¼¼°èÀÇ Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀå
Transmission Electron Microscopes
»óǰÄÚµå : 1793907
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 284 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀº 2030³â±îÁö 21¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 10.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 21¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ »ý¸í°úÇÐ ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 11.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 7¾ï 2,040¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àç·á °úÇÐ ¿ëµµÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 12.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 400¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 14.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀº 2024³â¿¡ 3¾ï 400¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀ» 14.7%·Î, 2030³â±îÁö 4¾ï 2,690¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.8%¿Í 9.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Åõ°úÇü ÀüÀÚÇö¹Ì°æÀÌ °úÇÐÀû ¹ß°ß¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Åõ°úÀüÀÚÇö¹Ì°æ(TEM)Àº °¡Àå °­·ÂÇÑ À̹Ì¡ Åø Áß ÇϳªÀ̸ç, ¿øÀÚ ´ÜÀ§ÀÇ ½Ã·á¸¦ ½Ã°¢È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¤ÀÚ¿¡ ÀÇÁ¸ÇÏ´Â ±¤ÇÐ Çö¹Ì°æ°ú ´Þ¸® TEMÀº ÀüÀÚºöÀ» »ç¿ëÇÕ´Ï´Ù. ÀüÀÚºöÀº ÆÄÀåÀÌ ¸Å¿ì ª±â ¶§¹®¿¡ ÇØ»óµµ°¡ ¸Å¿ì ¶Ù¾î³ª¸ç, Á¾Á¾ 1³ª³ë¹ÌÅÍ ÀÌÇÏÀÇ ÇØ»óµµ¸¦ ±¸ÇöÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº ¼¼Æ÷ÀÇ ³»ºÎ ±¸Á¶¿Í ³ª³ë¹°ÁúÀÇ Á¶Á÷, ½ÉÁö¾î °áÁ¤Áú °íü ³»ÀÇ °áÇÔ±îÁö Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. TEMÀº ÃʹÚÇü ½Ã·á¿¡ ÀüÀÚ¸¦ Åõ°ú½ÃÄÑ ±× »óÈ£ÀÛ¿ëÀ» Æ÷ÂøÇÏ¿© °íÇØ»óµµ À̹ÌÁö¸¦ »ý¼ºÇÏ´Â ¹æ½ÄÀ¸·Î ÀÛµ¿ÇÕ´Ï´Ù. ÇüÅÂÇÐÀû ¹× Á¶¼ºÇÐÀû ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ´É·ÂÀº °úÇÐÀû ¹× »ê¾÷Àû ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù.

³ª³ëÅ×Å©³î·¯Áö, ÷´Ü¼ÒÀç, »ý¸í°úÇп¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó TEMÀÇ Á߿伺ÀÌ ºñ¾àÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½ºÇп¡¼­´Â SARS-CoV-2¿Í °°Àº ¹ÙÀÌ·¯½º ±¸Á¶ÀÇ °¡½ÃÈ­, ¾à¸®Çп¡¼­´Â ¼¼Æ÷ ¼öÁØ¿¡¼­ÀÇ ¾à¹°Àü´Þ ÃßÀû µî ¸ÞÄ¿´ÏÁòÀ» ±Ô¸íÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Àç·á °úÇп¡¼­ TEMÀº ¿øÀÚ °ÝÀÚ °áÇÔ Å½»ö¿¡ µµ¿òÀÌ µÇ¸ç, Ç×°ø¿ìÁÖ ¹× ¹ÝµµÃ¼ ¿ëµµÀÇ °í¼º´É Àç·á °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ TEM ±â¹Ý ±â¼úÀÎ ±ØÀú¿Â ÀüÀÚÇö¹Ì°æÀÇ È°¿ëÀÌ Áõ°¡Çϸ鼭 »ýü °íºÐÀÚ¸¦ ³×ÀÌÆ¼ºê¿¡ °¡±î¿î »óÅ·ΠÀ̹ÌÁöÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾î ±¸Á¶»ý¹°Çп¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß Àü¹Ý¿¡ °ÉÄ£ ±â¼ú Çõ½ÅÀÇ ÇѰ踦 ¶Ù¾î³Ñ´Â µ¥ ÀÖÀ¸¸ç, TEMÀÌ ÇʼöÀûÀ̶ó´Â Á¡Àº TEMÀÌ Çö´ë ¿¬±¸¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ½À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

À̹Ì¡ ±â¼ú Çõ½ÅÀÌ TEMÀÇ ¿ª·®À» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÀüÀÚ±¤ÇÐ ¹× ÄÄÇ»ÅÍ À̹ÌÁö ó¸®ÀÇ ¹ßÀüÀº TEM¿¡ ³î¶ó¿î Çõ½ÅÀ» °¡Á®¿Ô°í, ±× ´É·ÂÀ» È®ÀåÇϰí, ´õ »ç¿ëÇϱ⠽±°í, ´õ Á¤¹ÐÇÏ°Ô ¸¸µé¾ú½À´Ï´Ù. ÃֽŠÀåºñ´Â ÇöÀç ±¤ÇÐ ¿Ö°îÀ» ÃÖ¼ÒÈ­ÇÏ´Â ¼öÂ÷ º¸Á¤ ÀåÄ¡¸¦ °®Ãß°í ÀÖÀ¸¸ç, ±× °á°ú ¼­ºê ¿Ë½ºÆ®·Ò ¼öÁØ¿¡¼­ À̹ÌÁöÀÇ ¼±¸íµµ°¡ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ¿øÀÚ ºÐÇØ´É ´ÜÃþÃÔ¿µ, ÀüÀÚ¼± Ȧ·Î±×·¡ÇÇ µîÀÇ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù. Á÷Á¢ ÀüÀÚ °ËÃâ±â žÀç´Â µ¥ÀÌÅÍ ¼öÁýÀ» ´õ¿í Çõ½ÅÀûÀ¸·Î º¯È­½ÃÄ×À¸¸ç, ¼¶¼¼ÇÑ »ýü ½Ã·áÀÇ À̹Ì¡¿¡ ÇʼöÀûÀÎ ³·Àº ÀüÀÚ¼±·®¿¡¼­µµ ½Ç½Ã°£ À̹Ì¡°ú Çâ»óµÈ S/Nºñ¸¦ ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶Ç ´Ù¸¥ Çõ½ÅÀûÀÎ µ¿ÇâÀº AI¿Í ¸Ó½Å·¯´×À» TEM ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÆÐÅÏ Àνİú ÀÌ»ó °ËÃâÀ» ÀÚµ¿È­ÇÏ¿© À̹ÌÁö ºÐ¼®À» °­È­Çϰí, ÀÎÀû ¿À·ù¸¦ ÁÙ¿© ¿¬±¸ ¿öÅ©Ç÷ο츦 °¡¼ÓÈ­ÇÕ´Ï´Ù. µ¿½Ã¿¡ in-situ TEMÀÇ °³¹ß·Î ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­ È­ÇйÝÀÀ, »óÀüÀÌ, ±â°èÀû º¯Çü µîÀÇ µ¿Àû °úÁ¤À» ½Ç½Ã°£À¸·Î °üÂûÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã°£ ºÐÇØ À̹Ì¡ ´É·ÂÀ¸·Î TEMÀÇ ÀÀ¿ë ¹üÀ§´Â Á¤Àû ºÐ¼®ÀÇ Æ²À» ³Ñ¾î ±â´ÉÀû Çö¹Ì°æÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿­¾ú½À´Ï´Ù. TEM¿¡ ÁÖ»çÀüÀÚÇö¹Ì°æ°ú ¿¡³ÊÁö ºÐ»êÇü X¼± ºÐ±¤¹ýÀ» °áÇÕÇÏ´Â µî ¸ðµâ½Ä ¹× ÇÏÀ̺긮µå ¼³°è¸¦ äÅÃÇÏ´Â ½Ã½ºÅÛÀÌ ´Ã¾î³ª¸é¼­ ¸ÖƼ¸ð´Þ À̹Ì¡ÀÌ Çö½ÇÈ­µÇ¾î ºÐ¼®ÀÇ ±íÀ̰¡ ´õ¿í ±í¾îÁö°í ÀÖ½À´Ï´Ù.

TEMÀº »ê¾÷°è ¾îµð¿¡¼­ »õ·Î¿î ¿ëµµ¸¦ ¹ß°ßÇÒ ¼ö Àִ°¡?

TEMÀº ¿ª»çÀûÀ¸·Î Çмú¿¬±¸¿¡ »ç¿ëµÇ¾î ¿ÔÁö¸¸, ÇöÀç´Â ¸¹Àº »ê¾÷ ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ³ª³ë ´ÜÀ§ÀÇ °áÇÔÀ» ½Äº°ÇÏ°í ºÐ¼®ÇÏ´Â ´É·ÂÀº ǰÁú º¸Áõ ¹× Â÷¼¼´ë Ĩ ¼³°è¿¡ ÇʼöÀûÀÔ´Ï´Ù. µð¹ÙÀ̽º°¡ 5nm ÀÌÇÏÀÇ ³ëµå·Î ¹Ì¼¼È­µÊ¿¡ µû¶ó TEMÀÌ Á¦°øÇÏ´Â Á¤È®µµ´Â Àü°øÁ¤ ¹× ÈİøÁ¤ ¸ðµÎ¿¡¼­ ´õ¿í Áß¿äÇØÁý´Ï´Ù. ¸¶Âù°¡Áö·Î ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡¼­ TEMÀº Àü±Ø Àç·á, ¸®Æ¬ È®»ê °æ·Î, ¹èÅ͸® ¿­È­ ¸ÞÄ¿´ÏÁò ¿¬±¸¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÇ·á ¹× Á¦¾à »ê¾÷µµ ÷´Ü Áø´Ü ¹× ÀǾàǰ °³¹ß¿¡ TEMÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î TEM ±â¹Ý ±â¼úÀº ¹ÙÀÌ·¯½ºÇÐ ¹× º´¸®Çп¡ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, ¹ÙÀÌ·¯½º, ´Ü¹éÁú ±¸Á¶, ¼¼Æ÷³» ¸ÞÄ¿´ÏÁòÀ» °íÇØ»óµµ·Î ½Ã°¢È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯ°æ °úÇÐ ºÐ¾ß¿¡¼­ TEMÀº ³ª³ëÀÔÀÚ, ¿À¿° ¹Ì¸³ÀÚ, µ¶¼ÒÀÇ ¿µÇâÀ» ¹ÞÀº »ý¹°ÇÐÀû ½Ã·áÀÇ ºÐ¼®¿¡ »ç¿ëµÇ¾î ±ÔÁ¦ ´ç±¹°ú ¿¬±¸ÀÚµéÀÌ È¯°æ º¯È­ÀÇ ¹Ì¼¼ÇÑ ¿µÇâÀ» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ¾ß±ÝÇÐ ¹× °íºÐÀÚ °úÇÐ ºÐ¾ß¿¡¼­µµ ÀÔ°è °Åµ¿, ÆÄ±« ¸ÞÄ¿´ÏÁò, °íºÐÀÚÀÇ °áÁ¤¼ºÀ» ¿øÀÚ ¼öÁØ¿¡¼­ ÀÌÇØÇϱâ À§ÇØ TEMÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß °£ Ȱ¿ëÀÇ ±ÞÁõÀº TEMÀ» ¼ø¼öÇÏ°Ô ¿¬±¸ Áß½ÉÀÇ Åø¿¡¼­ Á¦Ç° °³¹ß ¹× ǰÁú°ü¸®ÀÇ Àü·«Àû Àåºñ·Î ÀüȯÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù.

¼¼°è TEM ½ÃÀåÀÇ È®´ë´Â ±â¼ú ¹ßÀü, »ê¾÷ ¼ö¿ä, ÃÖÁ¾»ç¿ëÀÚÀÇ ´Ù¾çÈ­¿¡ ±â¹ÝÇÑ »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå Ã˸ÅÁ¦´Â ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ ¼ÒÇüÈ­À̸ç, °íÀå ºÐ¼® ¹× °øÁ¤ ÃÖÀûÈ­¸¦ À§ÇØ ÃÊÁ¤¹Ð À̹Ì¡ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. 3D NAND, ÷´Ü Æ÷Àå ±â¼ú, ÀÌÁ¾ ÁýÀûÀÇ ÃâÇöÀ¸·Î À̹Ì¡ ±â¼úÀÇ ÇѰ谡 ´õ¿í ³ô¾ÆÁö¸é¼­ ³ª³ë ½ºÄÉÀÏÀÇ ±¸Á¶Àû ¹× ±â´ÉÀû ¹«°á¼ºÀ» º¸ÀåÇÏ´Â TEMÀÇ ¿ªÇÒÀÌ ´õ¿í È®°íÇØÁ³½À´Ï´Ù.

¶ÇÇÑ ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ³ª³ë ÀÇ·á ¹× Á¤¹ÐÁø´Ü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ TEM¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ Àú¿Â ÀüÀÚÇö¹Ì°æÀÌ ´Ü¹éÁú º¹ÇÕü¿Í ¹ÙÀÌ·¯½º ±¸Á¶¿¡ ´ëÇÑ Çõ½ÅÀûÀÎ ÀλçÀÌÆ®¸¦ Áö¼ÓÀûÀ¸·Î Á¦°øÇϰí ÀÖÀ¸¹Ç·Î TEM¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àç·á ¹× ¿¡³ÊÁö ºÐ¾ß¿¡¼­ Â÷¼¼´ë ÇÕ±Ý, Ã˸Å, ¹èÅ͸® È­ÇÐÀÇ °³¹ßÀº TEMÀ» ÅëÇØ °¡´ÉÇÑ ¿øÀÚ ¼öÁØÀÇ Æ¯¼º Æò°¡¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï °æÁ¦±¹¿¡¼­´Â °úÇÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎ ¹× Á¶Á÷ÀÇ ÀÚ±Ý Áö¿øµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖÀ¸¸ç, ´õ ¸¹Àº ¿¬±¸¼Ò¿Í ´ëÇÐÀÌ Ã·´Ü Àåºñ¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐÈ­ ¹× ½º¸¶Æ® ·¦À¸·ÎÀÇ ÀüȯÀº AI, Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ½ºÅ丮Áö, ¿ø°Ý Áø´ÜÀ» TEM Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© Á¢±Ù¼º°ú ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀü, ÃÖÁ¾»ç¿ëÀÚÀÇ ¿ä±¸, ÁøÈ­ÇÏ´Â °úÇÐÀû ȯ°æÀº Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ °ß°íÇϰí Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

¿ëµµ(»ý¸í°úÇÐ ¿ëµµ, Àç·á °úÇÐ ¿ëµµ, ³ª³ëÅ×Å©³î·¯Áö ¿ëµµ, ¹ÝµµÃ¼ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(»ê¾÷ ÃÖÁ¾ ¿ëµµ, Çмú±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Transmission Electron Microscopes Market to Reach US$2.1 Billion by 2030

The global market for Transmission Electron Microscopes estimated at US$1.1 Billion in the year 2024, is expected to reach US$2.1 Billion by 2030, growing at a CAGR of 10.8% over the analysis period 2024-2030. Life Science Application, one of the segments analyzed in the report, is expected to record a 11.1% CAGR and reach US$720.4 Million by the end of the analysis period. Growth in the Material Science Application segment is estimated at 12.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$304.0 Million While China is Forecast to Grow at 14.7% CAGR

The Transmission Electron Microscopes market in the U.S. is estimated at US$304.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$426.9 Million by the year 2030 trailing a CAGR of 14.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.8% and 9.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.5% CAGR.

Global Transmission Electron Microscope Market - Key Trends & Drivers Summarized

What Makes Transmission Electron Microscopes So Indispensable in Scientific Discovery?

Transmission Electron Microscopes (TEMs) are among the most powerful imaging tools available, enabling visualization of specimens at the atomic scale. Unlike optical microscopes that rely on photons, TEMs use a beam of electrons, which have much shorter wavelengths and therefore provide vastly superior resolution-often below one nanometer. This allows researchers to examine the internal structure of cells, the organization of nanomaterials, and even the defects within crystalline solids. TEMs function by transmitting electrons through an ultra-thin specimen and capturing the interactions to produce high-resolution images. Their ability to offer both morphological and compositional insights makes them critical to scientific and industrial applications alike.

The growing dependence on nanotechnology, advanced materials, and life sciences has exponentially elevated the relevance of TEMs. They are essential in uncovering mechanisms in virology, such as visualizing virus structures like SARS-CoV-2, and in pharmacology, for tracing drug delivery at the cellular level. In materials science, TEMs help explore atomic lattice defects, facilitating the development of high-performance materials for aerospace and semiconductor applications. Furthermore, the increasing use of cryo-electron microscopy-a TEM-based technique-has revolutionized structural biology by making it possible to image biological macromolecules in near-native states. The indispensability of TEMs in pushing the boundaries of innovation across these disciplines underscores their pivotal role in contemporary research.

How Are Innovations in Imaging Technology Reshaping TEM Capabilities?

Advancements in electron optics and computational imaging have led to remarkable innovations in TEMs, expanding their capabilities and making them more user-friendly and precise. Modern instruments now feature aberration correctors that minimize optical distortions, thus improving image clarity at the sub-angstrom level. These developments have been critical in fields such as atomic-resolution tomography and electron holography. The incorporation of direct electron detectors has further transformed data acquisition, allowing real-time imaging and improved signal-to-noise ratios even at low electron doses-an essential feature for imaging delicate biological specimens.

Another transformative trend is the integration of AI and machine learning into TEM systems. These technologies are enhancing image analysis by automating pattern recognition and anomaly detection, reducing human error and accelerating research workflows. Simultaneously, developments in in-situ TEM are enabling real-time observation of dynamic processes like chemical reactions, phase transitions, and mechanical deformation under various environmental conditions. This capacity for time-resolved imaging has broadened the application scope of TEMs beyond static analysis, ushering in a new era of functional microscopy. As more systems adopt modular and hybrid designs-such as combining TEM with scanning electron microscopy or energy-dispersive X-ray spectroscopy-multimodal imaging has become a tangible reality, further enhancing analytical depth.

Where Are TEMs Finding New Applications Across Industries?

While historically anchored in academic research, TEMs are now finding widespread adoption across numerous industrial sectors. In semiconductor manufacturing, their ability to identify and analyze nanoscale defects is indispensable for quality assurance and next-generation chip design. As devices scale down to sub-5 nm nodes, the precision offered by TEM becomes even more critical for both front-end and back-end processes. Similarly, in energy storage technologies, TEMs are extensively used to study electrode materials, lithium diffusion pathways, and degradation mechanisms in batteries-insights that are crucial for developing safer and more efficient energy systems.

The medical and pharmaceutical industries are also leveraging TEMs for advanced diagnostics and drug development. For instance, TEM-based techniques are instrumental in virology and pathology, enabling high-resolution visualization of viruses, protein structures, and intracellular mechanisms. In the realm of environmental science, TEMs are being used to analyze nanoparticles, pollution particulates, and biological specimens affected by toxins-helping regulators and researchers alike understand the microscopic consequences of environmental change. Even in metallurgy and polymer science, the use of TEM is growing to understand grain boundary behavior, fracture mechanisms, and polymer crystallinity at the atomic level. This surge in cross-disciplinary usage has helped shift TEMs from being purely research-focused tools to strategic instruments in product development and quality control.

The Growth in the Transmission Electron Microscope Market Is Driven by Several Factors…

The expansion of the global TEM market is being propelled by a constellation of interrelated drivers rooted in technology evolution, industrial demand, and end-user diversification. A primary growth catalyst is the rapid miniaturization in the electronics and semiconductor sectors, which necessitates ultra-precise imaging for failure analysis and process optimization. The emergence of 3D NAND, advanced packaging techniques, and heterogeneous integration are further pushing the limits of imaging technology, solidifying the role of TEMs in ensuring structural and functional integrity at nanoscales.

Additionally, the heightened focus on nanomedicine and precision diagnostics in healthcare is generating substantial demand for TEMs, especially as cryo-EM continues to deliver transformative insights into protein complexes and viral architecture. In the materials and energy sectors, the development of next-generation alloys, catalysts, and battery chemistries depends heavily on atomic-level characterization enabled by TEMs. Government and institutional funding for scientific infrastructure, particularly in emerging economies, is also fueling market growth, as more research laboratories and universities acquire advanced instrumentation. Moreover, the transition toward digitization and smart laboratories is fostering the integration of AI, cloud-based data storage, and remote diagnostics within TEM platforms-enhancing their accessibility and operational efficiency. Collectively, these technological advancements, end-user demands, and evolving scientific landscapes are driving robust, sustained growth in the transmission electron microscope market.

SCOPE OF STUDY:

The report analyzes the Transmission Electron Microscopes market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Life Science Application, Material Science Application, Nanotechnology Application, Semiconductor Application, Other Applications); End-Use (Industries End-Use, Academic Institutes End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â