¼¼°èÀÇ Ç︮ÄßÅÍ¡¤¾Æºñ¿À´Ð½º ½ÃÀå
Helicopter Avionics
»óǰÄÚµå : 1793968
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 266 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ç︮ÄßÅÍ¡¤¾Æºñ¿À´Ð½º ½ÃÀåÀº 2030³â±îÁö 177¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 131¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Ç︮ÄßÅÍ¡¤¾Æºñ¿À´Ð½º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 177¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº CAGR 4.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 107¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Åë½Å & ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 6.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 36¾ï ´Þ·¯, Áß±¹Àº CAGR 8.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç︮ÄßÅÍ¡¤¾Æºñ¿À´Ð½º ½ÃÀåÀº 2024³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 8.2%¸¦ °ßÀÎÇÏ´Â ÇüÅ·Î, 2030³â±îÁö 35¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.6%¿Í 5.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç︮ÄßÅÍ¡¤¾Æºñ¿À´Ð½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Â÷¼¼´ë Ç×°ø ÀüÀÚ°øÇÐÀÌ Ç︮ÄßÅÍÀÇ ´É·ÂÀ» ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?

Ç︮ÄßÅÍ Ç×°ø ÀüÀÚ°øÇÐÀº ±âÁ¸ÀÇ ºñÇà °èÃø±â¸¦ ÈξÀ ¶Ù¾î³Ñ¾î ȸÀüÀÍ Ç×°ø±â¸¦ °íµµ·Î Áö´ÉÀûÀ̰í ÀÓ¹«¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â Ç÷§ÆûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ¿À´Ã³¯ Ç︮ÄßÅÍÀÇ Á¶Á¾¼®¿¡´Â ÷´Ü Ç×°øÀüÀÚ ½Ã½ºÅÛÀÌ ÀåÂøµÇ¾î ºñÇà Á¦¾î, Ç×¹ý, Åë½Å, °¨½Ã, ÀÓ¹« °ü¸® µîÀÇ ±â´ÉÀÌ ÅëÇÕµÇ¾î ½Ç½Ã°£ »ýŰ踦 ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ±º Ȱµ¿, ÀÀ±ÞÀÇ·á ¼­ºñ½º(EMS), ¼®À¯ ¹× °¡½º ÇØ»ó ¿î¼Û, ¹ý ÁýÇà µî ÀÓ¹«ÀÇ ¼º°ø ¿©ºÎ°¡ »óȲ Àνİú ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ºÐ¾ß¿¡¼­ ƯÈ÷ µÎµå·¯Áý´Ï´Ù. ÃֽŠÇ×°øÀüÀÚ Á¦Ç°±º¿¡´Â µðÁöÅÐ ±Û·¡½º Á¶Á¾¼® µð½ºÇ÷¹ÀÌ, ÇÕ¼º ½Ã°¢ ½Ã½ºÅÛ, ÁöÇü ÀÎ½Ä ¹× °æº¸ ½Ã½ºÅÛ(TAWS), ±â»ó ·¹ÀÌ´õ, ÀÚµ¿ Á¾¼Ó °¨½Ã ¹æ¼Û(ADS-B), GPS ±â¹Ý ³»ºñ°ÔÀ̼ÇÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ ¸ðµç °ÍÀÌ ÆÄÀÏ·µÀÇ ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ µ¿±âÈ­µÇ¾î ÀÖ½À´Ï´Ù. ¾Æ³¯·Î±× ½Ã½ºÅÛ¿¡¼­ µðÁöÅÐ ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ¸·Î ÀÚµ¿È­¿Í µ¥ÀÌÅÍ ÅëÇÕÀÌ ÁøÇàµÇ¾î ÆÄÀÏ·µÀÇ ¾÷¹« ºÎ´ãÀÌ ÁÙ¾îµé°í ¿î¿µ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÷´Ü ¼¾¼­ À¶ÇÕÀ» ÅëÇØ Á¶Á¾»ç´Â ºñÇà °æ·Î, ÁöÇü °íµµ, ±â»ó Á¶°Ç, Ç×°ø ±³Åë, Ç×°ø±âÀÇ °Ç°­ »óÅ¿¡ ´ëÇÑ µ¥ÀÌÅÍ¿¡ ¿øÈ°ÇÏ°Ô Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¹¹æ ºÐ¾ß¿¡¼­´Â Ç×°ø ÀüÀÚ°øÇÐÀÇ ¾÷±×·¹À̵带 ÅëÇØ ³ëÈÄÈ­µÈ Ç︮ÄßÅͰ¡ ¾ß½Ã, ÀüÀÚÀü, º¸¾È µ¥ÀÌÅÍ ¸µÅ©¸¦ Áö¿øÇÏ´Â ½Ã½ºÅÛÀ» ÅëÇØ °­·ÂÇÏ°í ³×Æ®¿öũȭµÈ ÀüÀå ÀÚ»êÀ¸·Î Å»¹Ù²ÞÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ó¾÷¿ë ȸÀüÀÍ Ç×°ø±âÀÇ ´ÜÀÏ Á¶Á¾»ç Á¶Á¾ ¹× ¿É¼Ç Á¶Á¾ Â÷·®(OPV) ±â´É°ú °°Àº »õ·Î¿î µ¿ÇâÀº ÇöóÀÌ ¹ÙÀÌ ¿ÍÀÌ¾î ½Ã½ºÅÛ ¹× AI Áö¿ø Ç×°ø ÀüÀÚ°øÇÐÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡´ÉÇØÁ³½À´Ï´Ù. Ç︮ÄßÅͰ¡ UAV ¹× °íÁ¤ÀÍ Ç×°ø±â¿Í È¥ÀâÇÑ °ø¿ªÀ» °øÀ¯ÇÒ ±âȸ°¡ ´Ã¾î³²¿¡ µû¶ó ÷´Ü Ç×°ø ÀüÀÚ°øÇÐÀº °ø¿ªÀÇ »óÈ£ ¿î¿ë¼º, Ãæµ¹ ¹æÁö ¹× ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥ ÀÖÀ¸¸ç, ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

µµ½ÃÇü ¸ðºô¸®Æ¼¿Í ¼öÁ÷ ¾ç·Â¿¡ ´ëÇÑ ¿ä±¸´Â Ç×°øÀüÀÚ ¼³°è¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

µµ½ÉÇ×°ø¸ðºô¸®Æ¼(UAM)ÀÇ ºÎ»ó°ú ¼öÁ÷ ¾ç·Â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Ç×°øÀüÀÚ Á¦Á¶¾÷üµéÀº Ç︮ÄßÅÍ ½Ã½ºÅÛÀÇ ¼³°è ÆÐ·¯´ÙÀÓÀ» Àç°ËÅäÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. µµ½Ã È¥ÀâÀÌ ¾ÇÈ­µÇ°í °¢ µµ½Ã°¡ Ç×°ø Åýà ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϸ鼭 Á¶Á¾»ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¿Í ÈÆ·Ã ½Ã°£À» ¸ðµÎ ÁÙÀÌ´Â ¼ÒÇü, °æ·®, °íµµ·Î ÀÚµ¿È­µÈ Ç×°ø ÀüÀÚ Á¦Ç°±º¿¡ ´ëÇÑ ¶Ñ·ÇÇÑ Ãß¼¼°¡ ÀÖ½À´Ï´Ù. Àα¸ ¹ÐÁýµµ°¡ ³ôÀº ȯ°æ¿¡¼­ »ç¿ëµÇ´Â Ç︮ÄßÅÍ¿¡´Â ½Ç½Ã°£ ±³Åë ¾Ë¸², Áö¿ÀÆæ½Ì, Á¤È®ÇÑ ³»ºñ°ÔÀ̼Ç, ¼öÁ÷ »óȲ ÀνÄÀ» Á¦°øÇÏ´Â Ç×°ø ÀüÀÚ°øÇÐÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ OEMÀº ÀÚµ¿ È£¹ö¸µ, ÀÚµ¿ ÀÌÂø·ú, 4Â÷¿ø ±Ëµµ °ü¸® µîÀÇ ±â´ÉÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ Ç×°øÀüÀÚ ¾ÆÅ°ÅØÃ³¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ±Ã±ØÀûÀ¸·Î ±âÁ¸ Ç︮ÄßÅÍ¿Í Àü±â ¼öÁ÷ÀÌÂø·ú±â(eVTOL)°¡ °øÀ¯ÇÏ´Â Àú°íµµ °ø¿ª¿¡ ÀÇÁ¸ÇÏ°Ô µÉ ÷´Ü Ç×°ø ¸ðºô¸®Æ¼ ¿î¿ë¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µ¿½Ã¿¡ ¼ö»ö±¸Á¶(SAR), ¼Ò¹æ, ÀÇ·á À̼ۿ¡ »ç¿ëµÇ´Â ȸÀüÀÍ Ç×°ø±â¿¡´Â Àû¿Ü¼± Ä«¸Þ¶ó, ¹Ì¼Ç ÄÄÇ»ÅÍ, »ç·ÉºÎ¿¡ Á¤º¸¸¦ Àü¼ÛÇÏ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ¸µÅ© ½Ã½ºÅÛ µî ÀÓ¹«¿¡ ƯȭµÈ Ç×°ø ÀüÀÚ°øÇÐÀÌ Å¾ÀçµÇ´Â Ãß¼¼ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Ç︮ÄßÅÍ´Â ¾ÇõÈijª ½Ã¾ß°¡ ÁÁÁö ¾ÊÀº »óȲ¿¡¼­µµ ´õ º¹ÀâÇÑ ÀÓ¹«¸¦ ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ GNSS º¸°­(SBAS/GBAS)°ú °°Àº À§¼º ±â¹Ý Ç×¹ý ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ¸·Î Áö»ó ±â¹Ý º¸Á¶ ÀåÄ¡¸¦ »ç¿ëÇÒ ¼ö ¾ø´Â ȯ°æ¿¡¼­µµ Á¤¹ÐÇÑ Ç×¹ýÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Çâ»óµÈ ¿Âº¸µå Áø´Ü ¹× °Ç°­ ¹× »ç¿ë ¸ð´ÏÅ͸µ ½Ã½ºÅÛ(HUMS)µµ Ç×°øÀüÀÚ Á¦Ç°±ºÀÇ ÇʼöÀûÀÎ ºÎºÐÀ¸·Î ÀÚ¸® Àâ°í ÀÖÀ¸¸ç, ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô Çϰí ÇÔ´ëÀÇ Áï°¢ÀûÀÎ ´ëÀÀ·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­¿¡ µû¶ó Ç×°øÀüÀÚ ¾÷°è´Â ´Ù¾çÇÑ Ç×°ø±â Ç÷§Æû°ú ¿ªÇÒ¿¡ ¿øÈ°ÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â ¼ÒÇü, »óÈ£ ¿î¿ë¼ºÀÌ ³ô°í ÀÓ¹«¿¡ ±¸¾Ö¹ÞÁö ¾Ê´Â ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù.

±ÔÁ¦ ¾Ð·Â°ú ¾ÈÀü ±âÁØÀÌ ±â¼úÀû Çõ½ÅÀ» ÃËÁøÇÒ ¼ö Àִ°¡?

Ç︮ÄßÅÍ Ç×°øÀüÀÚ ±â¼úÀ» »õ·Î¿î ¿µ¿ªÀ¸·Î ²ø¾î¿Ã¸®´Â µ¥ ÀÖÀ¸¸ç, ±ÔÁ¦ÀÇ ¹ßÀü°ú ¾ÈÀü ±âÁØÀÇ °­È­´Â ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. FAA, EASA, ICAO¿Í °°Àº Ç×°ø ´ç±¹Àº ƯÈ÷ ´ëÁß ±³Åë ¹× À§ÇèÇÑ ÀÓ¹«¸¦ ¼öÇàÇÏ´Â ºÐ¾ß¿¡¼­ ¿îÇ× ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Áö¼ÓÀûÀ¸·Î ¿ä±¸ »çÇ×À» ¾÷µ¥ÀÌÆ®Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­ÇÏ´Â Àǹ«¿¡´Â Ç×¹ý Á¤È®µµ Çâ»ó, ½Ç½Ã°£ ºñÇà µ¥ÀÌÅÍ ±â·Ï, ÁöÇü ȸÇÇ, °¡½Ã°Å¸® ºñÇà ±ÔÄ¢ ¹× °è±â ºñÇà ±ÔÄ¢(VFR/IFR)¿¡ µû¶ó ¿îÇ×Çϱâ À§ÇÑ ÃÖ¼Ò Àåºñ ¸®½ºÆ®°ú °°Àº ¿ä±¸ »çÇ×ÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ Ç×°øÀüÀÚ °ø±Þ¾÷üµéÀº ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Ç¥ÁØÀ» ÁؼöÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ÁöÇâÀûÀÎ ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÇÕ¼º ºñÀü ½Ã½ºÅÛ ¹× Çâ»óµÈ ºñÀü ½Ã½ºÅÛ°ú °°Àº ±â¼úÀº ƯÈ÷ »ê¾Ç Áö¿ªÀ̳ª ºÏ±Ø°ú °°Àº Ȥµ¶ÇÑ È¯°æ¿¡¼­ ºñÇàÇÏ´Â Ç︮ÄßÅÍÀÇ °æ¿ì ÁöÇü Á¦¾î ºñÇà(CFIT) ¹æÁö ÇÁ·ÎÅäÄÝÀ» ÃæÁ·Çϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ADS-B Out Àǹ«¸¦ ÁؼöÇÏ´Â °ÍÀº °üÁ¦ °ø¿ª¿¡¼­ÀÇ ¿îÇ׿¡¼­ ÇʼöÀûÀÎ ¿ä¼ÒÀ̸ç, ½Ç½Ã°£ Æ÷Áö¼Å´× ¹× ±¤¹üÀ§ÇÑ Ç×°ø ±³Åë ½Ã½ºÅÛ°úÀÇ »óÈ£ ¿î¿ë¼ºÀ» Á¦°øÇÏ´Â Ç×°øÀüÀÚ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ »çÀ̹ö º¸¾È Ç¥ÁØÀº ƯÈ÷ Á¶Á¾¼® ½Ã½ºÅÛÀÌ Å¬¶ó¿ìµå ±â¹Ý Á¤ºñ Ç÷§Æû ¹× Â÷·® °ü¸® ¼ÒÇÁÆ®¿þ¾î·Î ¿¬°áµÇ°í ÀÖÀ¸¹Ç·Î Ç×°øÀüÀÚ Åë½Å ¹æ½Ä°ú µ¥ÀÌÅÍ °øÀ¯ ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ÀÇ ¿µÇâÀ» ¹Þ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ºÐ¾ß´Â ¼ÒÀ½°ú ¹è±â°¡½º °¨¼ÒÀ̸ç, º¸´Ù È¿À²ÀûÀÎ ¶ó¿ìÆÃ°ú °íµµ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Ç×°ø ÀüÀÚ°øÇÐÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÃÖ±Ù Á¶Á¾»çÀÇ Á¤½ÅÀû ¾÷¹« ºÎ´ã°ú ÇÇ·Î À§Çè °ü¸®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ º¸´Ù Á÷°üÀûÀÌ°í »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÑ Àΰ£ ¿ä¼Ò °øÇÐ ¿øÄ¢¿¡ ºÎÇÕÇÏ´Â Ç×°øÀüÀÚ ÀÎÅÍÆäÀ̽ºÀÇ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÈÀü°ú ±ÔÁ¦ÀÇ ¹ßÀüÀ¸·Î ÀÚÀ² ½Ã½ºÅÛ Áö¿ø, AI¸¦ ÅëÇÑ Á¶Á¾»ç ÀÇ»ç°áÁ¤ Áö¿ø, Áõ°­Çö½Ç µð½ºÇ÷¹ÀÌ¿Í °°Àº ÷´Ü ±â´ÉÀÌ Ç︮ÄßÅÍ Ç×°øÀüÀÚ¿¡ ÅëÇյǴ ¼Óµµ°¡ »¡¶óÁö°í ÀÖ½À´Ï´Ù.

ȸÀüÀÍ Ç×°ø±â ºÎ¹® Àüü¿¡¼­ Ç×°øÀüÀÚ°øÇÐÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ½ÃÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

Ç︮ÄßÅÍ Ç×°øÀüÀÚ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾»ç¿ëÀÚÀÇ ¿ì¼±¼øÀ§ º¯È­, ÁÖ¿ä »ê¾÷ °£ ¿ªÇÐ º¯È­¿¡ »Ñ¸®¸¦ µÐ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±º, Áرº, ¹Î¹æÀ§ ºÐ¾ß¿¡¼­ ¸ÖƼ·Ñ Ç︮ÄßÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÁÖ¿ä ÃËÁø¿äÀÎ Áß ÇϳªÀ̸ç, ÀÌ·¯ÇÑ Ç÷§ÆûÀº Á¤Âû, º´·Â ¿î¼Û¿¡¼­ ¼ö»ö ¹× ±¸Á¶¿¡ À̸£±â±îÁö ´Ù¾çÇÏ°í º¹ÀâÇÑ È°µ¿À» Áö¿øÇÏ´Â ÃÖ÷´Ü Ç×°ø ÀüÀÚ°øÇÐÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¹Î°£ ºÎ¹®¿¡¼­´Â EMS, ¼®À¯ ¹× °¡½º ¿î¼Û, À¯Æ¿¸®Æ¼ µî Á¤È®¼º, ¾ÈÀü¼º, ¿î¿µÀÇ ¿¬¼Ó¼ºÀÌ ÃÖ¿ì¼±½ÃµÇ´Â ºÐ¾ß¿¡¼­ ÷´Ü Ç×°øÀüÀÚ±â¼úÀÇ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µµ½ÃÇü Ç×°ø ¸ðºô¸®Æ¼¿Í eVTOL Ç×°ø±âÀÇ ±Þ¼ÓÇÑ ÃâÇöÀº ƯÈ÷ Àú°íµµ µµ½Ã ȸ¶û¿¡¼­ ¹Ì·¡ÀÇ Ç×°ø ±³Åë °ü¸® ³×Æ®¿öÅ©¿Í ÅëÇÕÇÒ ¼ö ÀÖ´Â Ç×°øÀüÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ À¯¹ßÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Ãø¸é¿¡¼­´Â ¼ÒÇüÈ­ ¹× °³¹æÇü ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ÀÇ °³¹ß·Î ¼ÒÇü ¹× ÁßÇü Ç︮ÄßÅÍ¿¡µµ °í¼º´É Ç×°ø ÀüÀÚ°øÇÐÀ» ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ·¹°Å½Ã Ç×°ø±âÀÇ Ç×°øÀüÀÚ ¾÷±×·¹À̵忡 ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀåÀÇ Å« ÈûÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÃÖÁ¾»ç¿ëÀÚ´Â ¼ö¸íÁֱ⠺ñ¿ë Àý°¨°ú ¹Ì¼Ç °¡¿ë¼º Çâ»ó¿¡ Å« °¡Ä¡¸¦ µÎ°í ÀÖÀ¸¸ç, OEMÀº ¿¹Áöº¸Àü, ¿ø°Ý Áø´Ü, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Ç×°øÀüÀÚ ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ Çൿµµ µðÁöÅÐ »ýŰè·Î À̵¿Çϰí ÀÖÀ¸¸ç, Ç×°øÀüÀÚ °ø±Þ¾÷üµéÀº ÅÍÄ¡½ºÅ©¸° Á¶ÀÛ, ½Ç½Ã°£ ³¯¾¾ ¾÷µ¥ÀÌÆ®, ÁöÇü ¸ÅÇÎ µîÀÇ ±â´ÉÀ» °®Ãá º¸´Ù ¿¬°á¼ºÀÌ ³ô°í »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¸¦ °³¹ßÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä«¿¡¼­´Â Áö¿ª °£ ¿¬°á°ú ÀÎÇÁ¶ó ±¸Ãà¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê°¡ Ç︮ÄßÅÍ ±¸¸Å Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌó·³ ´Ù¾çÇϸ鼭µµ »óÈ£ ¿¬°üµÈ ¿ä¼ÒµéÀÌ ¼¼°è Ç︮ÄßÅÍ Ç×°øÀüÀÚ ½ÃÀåÀ» °í¼ºÀå ±Ëµµ¿¡ ¿Ã·Á³õ°í ÀÖÀ¸¸ç, ±× ¿øµ¿·ÂÀº ±â¼ú Çõ½Å, Çö´ëÈ­, ¿ëµµ È®´ë¿¡ ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¸ð´ÏÅ͸µ ½Ã½ºÅÛ, Åë½Å¡¤³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ, ºñÇà Á¦¾î ½Ã½ºÅÛ); ¾ÖÇø®ÄÉÀ̼Ç(»ó¾÷ ¾ÖÇø®ÄÉÀ̼Ç, ±º ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Helicopter Avionics Market to Reach US$17.7 Billion by 2030

The global market for Helicopter Avionics estimated at US$13.1 Billion in the year 2024, is expected to reach US$17.7 Billion by 2030, growing at a CAGR of 5.2% over the analysis period 2024-2030. Monitoring System, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$10.7 Billion by the end of the analysis period. Growth in the Communication & Navigation System segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.6 Billion While China is Forecast to Grow at 8.2% CAGR

The Helicopter Avionics market in the U.S. is estimated at US$3.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.5 Billion by the year 2030 trailing a CAGR of 8.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.6% and 5.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.4% CAGR.

Global Helicopter Avionics Market - Key Trends & Drivers Summarized

How Next-Gen Avionics Are Redefining Helicopter Capabilities?

Helicopter avionics have evolved far beyond traditional flight instruments, transforming rotary-wing aircraft into highly intelligent, mission-adaptable platforms. Today’s helicopter cockpits are equipped with sophisticated avionics systems that integrate flight control, navigation, communication, surveillance, and mission management functions into a unified, real-time ecosystem. This transformation is particularly pronounced in sectors such as military operations, emergency medical services (EMS), offshore oil and gas transport, and law enforcement, where mission success depends heavily on situational awareness and rapid decision-making. Modern avionics suites often include digital glass cockpit displays, synthetic vision systems, terrain awareness and warning systems (TAWS), weather radar, automatic dependent surveillance-broadcast (ADS-B), and GPS-based navigation-all synchronized to improve pilot performance and safety. The shift from analog to digital systems has also enabled greater automation and data integration, reducing pilot workload while enhancing operational efficiency. With advanced sensor fusion, pilots can access data on flight paths, terrain elevation, weather conditions, air traffic, and aircraft health in a seamless format. In the defense sector, avionics upgrades are transforming aging helicopter fleets into formidable, networked battlefield assets through systems that support night vision, electronic warfare, and secure data links. Furthermore, emerging trends such as single-pilot operation in commercial rotorcraft and optionally piloted vehicle (OPV) capabilities are being made feasible through advancements in fly-by-wire systems and AI-supported avionics. As helicopters increasingly share congested airspace with UAVs and fixed-wing aircraft, cutting-edge avionics are becoming central to ensuring airspace interoperability, collision avoidance, and regulatory compliance.

How Are Urban Mobility and Vertical Lift Demands Reshaping Avionics Design?

The rise of urban air mobility (UAM) and increased vertical lift demand are compelling avionics manufacturers to rethink design paradigms for helicopter systems. With urban congestion worsening and cities investing in air taxi infrastructure, there is a clear trend toward compact, lightweight, and highly automated avionics suites that reduce both pilot dependency and training time. Helicopters serving in densely populated environments require avionics that offer real-time traffic alerts, geofencing, precise navigation, and vertical situational awareness. To meet these requirements, OEMs are focusing on modular, scalable avionics architectures that can support functions like auto-hover, automated takeoff and landing, and four-dimensional trajectory management. These capabilities are crucial for advanced air mobility operations that will eventually rely on low-altitude air corridors shared between traditional helicopters and electric vertical takeoff and landing (eVTOL) vehicles. Simultaneously, rotorcraft used in search and rescue (SAR), firefighting, and medical evacuations are increasingly equipped with mission-specific avionics such as infrared cameras, mission computers, and real-time data link systems that feed information to command centers. Such advancements allow helicopters to perform more complex missions under harsh weather and low-visibility conditions. Furthermore, the transition to satellite-based navigation systems such as GNSS augmentation (SBAS/GBAS) is making precision navigation possible even in environments where ground-based aids are unavailable. Enhanced onboard diagnostics and health and usage monitoring systems (HUMS) are also becoming integral parts of the avionics suite, allowing predictive maintenance and improving fleet readiness. These changes are collectively driving the avionics industry to develop compact, interoperable, and mission-agnostic systems that can operate seamlessly across different aircraft platforms and roles.

Can Regulatory Pressures and Safety Standards Spur Technological Breakthroughs?

Regulatory evolution and increasing safety standards are playing a pivotal role in pushing helicopter avionics technologies to new frontiers. Aviation authorities such as the FAA, EASA, and ICAO are continually updating requirements to improve operational safety, especially in sectors involving public transportation and hazardous missions. These evolving mandates include requirements for enhanced navigation accuracy, real-time flight data recording, terrain avoidance, and minimum equipment lists for operations under visual and instrument flight rules (VFR/IFR). In response, avionics suppliers are investing heavily in research and development to create systems that are not only compliant but also future-proof. Technologies such as synthetic and enhanced vision systems are being adopted to meet Controlled Flight Into Terrain (CFIT) prevention protocols, particularly for helicopters flying in challenging environments such as mountainous or arctic regions. Moreover, compliance with ADS-B Out mandates has become a critical component for operating in controlled airspace, pushing adoption of avionics systems that offer real-time positioning and interoperability with broader air traffic systems. Simultaneously, cybersecurity standards are influencing how avionics communicate and share data, especially with the increasing connectivity of cockpit systems to cloud-based maintenance platforms and fleet management software. Another important area of regulatory influence is noise and emission reduction, prompting the development of avionics that enable more efficient routing and altitude control. Furthermore, recent attention to pilot mental workload and fatigue risk management is encouraging the development of avionics interfaces that are more intuitive, customizable, and aligned with human factors engineering principles. These evolving safety and regulatory drivers are accelerating the pace at which advanced features such as autonomous system support, AI-assisted pilot decision-making, and augmented reality displays are being integrated into helicopter avionics.

What Are the Key Market Forces Fueling Avionics Adoption Across Rotorcraft Segments?

The growth in the helicopter avionics market is driven by several factors rooted in technological advancement, changing end-user priorities, and shifting dynamics across key verticals. The expanding demand for multi-role helicopters in military, paramilitary, and civil defense applications is one of the primary drivers, as these platforms require cutting-edge avionics to support a range of complex operations from reconnaissance and troop transport to search and rescue. In the commercial sector, there is increasing uptake of advanced avionics in EMS, oil and gas transport, and utility services, where precision, safety, and operational continuity are paramount. The rapid emergence of urban air mobility and eVTOL aircraft has also triggered demand for avionics systems that can integrate with future air traffic management networks, particularly in low-altitude urban corridors. On the technology front, developments in miniaturization and the adoption of open-systems architecture have made it easier to integrate high-performance avionics even into small and mid-sized helicopters. Increasing investment in avionics upgrades for legacy fleets is another significant market force, as operators seek to modernize older airframes with digital cockpit systems rather than procuring new aircraft. Additionally, end-users are placing greater value on reduced lifecycle costs and improved mission availability, pushing OEMs to incorporate predictive maintenance, remote diagnostics, and software-defined avionics solutions. Consumer behavior is also shifting toward digital ecosystems, prompting avionics suppliers to develop more connected, user-friendly interfaces with capabilities such as touchscreen operation, real-time weather updates, and terrain mapping. Meanwhile, government incentives for regional connectivity and infrastructure development, particularly in Asia-Pacific and Latin America, are leading to increased helicopter acquisitions-each of which demands compliant and capable avionics systems. Together, these diverse but interrelated factors are propelling the global helicopter avionics market into a high-growth trajectory, fueled by innovation, modernization, and a widening scope of applications.

SCOPE OF STUDY:

The report analyzes the Helicopter Avionics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Monitoring System, Communication & Navigation System, Flight Control System); Application (Commercial Application, Military Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â