¼¼°èÀÇ ÁÖ°Å¿ë ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú ½ÃÀå
Residential Power Optimizers
»óǰÄÚµå : 1793784
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 272 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÁÖ°Å¿ë ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÁÖ°Å¿ë ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 3.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ µ¶¸³Çü Ä¿³ØÆ¼ºñƼ´Â CAGR 3.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 9,510¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿Â±×¸®µå Ä¿³ØÆ¼ºñƼ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 3¾ï 1,770¸¸ ´Þ·¯, Áß±¹Àº CAGR 6.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÁÖ°Å¿ë ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú ½ÃÀåÀº 2024³â¿¡ 3¾ï 1,770¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.8%·Î 2030³â±îÁö 2¾ï 9,030¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.5%¿Í 2.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÁÖ°Å¿ë ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

´õ ¶È¶ÈÇÑ Å¾翭À» Ç®¾î¶ó,ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú°¡ °¡Á¤ÀÇ ¿¡³ÊÁö ¼öÀÍ·üÀ» ÀçÁ¤ÀÇÇÏ´Â ¹æ¹ý.

ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú°¡ Â÷¼¼´ë ¿Á»ó ž籤¹ßÀü ¼³ºñ¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ž籤¹ßÀüÀÇ °¡Àå Å« ¹®Á¦ Áß ÇϳªÀÎ ÆÐ³Î ºÒÀÏÄ¡ ¹× À½¿µ ¼Õ½ÇÀ» ÁÙÀÓÀ¸·Î½á ÁÖ°Å¿ë ž籤¹ßÀü(PV) ½Ã½ºÅÛ ¿î¿µ ¹æ½Ä¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ½ºÆ®¸µ ÀιöÅÍ ½Ã½ºÅÛ¿¡¼­´Â ÇÑ °³ ÀÌ»óÀÇ ÆÐ³ÎÀÌ ºÎºÐÀûÀ¸·Î ±×´ÃÁö°Å³ª ´õ·¯¿öÁö¸é ¼º´ÉÀÌ ÀúÇϵǾî Àüü ¾î·¹À̰¡ °¡Àå ¼º´ÉÀÌ ³·Àº ÆÐ³ÎÀÇ ¼öÁØ¿¡¼­ ÀÛµ¿ÇÏ°Ô µË´Ï´Ù. ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ¸ðµâ ·¹º§ÀÇ ÃÖ´ë Àü·ÂÁ¡ ÃßÁ¾(MPPT)À» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ºñÈ¿À²À» ÇØ°áÇϰí, ´Ù¸¥ ¸ðµâ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Á¶°Ç¿¡ °ü°è¾øÀÌ °¢ ÆÐ³ÎÀÌ ÃÖÀûÀÇ ¼º´É ¼öÁØ¿¡¼­ µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¼¹ÐÇÑ Á¦¾î´Â ÁöºØÀÌ ºÐÇҵǾî Àְųª, ³ª¹«³ª ±¼¶ÒÀ¸·Î ±×´ÃÀÌ Áö°Å³ª, °¢µµ°¡ ÀÏÁ¤ÇÏÁö ¾ÊÀº Çö´ëÀÇ ÁÖÅà ¼³ºñ¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

ÁÖÅÃÀÇ °ÇÃà¾ç½ÄÀÌ ´Ù¾çÇØÁö°í, ºÐÇÒÇü ÁÖÅÿ¡¼­ ¿©·¯ äÀÇ º°Àå±îÁö, ÆÐ³ÎÀÇ ¹æÇâÀÌ ºÒ±ÕÀÏÇϰí ÁöºØÀÇ °æ»ç°¡ º¹ÀâÇϱ⠶§¹®¿¡ Áß¾ÓÁýÁßÇü ÀιöÅÍ ½Ã½ºÅÛÀº ÀûÇÕÇÏÁö ¾Ê½À´Ï´Ù. ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ÆÐ³ÎÀÇ ¼º´ÉÀ» ÀιöÅÍÀÇ ´ÜÀÏ ÀԷ¿¡¼­ ºÐ¸®ÇÏ¿© ÀÌ·¯ÇÑ Á¦¾àÀ» ¾ø¾Ö°í, ¼º´É¿¡ ´ëÇÑ Æä³ÎƼ ¾øÀÌ ´Ù¾çÇÑ ÁöºØ Ç¥¸é¿¡ °ÉÃÄ ÆÐ³ÎÀ» ¸ÂÃã ±¸¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ÁÖÅÿë ž籤 ºÎǰÀÇ ºñ¿ë »ó½Â°ú ÅõÀÚ ¼öÀÍ·ü ÁöÇ¥¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÁÖÅà ¼ÒÀ¯ÀÚ´Â Àå±âÀûÀÎ ½Ã½ºÅÛ È¿À²¼º°ú ¼öÀ² ±Ø´ëÈ­¿¡ ´ëÇÑ º¸ÀåÀ» ¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óȲ¿¡¼­ ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ¼³ºñ ÅõÀÚ¸¦ Á¤´çÈ­ÇÏ´Â µ¥ ÇÊ¿äÇÑ ¼º´É ½Å·Ú¼ºÀ» Á¦°øÇÏ´Â µ¿½Ã¿¡, Àü¸éÀûÀÎ Àç¼³°è ¾øÀÌ ¾ðÁ¦µçÁö »õ·Î¿î ÆÐ³ÎÀ» Ãß°¡ÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ½Ã½ºÅÛ È®ÀåÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.

¸ðµâ ¼öÁØÀÇ ¸ð´ÏÅ͸µ°ú ¾ÈÀüÀº ÁÖÅÿë ž籤¹ßÀüÀÇ °æÇèÀ» ¾î¶»°Ô À籸¼ºÇÒ °ÍÀΰ¡?

ÁÖÅÿë ž籤¹ßÀü¿¡¼­ ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú°¡ ºü¸£°Ô äÅõǰí ÀÖ´Â ÁÖ¿ä ÀÌÀ¯´Â ½Ç½Ã°£ ¸ðµâ ·¹º§ÀÇ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¾î·¹ÀÌ ¼öÁØÀÇ ¼º´É ÁöÇ¥¸¸ Á¦°øÇÏ´Â ±âÁ¸ ÀιöÅÍ¿Í ´Þ¸®, ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú°¡ žÀçµÈ ½Ã½ºÅÛÀº ÅëÇÕ µðÁöÅÐ Ç÷§Æû°ú ¸ð¹ÙÀÏ ¾ÛÀ» ÅëÇØ ÁÖÅà ¼ÒÀ¯ÀÚ ¹× ¼³Ä¡¾÷ü°¡ °³º° ÆÐ³Î ¼öÁØ¿¡¼­ Ãâ·Â, Àü¾Ð, ¿Âµµ, ¿À·ù Áø´ÜÀ» ÃßÀûÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº »çÀü ¿¹¹æÀû À¯Áöº¸¼ö(Àú¼º´É ¸ðµâÀ» ½Å¼ÓÇÏ°Ô ½Äº°ÇÏ°í ºÐ¸®ÇÏ´Â °Í)¸¦ Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¼³Ä¡ ÈÄ °í°´ ¼­ºñ½º, ½Ã½ºÅÛ ¹®Á¦ ÇØ°á ¹× º¸Áõ ±ÔÁ¤ Áؼö¸¦ °³¼±ÇÏ´Â µ¥¿¡µµ µµ¿òÀÌ µË´Ï´Ù. Ä¿³ØÆ¼µå Ȩ »ýŰè¿Í ½º¸¶Æ® ¿¡³ÊÁö ´ë½Ãº¸µå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ÆÐ³Î ¼öÁØÀÇ °¡½Ã¼ºÀº °íºÎ°¡°¡Ä¡ ¼³Ä¡¿¡¼­ ´õ¿í Áß¿äÇÑ ±â´ëÄ¡°¡ µÇ°í ÀÖ½À´Ï´Ù.

¾ÈÀü¼ºÀº ¿ÉƼ¸¶ÀÌÀúÀÇ °¡Ä¡ Á¦¾ÈÀ» À籸¼ºÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¸Å°³ º¯¼öÀÔ´Ï´Ù. ¹Ì±¹ Àü±â°ø»ç ±ÔÁ¤(NEC) 2017 ¹× 2020 µî ±ÔÁ¦ ±âÁØÀº ¼Ò¹æ°ü ¹× À¯Áöº¸¼ö ÀηÂÀ» º¸È£Çϱâ À§ÇØ ºñ»ó ½Ã ¿Á»ó ž籤¹ßÀü ½Ã½ºÅÛÀ» ½Å¼ÓÇÏ°Ô Á¾·áÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ±Þ¼Ó ¼Ë´Ù¿î ±â´ÉÀ» °®Ãá ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ¸ðµâ ¼öÁØ¿¡¼­ Áï°¢ÀûÀÎ Àü¾Ð °­Çϸ¦ °¡´ÉÇÏ°Ô ÇÏ¿© ÀÌ·¯ÇÑ Àǹ«¸¦ ÁؼöÇÏ´Â µ¿½Ã¿¡ ¼³Ä¡¾÷ü¿Í ÁÖÅà ¼ÒÀ¯ÀÚÀÇ ½Ã½ºÅÛ Ã¥ÀÓÀ» °æ°¨½ÃÄÑ ÁÝ´Ï´Ù. ¶ÇÇÑ, ͏®Æ÷´Ï¾Æ ÁÖ¿Í °°ÀÌ È­Àç°¡ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡¼­´Â ÁÖÅà ¼ÒºñÀÚµéÀÌ Å¾籤¹ßÀüÀÇ Á¶´Þ ±âÁØÀÇ ÀϺηΠ½Ã½ºÅÛ¿¡ ¾ÈÀüÀåÄ¡¸¦ Æ÷ÇÔÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â Àü¾Ð Á¦¾î¸¦ ±¹¼ÒÈ­ÇÏ°í ¾ÆÅ© ¿À·ù ¹× Àü±â ¼­Áö À§ÇèÀ» ÁÙÀÌ´Â Áö´ÉÇü °íÀå °¨Áö ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ Á¡¿¡¼­ °­·ÂÇÑ ÀÌÁ¡À» ¹ßÈÖÇÕ´Ï´Ù.

Á¦Ç° ȯ°æ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ±â¼ú ¹× Áö¿ªÀû º¯È­´Â ¹«¾ùÀΰ¡?

Àü ¼¼°èÀûÀ¸·Î ÁÖÅÿë ž籤¹ßÀüÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀúÀÇ Á¦Ç° °³¹ß ÇöȲµµ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÇöÀç ¾ç¸é ÆÐ³Î ¹× ÀÌÁ¾ Á¢ÇÕ ±â¼ú(HJT)°ú °°Àº Â÷¼¼´ë °íÈ¿À² ¸ðµâ°ú ¿ÉƼ¸¶ÀÌÀú¸¦ ÅëÇÕÇÏ¿© ³ôÀº Àü¾Ð ¿ä±¸ »çÇ× ¹× ³ôÀº Á¤°Ý Àü·ù¿ÍÀÇ È£È¯¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. SolarEdge ¹× Tigo¿Í °°Àº ÀιöÅÍ Á¦Á¶¾÷ü´Â ¸ðµâ ¼öÁØÀÇ ÀÌÁ¡À» À¯ÁöÇϸ鼭 ¼³Ä¡ÀÇ º¹À⼺À» °£¼ÒÈ­ÇÏ´Â ÀÓº£µðµå ¿ÉƼ¸¶ÀÌÀú ¶Ç´Â ÇÏÀ̺긮µå ÀιöÅÍ¿Í ¿ÉƼ¸¶ÀÌÀúÀÇ Á¶ÇÕÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. 370W ÀÌ»óÀÇ ÁÖ°Å¿ë ÆÐ³Î·Î À̵¿ÇÏ´Â Ãß¼¼¿¡ µû¶ó, ¿ÉƼ¸¶ÀÌÀú Á¦Á¶¾÷üµéÀº ¿­ ¼³°è ¹× ºÎÇÏ Ã³¸® ´É·ÂÀ» Çâ»ó½ÃÄÑ Àü¿ø °ü¸® ½Ã½ºÅÛÀÌ °³Á¶³ª Ãß°¡ ÀÚº» ºñ¿ë ¾øÀÌ ÇâÈÄ ¾÷±×·¹À̵忡 ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

Áö¿ªÀûÀ¸·Î, ¼ºÀå ±Ëµµ´Â ¼­·Î ´Ù¸¥ Á¤Ã¥, ±×¸®µå ¾ÆÅ°ÅØÃ³, ÁÖ°Å ÆÐÅÏ¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ¼ø°è·® ±ÔÁ¦¿Í ½Ã°£´ç ¿ä±Ý(TOU) ÀλóÀ¸·Î ÀÎÇØ ÁÖÅà ¼ÒÀ¯ÁÖµéÀº ¿ÉƼ¸¶ÀÌÀú°¡ °­Á¡À» °¡Áø µÎ °¡Áö ¼º´É ºÐ¾ßÀÎ ³ôÀº ÀÚ°¡ ¼Òºñ¿Í ÇÇÅ© ¼öÀ² Á¦¾î¸¦ Á¦°øÇÏ´Â ½Ã½ºÅÛÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. µ¶ÀÏ, ÀÌÅ»¸®¾Æ, ³×´ú¶õµå µî À¯·´ ±¹°¡µéÀº 1Àδç ÁöºØÇü ž籤¹ßÀü µµÀÔ¿¡ ¾ÕÀå¼­°í ÀÖÀ¸¸ç, ÃàÀüÁö ¹× Àü±âÀÚµ¿Â÷(EV) ÃæÀü±â¿Í ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿ÉƼ¸¶ÀÌÀú´Â ƯÈ÷ ¼öÃâ Á¦·Î ½Ã³ª¸®¿À³ª ÀÚ°¡ ¼Òºñ Àå·Á Á¶Ä¡°¡ ÀÖ´Â Áö¿ª¿¡¼­ ÇÏÀ̺긮µå ¹èÅ͸® ÀιöÅÍ¿Í Àß °áÇÕµÈ À¯¿¬ÇÑ DC ½Ã½ºÅÛ ±¸¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå, ƯÈ÷ È£ÁÖ, ÀϺ», Çѱ¹ µî¿¡¼­´Â ºÐ»êÇü ¹ßÀü ÀÎÇÁ¶ó°¡ ¼º¼÷Çϰí ÇÁ·Î½´¸Ó ±ÔÁ¦°¡ ¹ßÀüÇÏ¿© ºÐ»êÇü ºÎÇÏ ºÐ»ê ¹× ¾ÆÀÏ·£µå ±â´ÉÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú°¡ äÅõǰí ÀÖ½À´Ï´Ù.

½ÃÀå È®´ë¿Í º¸±ÞÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

ÁÖÅÿë Àü·Â ÃÖÀûÈ­ ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ¿ì¼±¼øÀ§ º¯È­, °í°´ ±â´ëÄ¡ÀÇ ÁøÈ­, ü°èÀûÀÎ Á¤Ã¥ ÀçÆí¿¡ »Ñ¸®¸¦ µÐ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå °­·ÂÇÑ ¿øµ¿·Â Áß Çϳª´Â ¼¼°è Żź¼ÒÈ­¿Í ÁÖÅà Àü±âÈ­ÀÇ °¡¼ÓÈ­ÀÔ´Ï´Ù. ÁÖÅà ¼ÒÀ¯ÀÚ°¡ °¡½º¸¦ ÀÌ¿ëÇÑ ³­¹æ°ú ¿ä¸®¿¡¼­ ¿Á»ó ž翭À» ¿¬·á·Î ÇÏ´Â Àü±â ÁÖÅÃÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó °íÈ¿À²ÀÇ Áö´ÉÇü ž翭 ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ °¡Àå Áß¿äÇØÁý´Ï´Ù. Àü·Â ÃÖÀûÈ­ ÀåÄ¡´Â ¸ðµç ¸ðµâ¿¡¼­ ÃÖ´ëÇÑÀÇ ¼öÀ²À» ²ø¾î³»°í Àüü ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ ÀüȯÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ, ž籤¹ßÀü ¾ïÁ¦¿¡ ´ëÇÑ Æä³ÎƼ¸¦ ºÎ°úÇÏ°í µ¿Àû °¡°ÝÀ» Àû¿ëÇÏ´Â Àü·Âȸ»çÀÇ °³ÇõÀ¸·Î ÀÎÇØ ¿ÉƼ¸¶ÀÌÀú´Â ¼ö¿ä Çü¼º°ú ºÎÇÏ Ãø ÃÖÀûÈ­¸¦ À§ÇÑ ÇʼöÀûÀÎ µµ±¸°¡ µÇ¾ú½À´Ï´Ù.

¸¶Âù°¡Áö·Î Áß¿äÇÑ °ÍÀº ¿¡³ÊÁö ÀÚ¸³°ú ½Ã½ºÅÛ ¼ö¸í ¿¬Àå¿¡ ´ëÇÑ ÁÖÅà ¼ÒÀ¯ÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁø °ÍÀÔ´Ï´Ù. Àü±â ¿ä±ÝÀÌ »ó½ÂÇϰí È­¼®¿¬·á °¡°ÝÀÌ ºÒ¾ÈÁ¤ÇÑ »óȲ¿¡¼­ ¼ÒºñÀÚµéÀº ¿¡³ÊÁö ¼öÈ®À» ±Ø´ëÈ­Çϰí Àü·Â¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ±× ¾î´À ¶§º¸´Ù ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â °¡µ¿½Ã°£ ¿¬Àå, ³»°áÇÔ¼º Çâ»ó, ¸ðµâ½Ä ¾÷±×·¹À̵带 °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ Áö¿øÇϰí Àå±âÀûÀÎ ÀÚ»ê °¡Ä¡¸¦ º¸È£ÇÕ´Ï´Ù. ¶ÇÇÑ, ¸®½º, PPA, Á¦3ÀÚ ¼ÒÀ¯ µî ž籤¹ßÀüÀÇ ÀÚ±Ý Á¶´Þ ¸ðµ¨Àº ¼º´É º¸ÁõÀ» Áß½ÉÀ¸·Î ±¸¼ºµÇ°í ÀÖÀ¸¸ç, ¿ÉƼ¸¶ÀÌÀú´Â °è¾à»óÀÇ ¿¡³ÊÁö ¼öÀ² ÀÓ°è°ªÀ» ÃæÁ·½Ã۱â À§ÇØ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ¼³Ä¡ ¹æ¹ýÀÇ ÁøÈ­¿Í ¾÷°è Ç¥ÁØÈ­°¡ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ÁÖÅà ¼³Ä¡¾÷üµéÀº ´Ù¾çÇÑ ¿Á»ó ÇüÅÂ, ±âÈÄ´ë, À½¿µ Á¶°Ç¿¡ À¯¿¬ÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â ±¸¼º¿ä¼ÒÈ­µÈ ½Ã½ºÅÛÀ» ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¿ÉƼ¸¶ÀÌÀú´Â ¼³Ä¡ ÈÄ ¼­ºñ½º ºñ¿ëÀ» Àý°¨Çϸ鼭 ÀÌ·¯ÇÑ ¸ðµç Á¦¾à¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® Áö¿ø ½Ã½ºÅÛ°úÀÇ »óÈ£¿î¿ë¼º ¹× ¾ÈÀü Ç¥ÁØÀ» ÃæÁ·ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀú´Â ´õ ÀÌ»ó ¼±ÅÃÀû È®Àå ±â´ÉÀÌ ¾Æ´Ñ ÇÁ¸®¹Ì¾ö±Þ ž籤¹ßÀü ¼³ºñÀÇ Ç¥ÁØ ºÎǰÀ¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ÀÇ»ç°áÁ¤ÀÌ µ¥ÀÌÅÍ ±â¹Ý ¹× ¶óÀÌÇÁ»çÀÌŬ Áß½ÉÀÌ µÇ¸é¼­ ÁÖÅÿë ž籤¹ßÀü ½Ã½ºÅÛÀÇ ¾ÆÅ°ÅØÃ³¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ÆÄ¿ö ¿ÉƼ¸¶ÀÌÀúÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Ä¿Áú °ÍÀ̸ç, ¼¼°è ½ÃÀå Àü¹Ý¿¡¼­ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ °ßÀÎÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

Ä¿³ØÆ¼ºñƼ(µ¶¸³Çü, ¿Â±×¸®µå), ÃÖÁ¾»ç¿ë(¸ðµâ ·¹º§ ÃÖ´ë Àü·ÂÁ¡ ÃßÀû, °íµµ Àü·Â¼± Åë½Å, ¸ð´ÏÅ͸µ ÄÄÆ÷³ÍÆ®, ¾ÈÀü ¼Ë´Ù¿î ÄÄÆ÷³ÍÆ®, ±âŸ ÃÖÁ¾»ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Residential Power Optimizers Market to Reach US$1.5 Billion by 2030

The global market for Residential Power Optimizers estimated at US$1.2 Billion in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 3.7% over the analysis period 2024-2030. Standalone Connectivity, one of the segments analyzed in the report, is expected to record a 3.0% CAGR and reach US$895.1 Million by the end of the analysis period. Growth in the On-Grid Connectivity segment is estimated at 5.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$317.7 Million While China is Forecast to Grow at 6.8% CAGR

The Residential Power Optimizers market in the U.S. is estimated at US$317.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$290.3 Million by the year 2030 trailing a CAGR of 6.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.5% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.1% CAGR.

Global Residential Power Optimizers Market - Key Trends & Drivers Summarized

Unleashing Smarter Solar: How Power Optimizers Are Redefining Home Energy Yields

Why Are Power Optimizers Becoming Integral to Next-Gen Rooftop Solar Installations?

Power optimizers are transforming how residential solar photovoltaic (PV) systems operate by mitigating one of the most persistent issues in solar power generation: panel mismatch and shading losses. Traditional string inverter systems suffer from performance drops if one or more panels are partially shaded or dirty, causing the entire array to operate at the level of the lowest-performing panel. Power optimizers solve this inefficiency by enabling module-level maximum power point tracking (MPPT), ensuring that each panel operates independently at its optimal performance level regardless of the conditions affecting other modules. This granular control has become critical in modern residential installations where rooftops are segmented, shaded by trees or chimneys, or mounted at variable angles.

The increasing architectural diversity in residential construction-ranging from split-level homes to multi-wing villas-has made centralized inverter systems less suitable due to uneven panel orientations and roof pitch complexity. Power optimizers eliminate this constraint by decoupling panel performance from the inverter’s single input, allowing custom configuration of panels across different roof planes without performance penalty. Furthermore, homeowners are now seeking assurance in long-term system efficiency and yield maximization, especially with the rising costs of residential solar components and growing interest in return-on-investment metrics. In such scenarios, power optimizers offer the performance reliability necessary to justify capital expenditures while also facilitating system expansion by allowing the addition of new panels at any time, without requiring full redesigns.

How Is Module-Level Monitoring and Safety Rewriting the Residential Solar Experience?

A major reason power optimizers are seeing accelerated adoption in residential solar is the increasing demand for real-time, module-level data analytics. Unlike traditional inverters that provide only array-level performance metrics, systems with power optimizers allow homeowners and installers to track output, voltage, temperature, and error diagnostics at the individual panel level through integrated digital platforms or mobile apps. This capability not only aids in proactive maintenance-identifying and isolating underperforming modules quickly-but also supports better post-installation customer service, system troubleshooting, and warranty compliance. The rise in connected home ecosystems and demand for smart energy dashboards has further made panel-level visibility a key expectation in high-value installations.

Safety is another critical parameter reshaping the optimizer value proposition. Regulatory standards such as the U.S. National Electrical Code (NEC) 2017 and 2020 require rapid shutdown capabilities for rooftop solar systems during emergencies to protect firefighters and maintenance personnel. Power optimizers with rapid shutdown functionality enable immediate voltage reduction at the module level, ensuring compliance with these mandates while simultaneously reducing system liability for installers and homeowners. Additionally, in fire-prone regions such as California, residential consumers increasingly demand built-in system safety mechanisms as part of their solar procurement criteria. Power optimizers deliver a strong advantage in this regard by localizing voltage control and offering intelligent fault detection mechanisms that reduce the risk of arc faults and electrical surges.

What Technological and Regional Shifts Are Influencing the Product Landscape?

As global residential solar adoption scales, the product development landscape for power optimizers is rapidly evolving. Manufacturers are now integrating optimizers with next-gen high-efficiency modules, including bifacial panels and heterojunction technology (HJT), ensuring compatibility with advanced voltage requirements and higher current ratings. Inverter manufacturers such as SolarEdge and Tigo are also offering embedded optimizers and hybrid inverter-optimizer combinations that streamline installation complexity while maintaining module-level benefits. The trend toward 370W+ residential panels has compelled optimizer manufacturers to improve their thermal design and load-handling capabilities, ensuring that power management systems can accommodate future upgrades without retrofitting or additional capital cost.

Regionally, the growth trajectory is being shaped by divergent policy, grid architecture, and housing patterns. In the U.S., rising net metering restrictions and time-of-use (TOU) tariffs are pushing homeowners toward systems that offer high self-consumption and peak yield control-two performance areas where optimizers excel. European countries such as Germany, Italy, and the Netherlands, which are leading rooftop solar deployment per capita, are witnessing increased demand for systems that can seamlessly integrate with battery storage and electric vehicle (EV) chargers. Optimizers enable flexible DC system configurations that pair well with hybrid battery inverters, particularly in zero-export scenarios or regions with self-consumption incentives. Meanwhile, markets in Asia-Pacific-especially Australia, Japan, and South Korea-are embracing power optimizers as distributed generation infrastructure matures and prosumer regulations evolve to allow for decentralized load balancing and islanding capabilities.

What Are the Main Forces Fueling Market Expansion and Adoption Momentum?

The growth in the residential power optimizers market is driven by several factors rooted in shifting energy infrastructure priorities, evolving customer expectations, and systemic policy realignment. One of the strongest drivers is the global acceleration toward residential decarbonization and electrification. As homeowners transition from gas-based heating and cooking to all-electric homes-fueled by rooftop solar-the need for high-efficiency, intelligent solar systems becomes paramount. Power optimizers, by extracting maximum yield from every module and enhancing overall system performance, play a crucial role in enabling this transition. Furthermore, utility reforms that penalize solar curtailment or apply dynamic pricing make optimizers essential tools for demand shaping and load-side optimization.

Equally important is the rising awareness among homeowners about energy independence and system longevity. Amid rising electricity costs and volatility in fossil fuel prices, consumers are more motivated than ever to maximize energy harvest and reduce dependency on the grid. Power optimizers support these goals by enabling higher uptime, better fault tolerance, and modular upgrades-thereby safeguarding long-term asset value. Additionally, solar financing models such as leases, PPAs, and third-party ownership are increasingly structured around performance guarantees, making optimizers a critical inclusion to ensure contractual energy yield thresholds are met.

Lastly, evolving installation practices and industry standardization are driving adoption. Residential installers now favor componentized systems that offer flexibility across various rooftop geometries, climate zones, and shading conditions. Optimizers address all these constraints while reducing post-installation service costs. Furthermore, their interoperability with battery-ready systems and their critical role in meeting safety codes ensure that power optimizers are no longer seen as optional enhancements but as standard components in premium and future-proofed solar installations. As consumer decision-making becomes more data-driven and lifecycle-focused, the role of power optimizers in shaping residential solar system architecture will only deepen, driving sustained demand across global markets.

SCOPE OF STUDY:

The report analyzes the Residential Power Optimizers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Connectivity (Standalone Connectivity, On-Grid Connectivity); End-Use (Module Level Maximum Power Point Tracking End-Use, Advanced Power Line Communication End-Use, Monitoring Components End-Use, Safety Shutdown Components End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â