¼¼°èÀÇ ¼öÀüÇØ ½ÃÀå
Water Electrolysis
»óǰÄÚµå : 1793953
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 285 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¼öÀüÇØ ½ÃÀåÀº 2030³â±îÁö 54¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 45¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¼öÀüÇØ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 3.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 54¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¾ËÄ®¸® ÀüÇØÁ¶´Â CAGR 2.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 23¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ç¼ºÀÚ ±³È¯¸· ÀüÇØÁ¶ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 4.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 12¾ï ´Þ·¯, Áß±¹Àº CAGR 5.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¼öÀüÇØ ½ÃÀåÀº 2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 10¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 5.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.3%¿Í 2.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼öÀüÇØ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹°ÀüÇØ°¡ ¼ö¼Ò°æÁ¦ÀÇ ÇÙ½ÉÀ¸·Î ÁÖ¸ñ¹Þ´Â ÀÌÀ¯´Â?

¼öÀüÇØ´Â Żź¼ÒÈ­¿Í ¿¡³ÊÁö ÀüȯÀ» ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓ ¼Ó¿¡¼­ ƯÈ÷ ÀÌ»êȭź¼Ò¸¦ ¹èÃâÇÏÁö ¾Ê°í »ý»êÇÒ ¼ö ÀÖ´Â ±×¸°¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ±âÃʱâ¼ú·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. Àü±âºÐÇØ´Â Àü±â¸¦ ÀÌ¿ëÇØ ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐÇØÇÏ´Â °ÍÀ¸·Î, ±× Àü±â°¡ ž籤, dz·Â, ¼ö·Â µî Àç»ý¿¡³ÊÁö·Î °ø±ÞµÉ °æ¿ì ¼ö¼Ò´Â ģȯ°æÀ¸·Î ºÐ·ùµË´Ï´Ù. ÀÌ»êȭź¼Ò¸¦ ´Ù·® ¹èÃâÇÏ´Â ¼öÁõ±â ¸Þź °³Áú°ú °°Àº ±âÁ¸ ¼ö¼Ò »ý»ê ¹æ½Ä°ú ´Þ¸®, ¼öÀüÇØ´Â ¿¬·áÀüÁö ÀÚµ¿Â÷, »ê¾÷ °øÁ¤, Àü·Â ÀúÀå µî ´Ù¾çÇÑ ¿ëµµÀÇ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ±ú²ýÇϰí È®Àå °¡´ÉÇÑ °æ·Î¸¦ Á¦°øÇÕ´Ï´Ù. °¢±¹ Á¤ºÎ¿Í ¿¡³ÊÁö ±â¾÷Àº ¼ö¼Ò ±¹°¡ Àü·«À» Áö¿øÇϰí, È­¼®¿¬·á ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ±¹Á¦ Çù¾à¿¡ ¸í½ÃµÈ ±âÈÄ º¯È­ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Àü±âºÐÇØ ÀÎÇÁ¶ó¿¡ ºü¸£°Ô ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ¿ø°ÝÁöÀÇ ¼Ò±Ô¸ð ºÐ»êÇü ÀåÄ¡ºÎÅÍ ´ë±Ô¸ð »ê¾÷ Ç÷£Æ®±îÁö ¼³Ä¡°¡ °¡´ÉÇÑ ¸ðµâÇüÀ̶ó´Â Á¡¿¡¼­ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù. À¯¿¬Çϰí Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ij¸®¾î¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼öÀüÇØ´Â Àü·Â, ¿î¼Û, ³­¹æ, Áß°ø¾÷ ºÎ¹® °£ÀÇ °áÇÕÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áß¿äÇÑ ¿ªÇÒÀº ±â¼ú Çõ½Å»Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀÎ ¿¡³ÊÁö ¾Èº¸¿Í ȯ°æÀû Áö¼Ó°¡´É¼ºÀ» ´Þ¼ºÇϱâ À§ÇÑ Àü·«Àû ÀÚ»êÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú ¹ßÀüÀÌ ¼öÀüÇØ ½Ã½ºÅÛÀÇ ¼º´ÉÀ» Çâ»ó½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ¼öÀüÇØ ½Ã½ºÅÛÀÇ È¿À²¼º, È®À强, °æÁ¦¼º¿¡¼­ °ý¸ñÇÒ ¸¸ÇÑ °³¼±À» °¡Á®¿Ô½À´Ï´Ù. ¾ËÄ®¸® ÀüÇØ, ¾ç¼ºÀÚ ±³È¯¸·(PEM) ÀüÇØ, °íü »êÈ­¹° ÀüÇØÀÇ ¼¼ °¡Áö ÁÖ¿ä ÀüÇØ ±â¼úÀº °¢°¢ »õ·Î¿î Àç·á, ½Ã½ºÅÛ ¼³°è, ¿î¿µ Àü·«¿¡ µû¶ó ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¾ËÄ®¸® Àü±â ºÐÇØ´Â ºñ¿ë È¿À²¼º°ú ¿À·£ ¿î¿µ ¿ª»ç·Î À¯¸íÇÏÁö¸¸ ÇöÀç ³»±¸¼ºÀ» Çâ»ó½Ã۰í Á¤ºñ Çʿ伺À» ÁÙÀ̱â À§ÇØ °í±Þ ¸âºê·¹ÀÎ Àç·á¿Í ³»½Ä¼º Àü±ØÀ¸·Î °­È­µÇ°í ÀÖ½À´Ï´Ù. PEM Àü±âºÐÇØ´Â ÄÄÆÑÆ®ÇÑ µðÀÚÀΰú ºü¸¥ ÀÀ´ä ½Ã°£À¸·Î ÀÎÇØ ºñ¹é±ÝÁ· ±Ý¼Ó°ú °°Àº º¸´Ù ¾ÈÁ¤ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ Ã˸ſ¡ ´ëÇÑ Á¶»çÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. °í¿Â¿¡¼­ ÀÛµ¿ÇÏ°í ¸Å¿ì ³ôÀº Àü±â È¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ´Â °íü »êÈ­¹° ÀüÇØÁúÀº ¼¼¶ó¹Í Àç·áÀÇ °³¼±À» ÅëÇØ ¼ö¸íÀÌ ±æ°í »ê¾÷¿ë ¿­¿ø°úÀÇ ¿¡³ÊÁö ÅëÇÕÀ» °­È­ÇÏ´Â ¹æÇâÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ ¸ð´ÏÅ͸µ°ú ½º¸¶Æ® Á¦¾î ½Ã½ºÅÛÀ» ÅëÇØ ½Ç½Ã°£ ¿îÀüÀ» ÃÖÀûÈ­Çϰí, ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̰í, ºÎǰÀÇ °íÀåÀ» »çÀü¿¡ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü±âºÐÇØ¿Í Àç»ý¿¡³ÊÁö¿ø ¹× ¹èÅ͸® ÀúÀåÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ¾ÈÁ¤ÀûÀÎ ¼ö¼Ò Ãâ·ÂÀ» À¯ÁöÇϸ鼭 º¯µ¿ÇÏ´Â ¿¡³ÊÁö ÀԷ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, ¹° Àü±âºÐÇØ¸¦ È­¼®¿¬·á¸¦ »ç¿ëÇÏ´Â ¼ö¼Ò »ý»ê ¹æ½Ä¿¡ ±ÙÁ¢ÇÑ ºñ¿ëÀ¸·Î ¸¸µé¾î »ê¾÷°ú Áö¿ª¿¡ ³Î¸® º¸±ÞµÉ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

¼¼°è ±×¸°¼ö¼Ò ¼ö¿ä°¡ ÀüÇØ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

±×¸°¼ö¼Ò¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä ±ÞÁõÀº »ê¾÷°è, Á¤ºÎ, ÅõÀÚÀÚµéÀÌ Àúź¼Ò ¹Ì·¡¸¦ ÁغñÇϱâ À§ÇØ ÀüÇØ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ Á÷Á¢ÀûÀ¸·Î ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×¸°¼ö¼Ò´Â Á¦Ã¶, È­ÇÐ, Ç×°ø, Àå°Å¸® ¿î¼Û µî Żź¼Ò°¡ ¾î·Á¿î ºÎ¹®ÀÇ Å»Åº¼Ò¸¦ À§ÇÑ ¸¸´É ¼Ö·ç¼ÇÀ¸·Î Á¡Á¡ ´õ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ À׿© Àç»ý¿¡³ÊÁö¸¦ ÀúÀåÇÔÀ¸·Î½á Àü·Â¸Á ¾ÈÁ¤¼ºÀÇ ±ÕÇüÀ» ¸ÂÃß°í Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀ» ÃËÁøÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ¼±ÅÃÀ̱⵵ ÇÕ´Ï´Ù. À¯·´, ¾Æ½Ã¾Æ, Áßµ¿ ±¹°¡µéÀº ÀüÇØÁ¶ ¹èÄ¡¸¦ Áß½ÉÀ¸·Î ¾ß½ÉÂù ¼ö¼Ò Àü·«À» ¼ö¸³Çϰí ÀÖÀ¸¸ç, »ý»ê ´É·Â È®´ë¸¦ À§ÇØ ¼ö½Ê¾ï ´Þ·¯ ±Ô¸ðÀÇ ÅõÀÚ°¡ ¿¹Á¤µÇ¾î ÀÖ½À´Ï´Ù. ÁÖ¿ä »ê¾÷ ±â¾÷Àº ±â°¡ ¿ÍÆ® ±Ô¸ðÀÇ ÀüÇØÁ¶ °øÀåÀ» ¼³¸³Çϱâ À§ÇØ ÇÕÀÛÅõÀÚ¸¦ ¼³¸³Çϰųª ÄÁ¼Ò½Ã¾öÀ» ±¸¼ºÇϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ÇÁ·ÎÁ§Æ® ¿Ü¿¡µµ Áö¿ª ¿¡³ÊÁö ÀÚ¸³À» Áö¿øÇÏ°í ¿¬·á ¼öÀÔ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ºÐ»êÇü Àü±â ºÐÇØ ÀåÄ¡°¡ ¿Üµý Áö¿ª°ú ºñÀü±âÈ­ Áö¿ª¿¡ ¹èÄ¡µÇ°í ÀÖ½À´Ï´Ù. º¸Á¶±Ý, ¼¼¾×°øÁ¦, ±ÔÁ¦¿¡ ÀÇÇÑ Àǹ«È­ µî ÀçÁ¤Àû Àμ¾Æ¼ºê°¡ ÁøÀÔÀ庮À» ³·Ãß°í ½ÃÀå Ȱµ¿À» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿î¼Û, Àü·Â¸Á ¼­ºñ½º, Áְſ뿡 °ÉÄ£ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®´Â Àü±âºÐÇØÀÇ Çö½ÇÀûÀÎ ½ÇÇà °¡´É¼º°ú °æÁ¦Àû °¡´É¼ºÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ ź¼ÒÁ߸³ ¸ñÇ¥°¡ ´õ¿í ½Ã±ÞÇÑ °¡¿îµ¥, ±×¸° ¼ö¼Ò »ý»ê ¹æ½ÄÀÎ ¼öÀüÇØ´Â ¼±Áø±¹°ú ½ÅÈï ±¹°¡ ¸ðµÎ¿¡¼­ Àå±âÀûÀÎ ¿¡³ÊÁö Àüȯ °èȹ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.

¼öÀüÇØ »ê¾÷ÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â Àü·«Àû ¹× ½ÃÀå ¿ªÇÐÀº ¹«¾ùÀΰ¡?

¼öÀüÇØ ½ÃÀåÀÇ ¼ºÀåÀº ȯ°æ ±ÔÁ¦, »ê¾÷ Żź¼ÒÈ­ ¸ñÇ¥, ±â¼ú Çõ½Å µ¿Çâ, ÁöÁöÀûÀÎ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©ÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±× ÃÖÀü¼±¿¡´Â ±Ý¼¼±â Á߹ݱîÁö ¹èÃâ·® Á¦·Î¸¦ ¸ñÇ¥·Î ÇÏ´Â ±âÈÄ º¯È­ Á¤Ã¥ÀÌ ÀÖÀ¸¸ç, Á¤ºÎ¿Í ±â¾÷Àº Áö¼Ó°¡´É¼º ·Îµå¸ÊÀÇ ÇÙ½ÉÀ¸·Î ûÁ¤ ¼ö¼Ò¸¦ äÅÃÇϵµ·Ï ¿ä±¸¹Þ°í ÀÖ½À´Ï´Ù. ¹Î°ü ¾çÃøÀÇ Àü·«Àû ÅõÀÚ´Â ÀüÇØÁú ±â¼úÀÇ È®À强°ú ÀûÀÀ¼ºÀ» º¸¿©ÁÖ´Â ¿¬±¸°³¹ß, ÀÎÇÁ¶ó, ´ë±Ô¸ð ½ÇÁõ ÇÁ·ÎÁ§Æ®¿¡ ÀÚº»À» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ¿¡³ÊÁö ±â¾÷, ½Å»ý ±â¼ú ±â¹Ý ½ºÅ¸Æ®¾÷, »ê¾÷ Àåºñ ¾÷üµéÀÌ ¼ö¼Ò ºÐ¾ß ÁÖµµ±Ç ´ÙÅùÀ» ¹úÀ̸鼭 ½ÃÀå °æÀïÀÌ Ä¡¿­ÇØÁö°í ÀÖ½À´Ï´Ù. ƯÈ÷ Àç»ý¿¡³ÊÁö°¡ dzºÎÇÑ Áö¿ª°ú ûÁ¤ ¿¬·á¿øÀ» ã´Â ¼ö¼Ò ¼öÀÔ±¹µé »çÀÌ¿¡ ¹«¿ª Á¦ÈÞ ¹× ¼ö¼Ò ¼öÃâ ÇùÁ¤ÀÌ Ã¼°áµÇ¾î ¼¼°è °ø±Þ¸ÁÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö, ƯÈ÷ ž籤°ú dz·Â¹ßÀüÀ¸·Î ÀÎÇÑ Àü·Â ºñ¿ë Àý°¨Àº Àü±âºÐÇØÀÇ °æÁ¦¼ºÀ» ³ô¿© ±×¸° ¼ö¼Ò »ý»êÀÇ ¸Å·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ç¥ÁØÈ­ ³ë·Â, ÀÎÁõ ÇÁ·Î±×·¥, ±ÔÁ¦ ¸íȮȭ´Â ÇÁ·ÎÁ§Æ® ¸®½ºÅ© °¨¼Ò¿Í À¶ÀÚ À¯Ä¡¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ Ŭ·¯½ºÅÍ¿Í ±×¸° ¿¡³ÊÁö ȸ¶ûÀº ¼ö¼Ò Á¦Á¶¸¦ ¼ö¿ä ¼¾ÅÍ¿Í ¿¬°èÇÏ¿© ÀÎÇÁ¶ó Ȱ¿ëÀ» ÃÖÀûÈ­ÇÏ°í ¿î¼Û ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. »çȸÀû Àνİú ÀÌÇØ°ü°èÀÚµéÀÇ ¾Ð·Âµµ ÇѸòÀ» Çϰí ÀÖÀ¸¸ç, ±â¾÷¿¡°Ô ûÁ¤±â¼ú äÅÃÀ» Ã˱¸Çϰí Żź¼ÒÈ­¸¦ À§ÇÑ ³ë·ÂÀ» °øÇ¥Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀåÀÇ ÈûÀÇ °áÁýÀ¸·Î ¼öÀüÇØ »ê¾÷Àº °ß°íÇÏ°í °¡¼ÓÈ­µÈ ±Ëµµ¸¦ ±×¸®¸ç ½ÅÈï ¼¼°è ¼ö¼Ò°æÁ¦ÀÇ Ãʼ®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(¾ËÄ®¸® ÀüÇØÁ¶, ¾ç¼ºÀÚ ±³È¯¸· ÀüÇØÁ¶, °íü »êÈ­¹° ÀüÇØÁ¶ ¼¿, À½À̿ ±³È¯¸· ÀüÇØÁ¶), ¿ëµµ(Á¤Á¦ ¿ëµµ, Àü·Â¡¤¿¡³ÊÁö ÀúÀå ¿ëµµ, ¾Ï¸ð´Ï¾Æ Á¦Á¶ ¿ëµµ, ¸Þź¿Ã Á¦Á¶ ¿ëµµ, ¿î¼Û¡¤¸ðºô¸®Æ¼ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Water Electrolysis Market to Reach US$5.4 Billion by 2030

The global market for Water Electrolysis estimated at US$4.5 Billion in the year 2024, is expected to reach US$5.4 Billion by 2030, growing at a CAGR of 3.1% over the analysis period 2024-2030. Alkaline Electrolyzer, one of the segments analyzed in the report, is expected to record a 2.1% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Proton Exchange Membrane Electrolyzer segment is estimated at 4.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 5.6% CAGR

The Water Electrolysis market in the U.S. is estimated at US$1.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.0 Billion by the year 2030 trailing a CAGR of 5.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.3% and 2.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.7% CAGR.

Global Water Electrolysis Market - Key Trends & Drivers Summarized

Why Is Water Electrolysis Gaining Attention as a Cornerstone of the Hydrogen Economy?

Water electrolysis is emerging as a fundamental technology in the global push toward decarbonization and energy transition, particularly as demand grows for green hydrogen that can be produced without carbon emissions. Electrolysis splits water into hydrogen and oxygen using electricity, and when that electricity comes from renewable sources such as solar, wind, or hydro, the resulting hydrogen is classified as green. Unlike conventional hydrogen production methods like steam methane reforming, which emit significant carbon dioxide, water electrolysis offers a clean and scalable pathway to produce hydrogen for a wide range of uses including fuel cell vehicles, industrial processes, and power storage. Governments and energy companies are rapidly investing in electrolysis infrastructure to support national hydrogen strategies, reduce dependency on fossil fuels, and meet climate goals outlined in international agreements. The technology is particularly appealing due to its modular nature, which allows installations to range from small, decentralized units in remote areas to large-scale industrial plants. As the need for flexible and sustainable energy carriers increases, water electrolysis is becoming central to enabling sector coupling between electricity, transportation, heating, and heavy industry. This pivotal role is cementing its place not just as a technical innovation but as a strategic asset in achieving long-term energy security and environmental sustainability.

What Technological Advancements Are Enhancing the Performance of Water Electrolysis Systems?

Technological advancements are driving remarkable improvements in the efficiency, scalability, and affordability of water electrolysis systems. The three primary electrolysis technologies-alkaline electrolysis, proton exchange membrane (PEM) electrolysis, and solid oxide electrolysis-are each evolving with new materials, system designs, and operating strategies. Alkaline electrolysis, known for its cost-effectiveness and long operational history, is now being enhanced with advanced membrane materials and corrosion-resistant electrodes to improve durability and reduce maintenance needs. PEM electrolysis, valued for its compact design and fast response time, is benefiting from research into more stable and cost-efficient catalysts such as non-platinum group metals, which help lower the overall cost. Solid oxide electrolysis, which operates at high temperatures and can achieve very high electrical efficiency, is advancing through improved ceramic materials that enhance longevity and energy integration with industrial heat sources. Additionally, digital monitoring and smart control systems are optimizing real-time operation, reducing energy losses, and predicting component failures before they occur. Hybrid systems that combine electrolysis with renewable energy sources and battery storage are being designed to accommodate fluctuating energy inputs while maintaining consistent hydrogen output. These technological innovations are not only improving system reliability and performance but also bringing water electrolysis closer to cost parity with fossil fuel-based hydrogen production methods, paving the way for its widespread adoption across industries and regions.

Why Is the Global Demand for Green Hydrogen Driving Investment in Electrolysis Infrastructure?

The surge in global demand for green hydrogen is directly fueling substantial investment in electrolysis infrastructure as industries, governments, and investors position themselves for a low-carbon future. Green hydrogen is increasingly viewed as a versatile solution for decarbonizing hard-to-abate sectors such as steel manufacturing, chemicals, aviation, and long-haul transportation. It also offers a viable option for storing surplus renewable energy, thereby balancing grid stability and increasing renewable integration. Countries across Europe, Asia, and the Middle East have launched ambitious hydrogen strategies that center on electrolyzer deployment, with multibillion-dollar investments earmarked for scaling up capacity. Major industrial players are entering joint ventures and forming consortia to establish gigawatt-scale electrolyzer plants, while ports and energy hubs are being retrofitted with hydrogen production and distribution capabilities. In addition to large-scale projects, decentralized electrolysis units are being deployed in remote or off-grid areas to support local energy independence and reduce reliance on fuel imports. Financial incentives, including subsidies, tax credits, and regulatory mandates, are lowering entry barriers and accelerating market activity. Pilot projects across transportation, grid services, and residential applications are demonstrating electrolysis’s real-world viability and economic promise. As global carbon neutrality targets become more urgent, the momentum behind water electrolysis as a green hydrogen production method is not only increasing but is also becoming integral to long-term energy transition planning across both developed and emerging economies.

What Strategic and Market Dynamics Are Propelling the Growth of the Water Electrolysis Industry?

The growth in the water electrolysis market is driven by a complex interplay of environmental mandates, industrial decarbonization goals, innovation trends, and supportive policy frameworks. At the forefront are climate policies that call for net-zero emissions by mid-century, pushing governments and corporations to adopt clean hydrogen as a core component of their sustainability roadmaps. Strategic investments from both public and private sectors are channeling capital into R&D, infrastructure, and large-scale demonstration projects that showcase the scalability and adaptability of electrolysis technology. Market competitiveness is intensifying as established energy firms, emerging tech startups, and industrial equipment manufacturers vie for leadership in the hydrogen space. Trade alliances and hydrogen export agreements are shaping global supply chains, especially between renewable-rich regions and hydrogen-importing nations seeking clean fuel sources. Cost reductions in renewable electricity, particularly from solar and wind, are making electrolysis more economically viable, reinforcing its attractiveness for green hydrogen production. Additionally, standardization efforts, certification programs, and regulatory clarity are helping to de-risk projects and attract financing. Industrial clusters and green energy corridors are being developed to co-locate hydrogen production with demand centers, optimizing infrastructure use and lowering transport costs. Public awareness and stakeholder pressure are also playing a role, encouraging businesses to adopt clean technologies and disclose their decarbonization efforts. These converging market forces are creating a robust and accelerating trajectory for the water electrolysis industry, positioning it as a cornerstone of the emerging global hydrogen economy.

SCOPE OF STUDY:

The report analyzes the Water Electrolysis market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Alkaline Electrolyzer, Proton Exchange Membrane Electrolyzer, Solid Oxide Electrolyzer Cell, Anion Exchange Membrane Electrolyzers); Application (Refining Application, Power & Energy Storage Application, Ammonia Production Application, Methanol Production Application, Transportation / Mobility Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â