¼¼°èÀÇ ¹Ú¸· žçÀüÁö ½ÃÀå
Thin Film Solar Cells
»óǰÄÚµå : 1793889
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 373 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹Ú¸· žçÀüÁö ½ÃÀåÀº 2030³â±îÁö 215¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 149¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¹Ú¸· žçÀüÁö ½ÃÀåÀº 2024-2030³â¿¡ CAGR 6.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 215¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÇÃ¶ó½ºÆ½ ±âÆÇÀº CAGR 6.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 121¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Ý¼Ó ±âÆÇ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 4.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 41¾ï ´Þ·¯, Áß±¹Àº CAGR 10.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹Ú¸· žçÀüÁö ½ÃÀåÀº 2024³â¿¡ 41¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 44¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 10.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.1%¿Í 6.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹Ú¸· žçÀüÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹Ú¸· žçÀüÁö´Â Â÷¼¼´ë ž籤¹ßÀüÀÇ ÆÄ±«·Â?

¹Ú¸· žçÀüÁö´Â ±âÁ¸ÀÇ °áÁ¤Áú ½Ç¸®ÄÜ Å¾çÀüÁö¸¦ ´ëüÇÒ ¼ö ÀÖ´Â À¯·ÂÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖÀ¸¸ç, À¯¿¬¼º, °æ·® ±¸Á¶, Àúºñ¿ë ¹× ´ë±Ô¸ð ¹èÄ¡ °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. À̵é žçÀüÁö´Â Ä«µå¹Å Ä«µå¹Å ÅÚ·ê¶óÀ̵å(CdTe), ±¸¸® Àε㠰¥·ý ¼¿·»È­ ±¸¸®(CIGS), ºñÁ¤Áú ½Ç¸®ÄÜ(a-Si) µîÀÇ ¹ÝµµÃ¼ Àç·á·Î ±¸¼ºµÇ¸ç, À¯¸®, ÇÃ¶ó½ºÆ½, ±Ý¼Ó µîÀÇ ±âÆÇ À§¿¡ ¹ÌÅ©·Ð ´ÜÀ§ÀÇ µÎ²²·Î ¼º¸·µÇ¾î ÀÖ½À´Ï´Ù. µ¶Æ¯ÇÑ ±¸Á¶·Î ÀÎÇØ ±âÁ¸ÀÇ °æÁú ÆÐ³Î·Î´Â ºÒ°¡´ÉÇß´ø °ÇÃàÀÚÀç, ¿þ¾î·¯ºí ÀÏ·ºÆ®·Î´Ð½º, °î¸é, ¸ð¹ÙÀÏ ¿¡³ÊÁö ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÌ °¡´ÉÇÕ´Ï´Ù. žçÀüÁö »ê¾÷ÀÌ ÀûÀÀ¼º, À̵¿¼º, ¹ÌÀû ÅëÇÕÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Â °¡¿îµ¥, ¹Ú¸· ±â¼úÀº ¼¼°è Àç»ý¿¡³ÊÁö ½ÃÀå¿¡¼­ ¶Ñ·ÇÇÑ Æ´»õ ½ÃÀåÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù.

¹Ú¸· žçÀüÁöÀÇ ¸Å·ÂÀº ¹ü¿ë¼º°ú Á¦Á¶ È¿À²¼º¿¡ ÀÖ½À´Ï´Ù. ¹Ú¸· žçÀüÁö´Â ¿¬¼Ó ·ÑÅõ·Ñ ¼º¸· ±â¼ú·Î Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, ¿þÀÌÆÛ ±â¹Ý ½Ç¸®ÄÜ ¸ðµâ Á¦Á¶¿¡ ºñÇØ ³ôÀº 󸮷®°ú ³·Àº ÀÚº» Áý¾àµµ¸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¡³ÊÁö º¯È¯ È¿À²Àº Áö±Ý±îÁö °áÁ¤Áú ½Ç¸®ÄÜ¿¡ ¹ÌÄ¡Áö ¸øÇßÀ¸³ª, ÃÖ±Ù Àç·á °úÇаú ÅÄ´ý ¼¿ ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀ¸·Î ¼º´É Â÷À̰¡ Å©°Ô ÁÙ¾îµé°í ÀÖ½À´Ï´Ù. ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ, Off-grid ¿ëµµ, °Ç¹°ÀÏüÇü ž籤¹ßÀü(BIPV)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¹Ú¸· žçÀüÁö´Â À¯¿¬ÇÑ Â÷¼¼´ë ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Áß¿äÇÑ ½ÇÇö ¿ä¼Ò·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.

Àç·áÀÇ ¹ßÀü°ú ÆûÆÑÅÍÀÇ À¯¿¬¼ºÀÌ ¾î¶»°Ô ÀÌ¿ë »ç·Ê¸¦ È®ÀåÇϰí Àִ°¡?

Àç·á È­ÇÐÀÇ È¹±âÀûÀÎ ¹ßÀüÀº ¹Ú¸· žçÀüÁö ±â¼úÀÇ È¿À²¼º, ³»±¸¼º, ȯ°æÀû ½ÇÇà °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Åڷ縣ȭīµå¹ÅÀº ¿À·§µ¿¾È °¡Àå »ó¾÷ÀûÀ¸·Î ÀÌ¿ë °¡´ÉÇÑ ¹Ú¸· Àç·á·Î ¿©°ÜÁ® ¿ÔÀ¸¸ç, ÇöÀç ½ÇÇè½Ç ȯ°æ¿¡¼­ 20% ÀÌ»óÀÇ º¯È¯ È¿À²À» ´Þ¼ºÇϰí, ºñ¿ë °æÀï·Â°ú ¿Âµµ ÀúÇ×¼ºÀ¸·Î ÀÎÇØ À¯Æ¿¸®Æ¼ ½ºÄÉÀÏ °³¹ß¿¡¼­ °è¼Ó °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ³ôÀº Èí¼ö °è¼ö¿Í Á¶Á¤ °¡´ÉÇÑ ¹êµå °¸À» °¡Áø CIGS ±â¹Ý žçÀüÁö´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ±º¿ëÀ¸·Î »ç¿ëµÇ´Â °æ·® ¸ðµâ¿¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ºñÁ¤Áú ½Ç¸®ÄÜÀº È®»ê Á¶¸í¿¡¼­µµ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¼Ò±Ô¸ð, ÀúÁ¶µµ, ½Ç³» ¿ëµµ¿¡¼­ ¿©ÀüÈ÷ Áß¿äÇÕ´Ï´Ù.

ÆûÆÑÅÍ Çõ½Åµµ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. À¯¿¬ÇÑ ¹Ú¸· ¸ðµâÀº °î¼±, ·Ñ, ¶ó¹Ì³×ÀÌÆ® °¡°øÀÌ °¡´ÉÇϸç, â¹®, ÁöºØ, ÆÄ»çµå, ½ÉÁö¾î Á÷¹°¿¡µµ Àû¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Åõ¸í-¹ÝÅõ¸í À¯ÇüÀº ½º¸¶Æ® ±Û·¹ÀÌ¡°ú °ÇÃà¿ë À¯¸®¿¡ ÁøÃâÇÏ¿© °Ç¹°ÀÌ µðÀÚÀÎÀ» ÇØÄ¡Áö ¾Ê°í ¹ßÀüÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. °æ·® ¸ðµâÀº ±¸Á¶ÀûÀ¸·Î ÁöºØÀÌ Ãë¾àÇÑ Áö¿ªÀ̳ª Àç³­ º¹±¸ ½Ã¼³, ±³Åë ÀÎÇÁ¶ó, ¿ø°ÝÁö ¼³Ä¡ µî À̵¿ °¡´ÉÇÑ Àü·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â Áö¿ª¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ¹Ú¸· žçÀüÁö´Â ³ó¾÷¿ë ž籤¹ßÀü, ÈÞ´ë¿ë ÀüÀÚ±â±â, »ç¹°ÀÎÅͳÝ(IoT) žÀç ±â±â µî ½ÅÈï ºÐ¾ß¿¡¼­ ¼±µÎÁÖÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ Á¦Á¶¿Í BIPVÀÇ ÅëÇÕÀÌ ½ÃÀå °æÀï·ÂÀ» ³ôÀÏ ¼ö Àִ°¡?

Áö¼Ó°¡´É¼º°ú ¼øÈ¯Çü »çȸ´Â žçÀüÁö °³¹ßÀÇ Àü·«Àû ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖÀ¸¸ç, ¹Ú¸· ±â¼úµµ ÀÌ¿¡ ¸ÂÃß¾î ÀûÀÀÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÎĸ½¶·¹À̼Ç, ÀçȰ¿ë ÇÁ·Î±×·¥, ±×¸° Äɹ̽ºÆ®¸® ´ë¾ÈÀ» ÅëÇØ Ä«µå¹Å, ¼¿·¹´½°ú °°Àº À¯Çع°ÁúÀÇ »ç¿ëÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ¼ö¸íÁֱ⠺м® ¹× »ç¿ë ÈÄ Á¦Ç° ȸ¼ö Àü·«Àº ÀüÀÚÆó±â¹° °¨¼Ò ¹× ÀçȰ¿ë °¡´É¼º Çâ»ó¿¡ ÁßÁ¡À» µÎ°í ¼³°è ÇÁ·Î¼¼½º¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Ú¸· žçÀüÁö Á¦Á¶´Â ÀϹÝÀûÀ¸·Î °áÁ¤Áú ½Ç¸®ÄÜ Á¦Á¶º¸´Ù ½Ç¸®ÄÜ, ¹°, ¿¡³ÊÁö ¼Òºñ°¡ Àû°í, ±¸Çö ¿¡³ÊÁö ¹× ź¼Ò¹ßÀÚ±¹ Ãø¸é¿¡¼­ ´õ Áö¼Ó°¡´ÉÇÑ ¼±ÅÃÀÔ´Ï´Ù.

°Ç¹°ÀÏüÇü ž籤¹ßÀüÀÇ ¿µ¿ª¿¡¼­ ¹Ú¸· ¸ðµâÀº ºñ±³ÇÒ ¼ö ¾ø´Â ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. °¡º­¿î ¹«°Ô, ¹ÌÀû ¸ÂÃãÈ­, À¯¿¬ÇÑ ¸ð¾çÀ¸·Î Ŀư¿ù, ÁöºØÆÇ, 䱤â µî °ÇÃ๰ÀÇ Ç¥¸é¿¡ Á÷Á¢ ¸Å¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ú¸·À» ÀÌ¿ëÇÑ BIPV ½Ã½ºÅÛÀº ½ÅÃà°ú °³º¸¼ö ¸ðµÎ¿¡ µµÀԵǰí ÀÖÀ¸¸ç, »ç¿ë Àå¼Ò¿¡¼­ÀÇ ºÐ»êÇü ¹ßÀüÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. µµ½Ã¿Í °ÇÃà¹ýÀÌ ¿¡³ÊÁö ģȭÀûÀÎ °Ç¹°°ú ¼ø Á¦·Î ¿¡³ÊÁö ¸ñÇ¥¸¦ Á¡Á¡ ´õ °­Á¶ÇÔ¿¡ µû¶ó ¹Ú¸· žçÀüÁö´Â ±¸Á¶Àû ŸÇùÀ̳ª °ÇÃàÀû È¥¶õ ¾øÀÌ Àç»ý¿¡³ÊÁö¸¦ ÅëÇÕÇÒ ¼ö ÀÖ´Â ±â¼ú·Î Àνĵǰí ÀÖ½À´Ï´Ù.

¹Ú¸· žçÀüÁö ½ÃÀå ¼ºÀå °¡¼ÓÈ­ÀÇ ¿øµ¿·ÂÀº?

¹Ú¸· žçÀüÁö ½ÃÀåÀÇ ¼ºÀåÀº Àç·á Çõ½Å, ¾ÖÇø®ÄÉÀÌ¼Ç À¯¿¬¼º, ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ ¿ì¼± ¼øÀ§¿Í °ü·ÃµÈ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, °æ·®, À¯¿¬¼º, ÈÞ´ë¿ë ž籤 ¼Ö·ç¼Ç(ƯÈ÷ ¸ð¹ÙÀÏ ÀÎÇÁ¶ó, °¡ÀüÁ¦Ç°, BIPV)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¹Ú¸·ÀÇ ¿ëµµ°¡ À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ Ç÷£Æ® ¿Ü¿¡µµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. µÑ°, CdTe ¹× CIGS¿Í °°Àº ¹ÝµµÃ¼ Àç·áÀÇ ¹ßÀüÀº ¼º¸· ±â¼úÀÇ Çâ»ó°ú ÇÔ²² Àü·Â º¯È¯ È¿À²°ú ½Å·Ú¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

¼Â°, ȯ°æ¿¡ ´ëÇÑ °¨½Ã¿Í ¼ö¸íÁֱ⿡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Á¦Á¶¾÷ü¿Í ±ÔÁ¦ ´ç±¹Àº ¹Ú¸· žçÀüÁöÀÇ °­Á¡ÀÎ Àú¿¡³ÊÁö, ÀúÆó±â¹° »ý»ê ¹æ½ÄÀ» ÁöÁöÇϰí ÀÖ½À´Ï´Ù. ³Ý°, °æ·®¼º, ¿î¼Û¼º, ¼³Ä¡ ¿ëÀ̼ºÀÌ Áß¿äÇÑ °³¹ßµµ»ó±¹¿¡¼­ÀÇ Å¾籤 ¿¡³ÊÁö µµÀÔ Áõ°¡´Â Off-grid ¹× ³óÃÌ Àü±âÈ­ »ç¾÷¿¡¼­ ¹Ú¸· ¸ðµâÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´Ù¼¸Â°, ½º¸¶Æ® ºôµù ¹× Àç»ý¿¡³ÊÁö ´ëÀÀ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê°¡ °ÇÃàÀÚÀç¿Í ¿Ïº®ÇÏ°Ô ÅëÇյǴ BIPV ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î IoT ±â±â, ½º¸¶Æ® ¼¾¼­, ÀÚÀ²ÁÖÇà ±â±â¿¡ Àü·ÂÀ» °ø±ÞÇÒ ¼ö Àִ ź·ÂÀûÀÎ ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϸ鼭 ¹Ú¸· žçÀüÁöÀÇ »õ·Î¿î °íºÎ°¡°¡Ä¡ ¿ëµµ¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¸¦ Á¾ÇÕÇØ º¼ ¶§, ¹Ú¸· žçÀüÁö´Â ¼¼°è ž翡³ÊÁö º¸±ÞÀÇ ´Ù¾çÇÑ ¹Ì·¡¿¡¼­ Áß¿äÇÑ ÃàÀÌ µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

±âÆÇ(ÇÃ¶ó½ºÆ½, ±Ý¼Ó, À¯¸®), À¯Çü(¾Æ¸ôÆÛ½º ½Ç¸®ÄÜ, Ä«µå¹Å ÅÚ·ç·ý, °¥·ý ºñ¼Ò, ±âŸ À¯Çü), ÃÖÁ¾»ç¿ëÀÚ(ÁÖÅÿë, »ê¾÷¿ë/»ó¾÷¿ë, À¯Æ¿¸®Æ¼¿ë)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Thin Film Solar Cells Market to Reach US$21.5 Billion by 2030

The global market for Thin Film Solar Cells estimated at US$14.9 Billion in the year 2024, is expected to reach US$21.5 Billion by 2030, growing at a CAGR of 6.3% over the analysis period 2024-2030. Plastic Substrate, one of the segments analyzed in the report, is expected to record a 6.9% CAGR and reach US$12.1 Billion by the end of the analysis period. Growth in the Metal Substrate segment is estimated at 4.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.1 Billion While China is Forecast to Grow at 10.0% CAGR

The Thin Film Solar Cells market in the U.S. is estimated at US$4.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.4 Billion by the year 2030 trailing a CAGR of 10.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 6.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.2% CAGR.

Global Thin Film Solar Cells Market - Key Trends & Drivers Summarized

Are Thin Film Solar Cells the Disruptive Force in Next-Gen Photovoltaics?

Thin film solar cells have emerged as a compelling alternative to traditional crystalline silicon photovoltaics, offering flexibility, lightweight construction, and the potential for low-cost, large-scale deployment. These cells are composed of semiconductor materials-such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and amorphous silicon (a-Si)-deposited in micron-thick layers on substrates like glass, plastic, or metal. Their unique structure enables integration into building materials, wearable electronics, curved surfaces, and mobile energy systems where conventional rigid panels are not feasible. As the solar industry shifts focus toward applications requiring adaptability, mobility, and aesthetic integration, thin film technologies are carving a distinct niche in the global renewables market.

The appeal of thin film solar cells lies in their versatility and manufacturing efficiency. They can be produced using continuous roll-to-roll deposition techniques, which offer high throughput and lower capital intensity compared to wafer-based silicon module production. While their energy conversion efficiency has historically trailed that of crystalline silicon, recent advancements in material science and tandem cell architecture have significantly narrowed the performance gap. With increasing emphasis on decentralized energy systems, off-grid applications, and building-integrated photovoltaics (BIPV), thin film solar cells are being viewed as a key enabler of flexible, next-generation energy solutions.

How Are Material Advancements and Form Factor Flexibility Expanding Use Cases?

Breakthroughs in material chemistry are propelling the efficiency, durability, and environmental viability of thin film solar technologies. Cadmium telluride, long considered the most commercially viable thin film material, now delivers conversion efficiencies over 20% in lab settings and continues to gain traction in utility-scale deployments due to its cost competitiveness and temperature tolerance. CIGS-based solar cells, with their high absorption coefficients and tunable bandgaps, are favored for lightweight modules used in aerospace, automotive, and military applications. Meanwhile, amorphous silicon remains relevant in small-scale, low-light, and indoor applications due to its ability to perform under diffuse illumination.

Form factor innovation is another major growth driver. Flexible thin film modules can be curved, rolled, or laminated, enabling integration into windows, roofs, facades, and even fabrics. Transparent and semi-transparent variants are making inroads into smart glazing and architectural glass, allowing buildings to generate power without compromising design. Lightweight modules are especially valuable in regions with weak structural roofs or mobile power requirements, such as disaster recovery units, transport infrastructure, and remote installations. These characteristics make thin film solar a frontrunner in emerging segments like agrivoltaics, portable electronics, and Internet of Things (IoT)-powered devices.

Can Sustainable Manufacturing and BIPV Integration Boost Market Competitiveness?

Sustainability and circularity are becoming strategic priorities in solar cell development, and thin film technologies are adapting accordingly. Manufacturers are reducing the use of toxic materials such as cadmium and selenium through encapsulation, recycling programs, and green chemistry alternatives. Lifecycle analysis and end-of-life recovery strategies are being incorporated into design processes, with a focus on reducing e-waste and improving recyclability. Additionally, thin film solar cell production typically consumes less silicon, water, and energy than crystalline silicon manufacturing, making it a more sustainable option in terms of embodied energy and carbon footprint.

In the realm of building-integrated photovoltaics, thin film modules offer unmatched advantages. Their low weight, aesthetic customization, and form flexibility allow them to be embedded directly into architectural surfaces such as curtain walls, shingles, and skylights. BIPV systems using thin films are being deployed in both new constructions and retrofits, enabling distributed generation at the point of use. As cities and construction codes increasingly emphasize energy-positive buildings and net-zero energy goals, thin film solar is being recognized as an enabling technology for integrating renewable energy without structural compromise or architectural disruption.

What’s Driving the Accelerated Growth of the Thin Film Solar Cells Market?

The growth in the thin film solar cells market is driven by several critical factors linked to material innovation, application flexibility, and global energy transition priorities. First, the increasing demand for lightweight, flexible, and portable solar solutions-especially in mobile infrastructure, consumer electronics, and BIPV-is expanding thin film applications beyond utility-scale plants. Second, advancements in semiconductor materials like CdTe and CIGS, coupled with improved deposition technologies, are enhancing power conversion efficiency and reliability.

Third, growing environmental scrutiny and lifecycle considerations are prompting manufacturers and regulators to favor low-energy, low-waste production methods, areas where thin film solar excels. Fourth, the rising adoption of solar energy in developing regions-where weight, transportability, and ease of installation are vital-is driving uptake of thin film modules in off-grid and rural electrification initiatives. Fifth, government incentives for smart buildings and renewable-ready infrastructure are boosting demand for BIPV systems that integrate seamlessly with construction materials. Lastly, the increasing need for resilient, distributed energy systems that can power IoT devices, smart sensors, and autonomous equipment is supporting new, high-value applications of thin film photovoltaics. Together, these trends mark thin film solar cells as a key pillar in the diversified future of global solar energy deployment.

SCOPE OF STUDY:

The report analyzes the Thin Film Solar Cells market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Substrate (Plastic Substrate, Metal Substrate, Glass Substrate); Type (Amorphous Silicon, Cadmium Telluride, Gallium Arsenide, Other Types); End-Use (Residential End-Use, Industrial / Commercial End-Use, Utility End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â