¼¼°èÀÇ Å¸ÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀå
Tire Curing Press
»óǰÄÚµå : 1793892
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 372 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Å¸ÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Å¸ÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 2.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ±â°è½Ä À¯ÇüÀº CAGR 1.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 9¾ï 3,090¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯¾Ð½Ä ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 5,290¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 4.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Å¸ÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀåÀº 2024³â¿¡ 3¾ï 5,290¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀ» 4.8%·Î, 2030³â±îÁö 2¾ï 8,750¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.0%¿Í 1.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Å¸ÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ŸÀÌ¾î °¡È² ±â¼úÀº Â÷¼¼´ë ¸ðºô¸®Æ¼¸¦ À§ÇØ ÃæºÐÈ÷ ºü¸£°Ô ÁøÈ­Çϰí Àִ°¡?

ŸÀÌ¾î °¡È² ÇÁ·¹½º´Â ¿­°ú ¾Ð·ÂÀ» ÀÌ¿ëÇÏ¿© ±×¸° ŸÀ̾ ÃÖÁ¾ Çü»óÀ¸·Î ¼ºÇü ¹× °¡È²ÇÏ¿© ŸÀ̾î Á¦Á¶ °øÁ¤¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼¼°è ¸ðºô¸®Æ¼ µ¿ÇâÀÌ °í¼º´É, Àü±âÀÚµ¿Â÷(EV), ½º¸¶Æ® ŸÀÌ¾î ±â¼ú·Î ÀüȯµÊ¿¡ µû¶ó °¡È² °øÁ¤Àº Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ÇöÀç ŸÀÌ¾î °¡È² ÇÁ·¹½º´Â ³ôÀº Ãâ·Â È¿À²°ú ÃÖ¼ÒÇÑÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ ½ÇÇöÇϸ鼭 º¹ÀâÇÑ Æ®·¹µå ÆÐÅÏ, ´Ù¾çÇÑ Ãøº® µðÀÚÀÎ, °í±Þ °í¹« ÄÄÆÄ¿îµå¿¡ ´ëÀÀÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­´Â ÀÚµ¿È­, µðÁöÅÐÈ­, °íµµ·Î ±¸¼º °¡´ÉÇÑ °¡È² ÇÁ·¹½º ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¿ª»çÀûÀ¸·Î Áõ±â ±â¹Ý À¯¾Ð ÇÁ·¹½º°¡ ÁÖ·ù¸¦ ÀÌ·ç¾ú´ø ½ÃÀåÀº º¸´Ù ¼¼¹ÐÇÑ Á¦¾î¿Í Çâ»óµÈ »çÀÌŬ ½Ã°£À» Á¦°øÇÏ´Â Àü±â °¡¿­ ¹× ¼­º¸ Á¦¾î ½Ã½ºÅÛÀ¸·Î ²ÙÁØÈ÷ À̵¿Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ´Ü¼øÈ÷ ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ¾Ð¹Ú¿¡ ´ëÀÀÇϱâ À§ÇÑ °Í»Ó¸¸ ¾Æ´Ï¶ó, ŸÀ̾î OEMÀÌ Æ¯¼ö ŸÀÌ¾î ¹× °í¼º´É ŸÀ̾îÀÇ »ç¾çÀ» ÃæÁ·½Ã۱â À§ÇØ º¸´Ù À¯¿¬ÇÏ°í ºü¸¥ ±³Ã¼ ¹× ºÎǰ Á¤·ÄÀÇ Á¤È®¼ºÀ» ¿ä±¸Çϰí ÀÖÀ¸¹Ç·Î ÇʼöÀûÀÎ º¯È­À̱⵵ ÇÕ´Ï´Ù. ½Â¿ëÂ÷ ŸÀ̾ Á¡Á¡ ´õ ´Ù¾çÇØÁö°í »ó¾÷¿ë ŸÀ̾î¿Í ¿ÀÇÁ·Îµå(OTR) ŸÀ̾ ´õ¿í Àü¹®È­µÊ¿¡ µû¶ó °æÈ­ ÇÁ·¹½º´Â Àü ¼¼°è ŸÀÌ¾î °øÀå¿¡¼­ Çö´ëÈ­ÀÇ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÀÚµ¿È­¿Í ½º¸¶Æ® Á¦¾î ½Ã½ºÅÛÀº ¾î¶»°Ô È¿À²¼º°ú »ý»ê¼ºÀ» ³ôÀ̰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº °¡È² ÇÁ·¹½º¸¦ ½º¸¶Æ®ÇÏ°í ¿¬°áµÈ Á¦Á¶ ÀÚ»êÀ¸·Î ¹Ù²Ù°í ÀÖ½À´Ï´Ù. PLC ±â¹Ý ÀÚµ¿È­, °í±Þ ¿­ °ü¸®, ½Ç½Ã°£ Çǵå¹é ·çÇÁ¸¦ ÅëÇØ ÀÛµ¿ ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. µ¶¸³ÀûÀÎ ±¸¿ª Á¦¾î ±â´ÉÀ» °®Ãá ¸ÖÆ¼ ºÎ¹® ºí·¡´õ ÇÁ·¹½º´Â ´õ ³ªÀº ¾Ð·Â ºÐÆ÷¸¦ °¡´ÉÇÏ°Ô Çϰí, ´Ù¾çÇÑ Å¸À̾î Å©±â¿Í Ãøº® ±¸¼º¿¡¼­µµ ±ÕÀϼºÀ» ³ôÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¶ÇÇÑ ÀÚµ¿ ±ÝÇü Æ÷Áö¼Å´×, ÀÎÇ÷¹ÀÌ¼Ç Á¦¾î, ÅëÇÕ ±ÝÇü °¡¿­ ½Ã½ºÅÛÀ» °®Ãß°í ÀÖÀ¸¸ç, ¼öÀÛ¾÷ °³ÀÔÀ» ÁÙÀÌ°í ´õ ¾ö°ÝÇÑ Ç°Áú °øÂ÷¸¦ º¸ÀåÇÕ´Ï´Ù.

¶ÇÇÑ °øÀå ¼öÁØÀÇ Á¦Á¶ ½ÇÇà ½Ã½ºÅÛ(MES) ¹× »ê¾÷¿ë »ç¹°ÀÎÅͳÝ(IIoT) Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¿¹Áöº¸Àü, ¿¡³ÊÁö ¸ð´ÏÅ͸µ, »ý»ê ÃßÀû¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÁ·¹½º¿¡ ³»ÀåµÈ ¼¾¼­°¡ ¿Âµµ, ¾Ð·Â ¹× À¯¾Ð ¿ÀÀÏÀÇ Æ¯¼ºÀ» ¸ð´ÏÅ͸µÇÏ¿© °íÀåÀ̳ª ºñÈ¿À²ÀÇ Ãʱâ ¡Èĸ¦ ½Äº°ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅͰ¡ dzºÎÇÑ È¯°æÀº °æÈ­ ¸Å°³º¯¼ö»Ó¸¸ ¾Æ´Ï¶ó ±ÝÇü Ȱ¿ë, ¿¡³ÊÁö ¼Òºñ, Àη ¹èÄ¡ÀÇ ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ´ëÇü Á¦Á¶¾÷üÀÇ °æ¿ì, ÀÌ·¯ÇÑ ¼öÁØÀÇ °ü¸®´Â Àü ¼¼°è ½Ã¼³¿¡¼­ ǰÁú Ç¥ÁØÀ» À¯ÁöÇϸ鼭 ³¶ºñ ¾ø´Â »ý»ê ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Áö¼Ó°¡´É¼º ¿ä±¸¿Í EV µ¿ÇâÀÌ °æÈ­ ÇÁ·¹½ºÀÇ »ç¾çÀ» À籸¼ºÇÒ ¼ö Àִ°¡?

ȯ°æ ¹× Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó ŸÀÌ¾î ¾÷°è´Â ¿¡³ÊÁö »ç¿ë·®À» ÁÙ¿©¾ß ÇÏ´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ¿¡³ÊÁö Áý¾àÀûÀÎ °æÈ­ °øÁ¤¿¡ ´ëÇÑ ¸é¹ÐÇÑ Á¶»ç°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÃֽŠŸÀÌ¾î °¡È² ÇÁ·¹½º´Â Æó¼â ·çÇÁ °¡¿­ ½Ã½ºÅÛ, Áõ±â ȸ¼ö ÀåÄ¡, ¿Â¼ö ¹× Àü±â À¯µµ¿Í °°Àº ´ëü °¡¿­ ±â¼úÀ» äÅÃÇÏ¿© ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â °øÁ¤ÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̸鼭 ¿¡³ÊÁö ¼Òºñ¸¦ ȹ±âÀûÀ¸·Î ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ü¿­Àç ¹× ÇÁ·¹½º ÀÎŬ·ÎÀú ¼³°èÀÇ ¹ßÀüÀ¸·Î ¿­ ¼Õ½ÇÀÌ °¨¼ÒÇÏ°í °æÈ­ ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ¾î Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²ÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.

µ¿½Ã¿¡ Àü±âÀÚµ¿Â÷ÀÇ µîÀåÀº ŸÀÌ¾î ¼³°è¿¡ Çõ½ÅÀÇ ¹°°áÀ» ÀÏÀ¸ÄÑ ´õ ¹«°Å¿î ÄÉÀ̽Ì, ÃÊÀú ȸÀü ÀúÇ× ÇÁ·ÎÆÄÀÏ, ¼ÒÀ½À» ÁÙÀÌ´Â Æ®·¹µå ÆÐÅÏ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ÇÁ·¹½º°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. EV ŸÀ̾î´Â ´õ ¾ö°ÝÇÑ °øÂ÷, µ¶Æ¯ÇÑ Ãøº® ±¸Á¶, ´õ ³ôÀº Á¤°Ý ÇÏÁßÀ» ¿ä±¸ÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, µû¶ó¼­ ´õ ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³ª°í À¯¿¬ÇÑ °æÈ­ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¾¼­°¡ ³»ÀåµÈ ½º¸¶Æ® ŸÀ̾ ´ëÇÑ ¼ö¿ä Áõ°¡´Â °¡È² ±ÝÇü ¹× ºí·¡´õ ½Ã½ºÅÛ ¼³°è¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ °¡È² ÇÁ·¹½º°¡ Çö´ëÀÇ »ý»ê ȯ°æ¿¡¼­ »ì¾Æ³²±â À§ÇØ ÃæÁ·ÇØ¾ß ÇÏ´Â ±â¼ú ±âÁØÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¼¼°è ŸÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ŸÀÌ¾î ¾ç»ý ÇÁ·¹½º ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çö´ëÈ­, ŸÀÌ¾î »ç¾çÀÇ º¯È­, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ä±¸°¡ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ù°, ±âÁ¸ÀÇ À¯¾Ð½ÄÀ̳ª Áõ±â½Ä ½Ã½ºÅÛ¿¡¼­ Àü±â Á¦¾îÀÇ PLC ÀÏüÇü ÇÁ·¹½º·ÎÀÇ ÀüȯÀ¸·Î º¸´Ù ¿ì¼öÇÑ °øÁ¤ °ü¸®, »çÀÌŬ ŸÀÓ ´ÜÃà, Á¦Ç° ±ÕÀϼºÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. µÑ°, EV¿ë ÆÛÆ÷¸Õ½º ŸÀ̾¼­ Çìºñ µàƼ OTR¿ë ŸÀ̾ À̸£±â±îÁö ŸÀ̾îÀÇ À¯ÇüÀÌ ±ÞÁõÇϸ鼭 ´õ ³ôÀº À¯¿¬¼º°ú ±ÝÇü ÀûÀÀ¼ºÀ» Á¦°øÇÏ´Â °¡È² ÇÁ·¹½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

¼Â°, ½º¸¶Æ® Á¦¾î, ½Ç½Ã°£ µ¥ÀÌÅÍ ¸ð´ÏÅ͸µ, IIoT ¿¬°áÀÇ ÅëÇÕÀº ÇÁ·¹½º ±â°è¸¦ ´õ¿í Áö´ÉÈ­ÇÏ¿© ºñ¿ë¿¡ ¹Î°¨ÇÑ Á¦Á¶¾÷ü¿¡°Ô Áß¿äÇÑ ¿¹Áöº¸Àü ¹× ¿¡³ÊÁö ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ³Ý°, ±ÔÁ¦¿Í ȯ°æ ¾Ð·ÂÀº Áõ±â¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í Æó¿­ È¸¼ö ±â´ÉÀ» °®Ãá ¿¡³ÊÁö È¿À²ÀûÀÎ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´Ù¼¸Â°, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ¼¼°è ŸÀÌ¾î »ý»ê·® ±ÞÁõ°ú ÀÚµ¿È­ °øÀå¿¡ ´ëÇÑ OEM ÅõÀÚ·Î ÀÎÇØ ÷´Ü °æÈ­ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ½º¸¶Æ® ŸÀ̾î¿Í Ä¿³ØÆ¼µå ŸÀ̾îÀÇ Æ¯¼ºÀ¸·Î ÀÎÇØ ŸÀÌ¾î ¾ÆÅ°ÅØÃ³°¡ º¹ÀâÇØÁü¿¡ µû¶ó ±¸Á¶Àû ¹«°á¼º°ú ³»Àå ±â´ÉÀ» º¸ÀåÇϱâ À§ÇÑ °æÈ­ ÇÁ·¹½º ¼³°èÀÇ Çõ½ÅÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¾ÇÕÀûÀÎ ÈûÀ¸·Î ÀÎÇØ ¾ç»ý ÇÁ·¹½º ºÎ¹®Àº ŸÀÌ¾î »ý»ê ¹ë·ùüÀο¡¼­ °¡Àå Áß¿äÇϰí Çõ½Å¿¡ ÀÇÁ¸ÇÏ´Â ¿ä¼Ò Áß Çϳª°¡ µÇ¾ú½À´Ï´Ù.

ºÎ¹®

À¯Çü(±â°è½Ä, À¯¾Ð½Ä, ÇÏÀ̺긮µå ½Ä), ±ÝÇü(ÅõÇǽº ±ÝÇü, ºÎ¹® ±ÝÇü), ¿ëµµ(PCR ¿ëµµ, TBR ¿ëµµ, 3·ûÂ÷ ¿ëµµ, 2·ûÂ÷ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Tire Curing Press Market to Reach US$1.5 Billion by 2030

The global market for Tire Curing Press estimated at US$1.3 Billion in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 2.5% over the analysis period 2024-2030. Mechanical Type, one of the segments analyzed in the report, is expected to record a 1.9% CAGR and reach US$930.9 Million by the end of the analysis period. Growth in the Hydraulic Type segment is estimated at 3.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$352.9 Million While China is Forecast to Grow at 4.8% CAGR

The Tire Curing Press market in the U.S. is estimated at US$352.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$287.5 Million by the year 2030 trailing a CAGR of 4.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.0% and 1.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.4% CAGR.

Global Tire Curing Press Market - Key Trends & Drivers Summarized

Is Tire Curing Technology Evolving Fast Enough for Next-Gen Mobility?

Tire curing presses play a critical role in the tire manufacturing process by shaping and vulcanizing green tires into their final form using heat and pressure. As global mobility trends shift toward higher performance, electric vehicles (EVs), and smart tire technologies, the curing stage is becoming increasingly complex. Tire curing presses must now accommodate intricate tread patterns, varied sidewall designs, and advanced rubber compounds while delivering high output efficiency and minimal energy consumption. This evolution is reshaping the demand landscape for automated, digitally enabled, and highly configurable curing press systems.

Historically dominated by steam-based hydraulic presses, the market has steadily transitioned to electrically heated and servo-controlled systems that offer finer control and improved cycle times. This transition is not merely a response to energy efficiency pressures-it’s also a necessity as tire OEMs demand more flexibility, faster changeovers, and precision in component alignment to meet the specifications of specialty and high-performance tires. As passenger vehicle tires become increasingly diverse-and commercial and off-the-road (OTR) tires more specialized-the curing press has become a focal point for modernization across global tire plants.

How Are Automation and Smart Control Systems Enhancing Efficiency and Output?

Technological advancements are transforming curing presses into smart, connected manufacturing assets. PLC-based automation, advanced thermal management, and real-time feedback loops have significantly improved operational reliability. Multi-segment bladder presses with independent zone control allow better pressure distribution, enhancing uniformity across different tire sizes and sidewall configurations. These systems also feature automated mold positioning, inflation control, and integrated mold heating systems that reduce manual intervention and ensure tighter quality tolerances.

In addition, integration with plant-level Manufacturing Execution Systems (MES) and Industrial Internet of Things (IIoT) platforms is enabling predictive maintenance, energy monitoring, and production traceability. Sensors embedded within the press monitor temperature, pressure, and hydraulic fluid characteristics to identify early signs of failure or inefficiency. These data-rich environments allow for optimization not only of curing parameters but also of mold utilization, energy consumption, and workforce deployment. For large manufacturers, this level of control is critical to achieving lean production goals while maintaining quality standards across global facilities.

Can Sustainability Demands and EV Trends Reshape Curing Press Specifications?

As environmental concerns and sustainability regulations mount, the tire industry is under pressure to reduce its energy footprint-placing the energy-intensive curing process under scrutiny. Modern tire curing presses are now being designed with closed-loop heating systems, steam recovery units, and alternative heating technologies such as hot water or electric induction. These changes dramatically cut energy consumption while enhancing process stability. Moreover, advances in insulation materials and press housing design are reducing heat loss, improving curing consistency, and increasing overall energy efficiency.

Simultaneously, the rise of electric vehicles is triggering a wave of innovation in tire design-necessitating presses that can support heavier casings, ultra-low rolling resistance profiles, and noise-reducing tread patterns. EV tires often require tighter tolerances, unique sidewall constructions, and higher load ratings, which in turn require more responsive and flexible curing systems. The growing demand for smart tires with embedded sensors is also influencing the design of curing molds and bladder systems, as these features must be incorporated during the vulcanization process without affecting performance or durability. These changes are elevating the technical standards that curing presses must meet to remain viable in modern production environments.

What’s Powering the Growth of the Tire Curing Press Market Worldwide?

The growth in the tire curing press market is driven by a combination of technological modernization, shifting tire specifications, and sustainability imperatives. First, the transition from conventional hydraulic and steam-based systems to electrically controlled, PLC-integrated presses is enabling greater process control, faster cycle times, and better product uniformity. Second, the proliferation of tire varieties-from performance tires for EVs to heavy-duty OTR variants-is fueling demand for curing presses that offer greater flexibility and mold adaptability.

Third, the integration of smart controls, real-time data monitoring, and IIoT connectivity is making presses more intelligent, enabling predictive maintenance and energy optimization-crucial for cost-conscious manufacturers. Fourth, regulatory and environmental pressures are driving the adoption of energy-efficient systems with reduced steam reliance and waste heat recovery capabilities. Fifth, the surge in global tire production-especially in Asia-Pacific and Latin America-paired with OEM investments in automated factories, is boosting demand for advanced curing infrastructure. Lastly, the increasing complexity of tire architecture, due to smart and connected tire features, is prompting innovation in curing press design to ensure structural integrity and embedded functionality. These collective forces are making the curing press segment one of the most vital and innovation-dependent elements in the tire production value chain.

SCOPE OF STUDY:

The report analyzes the Tire Curing Press market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Mechanical Type, Hydraulic Type, Hybrid Type); Mold (Two-Piece Mold, Segmental Mold); Application (PCR Application, TBR Application, 3-Wheeler Application, 2-Wheeler Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â