÀå È®´ë¸¦ À§ÇÑ ÅºÅºÇÑ ±â¹ÝÀÌ ±¸ÃàµÇ¾î º¸´Ù Áö¼Ó°¡´ÉÇÑ °ÇÃà ȯ°æÀ¸·ÎÀÇ ÀüȯÀ» À§ÇÑ ¼¼°è ÀüȯÀÇ Áß½ÉÃàÀÌ µÉ °ÍÀÓÀÌ È®½ÇÇÕ´Ï´Ù.

ºÎ¹®

¼ÒÀç(ÇÃ¶ó½ºÆ½ ¼ÒÀç, ±Ý¼Ó ¼ÒÀç, ´ë·® ¸ñÀç ¼ÒÀç, ±âŸ ¼ÒÀç), ¿ëµµ(ÁÖÅà ¿ëµµ, »ó¾÷ ¿ëµµ, »ê¾÷ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Low-Carbon Construction Materials Market to Reach US$79.2 Billion by 2030

The global market for Low-Carbon Construction Materials estimated at US$66.2 Billion in the year 2024, is expected to reach US$79.2 Billion by 2030, growing at a CAGR of 3.0% over the analysis period 2024-2030. Plastic Material, one of the segments analyzed in the report, is expected to record a 2.4% CAGR and reach US$40.8 Billion by the end of the analysis period. Growth in the Metal Material segment is estimated at 3.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$18.0 Billion While China is Forecast to Grow at 5.6% CAGR

The Low-Carbon Construction Materials market in the U.S. is estimated at US$18.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$15.4 Billion by the year 2030 trailing a CAGR of 5.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.2% and 2.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.7% CAGR.

Global Low-Carbon Construction Materials Market - Key Trends & Drivers Summarized

Why Are Low-Carbon Construction Materials Becoming Central to Sustainable Urban Development?

Low-carbon construction materials are gaining rapid importance in the global effort to mitigate climate change and promote sustainable urban growth. As cities expand and infrastructure demands grow, the construction sector is under intense scrutiny for its role in greenhouse gas emissions, accounting for nearly 40 percent of global CO2 output when combined with building operations. Traditional materials such as cement, steel, and conventional concrete have particularly high carbon footprints due to energy-intensive manufacturing processes. Low-carbon alternatives are now being adopted to reduce this environmental burden without compromising performance or durability. These materials include fly ash-based cement, recycled steel, engineered timber, geopolymer concrete, and carbon-capturing bricks. They are engineered to produce fewer emissions throughout their lifecycle, from production and transport to installation and demolition. Governments and regulatory bodies are encouraging the use of such materials through green building codes, tax incentives, and climate pledges, while international organizations advocate for net-zero construction practices. Urban planners and developers are responding by integrating low-carbon materials into the design of schools, hospitals, commercial centers, and residential buildings. These products not only reduce carbon output but also often offer benefits such as thermal insulation, moisture control, and resistance to wear and corrosion. As sustainable architecture gains cultural and economic momentum, low-carbon materials are becoming not just an environmental choice but a strategic necessity in the future of responsible construction.

How Are Innovations in Material Science Transforming the Performance of Low-Carbon Alternatives?

Material science advancements are at the heart of the ongoing transformation in low-carbon construction, enabling new formulations and composites that outperform traditional materials in both sustainability and engineering terms. Researchers and manufacturers are focusing on alternative binders and aggregates that dramatically reduce the need for carbon-intensive components like Portland cement. Innovations such as alkali-activated materials, bio-cement derived from bacterial processes, and nanomaterial-enhanced concrete are emerging as high-performance, eco-conscious options. These materials can be customized for specific structural or environmental requirements, whether it's enhancing compressive strength, improving water resistance, or increasing thermal performance. Technologies that integrate carbon capture and utilization (CCU) directly into the production process are also being commercialized, turning construction materials into carbon sinks rather than sources. 3D printing in construction is allowing for the precise use of low-carbon material mixtures, significantly reducing waste while maintaining structural integrity. Prefabrication and modular construction methods are also gaining popularity, as they often use advanced low-carbon composites and promote resource efficiency. In addition, recycled content is being more effectively integrated into new materials, including reclaimed aggregates, crushed glass, plastic waste, and industrial byproducts like slag or fly ash. These innovations are making it possible for architects and engineers to meet strict building codes and performance standards while drastically cutting emissions. As data-driven design tools and lifecycle assessment software become more accessible, stakeholders can make informed decisions about the material impacts of their projects, reinforcing the market viability of low-carbon alternatives.

What Industry and Consumer Trends Are Supporting the Shift Toward Low-Carbon Construction?

The construction industry is witnessing a significant cultural and operational shift as both professional stakeholders and end-users increasingly prioritize sustainability in building practices. There is a growing consumer demand for eco-friendly buildings, particularly among younger generations who are more likely to value environmental responsibility and climate action. Green certifications such as LEED, BREEAM, and WELL are influencing real estate preferences and investment decisions, pushing developers to meet higher environmental standards through the adoption of low-carbon materials. Companies are incorporating environmental, social, and governance (ESG) goals into their operations, which has made sustainable construction a key metric of corporate responsibility. Public and private sector clients alike are issuing procurement mandates that favor low-emission materials, further normalizing their use across commercial, institutional, and residential projects. Urban areas are implementing green infrastructure and climate resilience strategies that include low-carbon materials as part of city-wide carbon reduction plans. At the same time, educational initiatives and digital tools are increasing awareness and accessibility of low-carbon construction techniques among contractors, architects, and engineers. Building information modeling (BIM) is being used to simulate energy and carbon performance, helping project teams integrate low-carbon solutions from the earliest design stages. Consumers are also more attuned to product labeling and transparency in sourcing, pushing material suppliers to disclose carbon footprints and adopt eco-labels. Together, these trends are reshaping market expectations, creating a strong demand pull for low-carbon construction solutions that are viewed not only as environmentally sound but also as smart, modern, and economically advantageous.

What Factors Are Driving the Global Growth of the Low-Carbon Construction Materials Market?

The growth in the global low-carbon construction materials market is driven by a convergence of regulatory mandates, climate imperatives, technological readiness, and changing stakeholder priorities. One of the most significant drivers is the commitment by governments and international bodies to reach net-zero emissions targets, many of which hinge on reducing carbon in the construction sector. Legislative action in the form of stricter emissions regulations, embodied carbon reporting requirements, and green building standards is creating a policy environment that strongly favors low-carbon materials. Investment in infrastructure, particularly in regions undergoing rapid urbanization such as Asia-Pacific and Africa, is providing opportunities for the widespread adoption of new, sustainable building technologies. Additionally, rising energy costs and material scarcity are prompting builders to consider alternatives that offer long-term economic advantages through reduced maintenance, operational efficiency, and lower lifecycle emissions. Financial institutions and investors are increasingly directing capital toward projects that meet environmental criteria, reinforcing market growth through green bonds and sustainability-linked loans. Strategic collaborations between construction firms, technology startups, and academic institutions are accelerating research and market readiness for scalable low-carbon materials. Digital transformation in the construction industry is further enabling the integration of these materials through tools that measure, validate, and optimize carbon performance. Public awareness and advocacy are also exerting pressure on brands and developers to disclose environmental practices and adopt greener supply chains. These interlocking drivers are building a robust foundation for the expansion of the low-carbon construction materials market, ensuring it will remain a central pillar of the global transition toward a more sustainable built environment.

SCOPE OF STUDY:

The report analyzes the Low-Carbon Construction Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Plastic Material, Metal Material, Mass Timber Material, Other Materials); Application (Residential Application, Commercial Application, Industrial Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â