¼¼°èÀÇ ½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå
Real-Time, Digital and End-Point PCR
»óǰÄÚµå : 1793768
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 364 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® PCR ¼¼°è ½ÃÀåÀº 2030³â±îÁö 116¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 87¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® PCR ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 4.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 116¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ò¸ðǰ¡¤½Ã¾àÀº CAGR 5.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 72¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 3.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 24¾ï ´Þ·¯, Áß±¹Àº CAGR 8.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀº 2024³â¿¡ 24¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 8.9%¸¦ ´õµë¾î, 2030³â¿¡´Â ½ÃÀå ±Ô¸ð°¡ 24¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.9%¿Í 3.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

PCR ±â¼úÀº ½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® ÇüÅ·Π¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR) ±â¼úÀº ÀüÅëÀûÀÎ ¿£µåÆ÷ÀÎÆ® PCR ¹æ¹ý¿¡¼­ º¸´Ù Áøº¸µÈ ½Ç½Ã°£ ¹× µðÁöÅÐ PCR Ç÷§ÆûÀ¸·Î Å©°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. °¢ Æ÷¸ËÀº Á¤·®Àû Á¤È®µµ, 󸮷®, ¹Î°¨µµ Ãø¸é¿¡¼­ ¼­·Î ´Ù¸¥ ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¿£µåÆ÷ÀÎÆ® PCRÀº °¡Àå Á¤ÅëÀûÀÎ ÇüÅ·Î, ÁõÆøµÈ DNA¸¦ ¹ÝÀÀ »çÀÌŬÀÌ ³¡³¯ ¶§ °ËÃâÇϸç ÁÖ·Î Á¤¼º ºÐ¼®¿¡ »ç¿ëµË´Ï´Ù. Àú·ÅÇÑ °¡°Ý°ú Æí¸®ÇÔÀ¸·Î ÀÎÇØ ÀÏ»óÀûÀÎ À¯ÀüÀÚÇü ÆÇÁ¤, µ¹¿¬º¯ÀÌ °ËÃâ, ¹Ì»ý¹° ½ºÅ©¸®´×¿¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ±×·¯³ª ±× ÇѰè´Â Á¤·®Àû Á¤È®µµ¿Í ¹ÝÀÀ ¸ð´ÏÅ͸µ¿¡ ÀÖ½À´Ï´Ù.

ÇÑÆí, ½Ç½Ã°£ PCR(qPCR)¿¡¼­´Â ÁõÆøÀÇ ±âÇϱ޼öÀûÀÎ ´Ü°è¿¡¼­ DNA¿Í RNA¸¦ Á¤·®È­ÇÒ ¼ö ÀÖÀ¸¸ç, Çü±¤ ¿°·áÀÇ °ËÃâÀ» ÅëÇØ µ¿Àû µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ qPCRÀº À¯ÀüÀÚ ¹ßÇö ¿¬±¸, º´¿øÃ¼ °ËÃâ, ¹ÙÀÌ·¯½º ¾ç ºÐ¼®¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Ãֽбâ¼úÀÎ µðÁöÅÐ PCR(dPCR)Àº PCR ¹ÝÀÀÀ» ¼öõ¿¡¼­ ¼ö¹é¸¸ °³ÀÇ ÆÄƼ¼ÇÀ¸·Î ºÐÇÒÇÏ¿© Ç¥ÁØ °î¼± ¾øÀ̵µ ÇÙ»ê Ç¥ÀûÀ» Àý´ëÀûÀ¸·Î Á¤·®È­ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀúÁ¸·® Ç¥Àû ¹× Èñ±Í º¯À̸¦ Ãʹΰ¨ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ¾î Á¾¾çÇÐ, ¹«¼¼Æ÷ DNA ºÐ¼®, °¨¿° Áø´Ü¿¡ Áß¿äÇÑ µµ±¸°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¼¼ °¡Áö Æ÷¸ËÀº ¸ðµÎ ±âÃÊ ¿¬±¸¿Í ÀÓ»ó ÀÀ¿ëÀ» ¸ðµÎ Áö¿øÇÏ´Â °ß°íÇÑ PCR »ýŰ踦 Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ¾ÖÇø®ÄÉÀ̼ǰú »ç¿ëÀÚ ºÎ¹®ÀÌ ½ÃÀå ÀÌ¿ëÀ» ÃËÁøÇϰí Àִ°¡?

PCR ½ÃÀåÀº ¿¬±¸, ÀÓ»ó Áø´Ü, ȯ°æ °Ë»ç, ½Äǰ ¾ÈÀü, ¹ýÀÇÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. »ý¸í°úÇÐ ¿¬±¸ ºÎ¹®¿¡¼­ qPCRÀº À¯ÀüÀÚ ¹ßÇö ÇÁ·ÎÆÄÀϸµ, SNP À¯ÀüÇü ºÐ¼®, RNA Á¤·®È­¿¡¼­ ¿©ÀüÈ÷ ÁÖÃàÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Çмú ¿¬±¸¼Ò, Á¦¾àȸ»ç ¹× »ý¸í°øÇÐ ±â¾÷µéÀº ¾à¹° °³¹ß ¿¬±¸, ¹ÙÀÌ¿À¸¶Ä¿ ¹ß±¼ ¹× ±â´ÉÀ¯ÀüüÇп¡ qPCRÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿£µåÆ÷ÀÎÆ® PCRÀº ºñ¿ë È¿À²¼ºÀÌ ³ô±â ¶§¹®¿¡ ±³À° ½ÇÇè½Ç, ³ó¾÷ »ý¸í°øÇÐ, ÀúÀÚ¿ø ÇöÀå Áø´Ü¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ PCRÀº ¾Ï ȯÀÚÀÇ ¹Ì¼¼ ÀÜÁ¸ º´º¯ °ËÃâ, ¼øÈ¯ Á¾¾ç DNA(ctDNA) ºÐ¼®, HIV ¹× BÇü °£¿°°ú °°Àº Àẹ °¨¿°ÀÇ ¹ÙÀÌ·¯½º ¾ç ÃøÁ¤ µî Á¤È®ÇÑ Á¤·®È­°¡ ÇÊ¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ Á¡Á¡ ´õ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÓ»ó ½ÇÇè½Ç ¹× ÂüÁ¶ ½ÇÇè½ÇÀº ¾×ü »ý°Ë ºÐ¼® ¹× »êÀü ½ºÅ©¸®´×À» Áö¿øÇϱâ À§ÇØ ºÐÀÚÁø´Ü ¿öÅ©Ç÷ο쿡 dPCRÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. °øÁß º¸°Ç ±â°üµµ ½ÅÈï °¨¿° ¹× Ç×±ÕÁ¦ ³»¼º °¨½Ã ÇÁ·Î±×·¥¿¡¼­ ¼¼ °¡Áö PCR ¹æ¹ýÀ» ¸ðµÎ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ¸ð´ÏÅ͸µ ±â°ü°ú ½Äǰ °Ë»ç ±â°üÀº ¿À¿° ¹°Áú, ¾Ë·¹¸£°Õ, º´¿ø±ÕÀÇ ½Å¼ÓÇÑ °ËÃâÀ» À§ÇØ PCRÀ» äÅÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ °ü·Ã¼ºÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

Àåºñ, ¿öÅ©Ç÷οì ÅëÇÕ, È­ÇÐÀû °­È­°¡ ±â¼ú µµÀÔ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

PCR ÀåºñÀÇ ±â¼ú Çõ½ÅÀº ½ÃÀå ¿ªÇÐÀ» À籸¼ºÇϰí ÀÖÀ¸¸ç, »õ·Î¿î ½Ã½ºÅÛÀº ´õ ³ôÀº ´ÙÁßÈ­ ±â´É, ´õ ºü¸¥ ¿­ »çÀÌŬ¸µ, µ¥ÀÌÅÍ ºÐ¼® ¹× °á°ú ÇØ¼®À» À§ÇÑ ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î¸¦ Á¦°øÇÕ´Ï´Ù. Ç÷¯±× ¾Ø Ç÷¹ÀÌ ½Ã¾àÀÌ ÀåÂøµÈ ¼ÒÇü º¥Ä¡Å¾ qPCR Àåºñ´Â ¼Ò±Ô¸ð ½ÇÇè½Ç ¹× ȯÀÚ ¹ÐÂøÇü °Ë»ç ȯ°æ¿¡¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÀ¯Ã¼°øÇаú µî¿ÂÁõÆø¹ýÀ» ÀÌ¿ëÇÑ ÈÞ´ë¿ë PCR ½Ã½ºÅÛÀº ÇöÀå Áø´Ü ¹× ºÐ»êµÈ °Ë»ç ȯ°æ¿¡¼­ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ÷´Ü dPCR Ç÷§ÆûÀº ¾×Àû, Ĩ, ¸¶ÀÌÅ©·ÎÀ£ ±â¹Ý ºÐÇÒ ±â¼úÀ» äÅÃÇÏ¿© Á¤È®µµ¸¦ ³ôÀÌ°í ½Ã·á ÅõÀÔ·®À» ÁÙ¿´½À´Ï´Ù.

¿öÅ©Ç÷οì ÅëÇÕµµ Å« È帧ÀÔ´Ï´Ù. ÇÏÀ̽º·çDz ½ÇÇè½Ç¿¡¼­´Â ¾×ü Ãë±Þ ·Îº¿, ¹ÙÄÚµå ÃßÀû, ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS)°ú ȣȯµÇ´Â ÀÚµ¿È­¿¡ ÀûÇÕÇÑ Ç÷§ÆûÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. µ¿°á°ÇÁ¶ ¸¶½ºÅ͹ͽº, ¸ÖƼÇ÷º½º ¾î¼¼ÀÌ Å°Æ®, µ¿°á°ÇÁ¶ ÇÁ¶óÀÌ¸Ó¿Í °°Àº ¼Ò¸ðǰ Çõ½ÅÀº ½Ã¾àÀÇ Ãë±Þ ¿À·ù¸¦ ÁÙÀ̰í ÀçÇö¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Çü±¤ ÇÁ·Îºê È­ÇÐÀº °è¼Ó ÁøÈ­Çϰí ÀÖÀ¸¸ç, ´õ ³ôÀº S/Nºñ, ´õ ³ôÀº ¸ÖƼÇ÷º½º, »õ·Î¿î Çü±¤ ¿°·á¿ÍÀÇ È£È¯¼ºÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. PCR ±â¼úÀÌ Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) ¹× CRISPR ±â¹Ý Áø´Ü°ú À¶ÇյǴ °¡¿îµ¥, PCR ±â¼úÀº Á¡ÁøÀûÀ̰í Çõ½ÅÀûÀÎ ±â¼ú Çõ½ÅÀÇ ÇýÅÃÀ» °è¼Ó ¹ÞÀ» ¼ö ÀÖ´Â ±âÃÊÀûÀÎ µµ±¸·Î ³²¾ÆÀÖ½À´Ï´Ù.

¸ðµç ¾ç½Ä¿¡ °ÉÃÄ PCR ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

½Ç½Ã°£, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ® ¸ð´Þ¸®Æ¼¿¡ °ÉÄ£ PCR ½ÃÀåÀÇ ¼ºÀåÀº ºÐÀÚÁø´ÜÀÇ ¼¼°è È®´ë, Á¤¹Ð ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý¸í°úÇÐ ¿¬±¸¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ µî ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. COVID-19 ÆÒµ¥¹ÍÀº PCR °Ë»ç¿¡ ´ëÇÑ Àνİú ÀÎÇÁ¶ó¸¦ ȹ±âÀûÀ¸·Î È®´ëÇÏ¿© º´¿øÃ¼ °¨½Ã¿Í ºÐ»êÇü ºÐÀÚÁø´ÜÀ» À§ÇÑ ¿µ±¸ÀûÀÎ Åä´ë¸¦ ¸¶·ÃÇß½À´Ï´Ù. ¾×ü »ý°Ë, ¾à¹°À¯ÀüüÇÐ, µ¿¹ÝÁø´ÜÀÇ »õ·Î¿î ÀÀ¿ë ºÐ¾ß, ƯÈ÷ Á¾¾çÇÐ ¹× ¸ÂÃã Ä¡·á ¼±Åÿ¡ ÀÖ¾î µðÁöÅÐ PCRÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¤ºÎ ÀÚ±Ý, ¿¬±¸ º¸Á¶±Ý, »êÇÐÇù·ÂÀÌ Á¦Ç° °³¹ß ¹× ºÐ¼® °ËÁõÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý µ¥ÀÌÅÍ ºÐ¼® µµ±¸ ¹× Ŭ¶ó¿ìµå ±â¹Ý °á°ú °øÀ¯¿ÍÀÇ ±â¼úÀû À¶ÇÕÀº ÀÓ»ó ¹× ¿ø°ÝÁö¿¡¼­ÀÇ PCRÀÇ À¯¿ë¼ºÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï °æÁ¦±¹¿¡¼­ ÇöÀå Áø·á ¹× ½Å¼Ó Áø´ÜÀÇ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ´Â Àúºñ¿ëÀÇ »ç¿ëÇϱ⠽¬¿î PCR ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÏ»óÀûÀÎ Áø´Ü°ú ÃÖ÷´Ü À¯Àüü ¾ÖÇø®ÄÉÀÌ¼Ç ¸ðµÎ¿¡¼­ ±× ¿ªÇÒÀÌ È®°íÈ÷ ÀÚ¸® ÀâÀº PCR ½ÃÀåÀº »ç¿ëÀÚ ±â¹Ý, Ç÷§Æû ±â´É, ¾ÖÇø®ÄÉÀÌ¼Ç ¹üÀ§ÀÇ ´Ù¾çÈ­·Î ÀÎÇØ Àå±âÀûÀÎ ¼ºÀå¼¼¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Á¦Ç°(¼Ò¸ðǰ ¹× ½Ã¾à, Àåºñ, ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º), ±â¼ú(Á¤·® ±â¼ú, µðÁöÅÐ ±â¼ú, ¿£µåÆ÷ÀÎÆ® ±â¼ú), ¿ëµµ(ÀÓ»ó ¿ëµµ, Á¶»ç ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Real-Time, Digital and End-Point PCR Market to Reach US$11.6 Billion by 2030

The global market for Real-Time, Digital and End-Point PCR estimated at US$8.7 Billion in the year 2024, is expected to reach US$11.6 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2024-2030. Consumables & Reagents, one of the segments analyzed in the report, is expected to record a 5.7% CAGR and reach US$7.2 Billion by the end of the analysis period. Growth in the Instruments segment is estimated at 3.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.4 Billion While China is Forecast to Grow at 8.9% CAGR

The Real-Time, Digital and End-Point PCR market in the U.S. is estimated at US$2.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.4 Billion by the year 2030 trailing a CAGR of 8.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.9% and 3.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.8% CAGR.

Global Real-Time, Digital and End-Point PCR Market - Key Trends & Drivers Summarized

How Are PCR Technologies Evolving Across Real-Time, Digital, and End-Point Formats?

Polymerase chain reaction (PCR) technologies have undergone significant evolution from traditional end-point PCR methods to more advanced real-time and digital PCR platforms. Each format offers distinct capabilities in terms of quantification accuracy, throughput, and sensitivity. End-point PCR, the most conventional form, detects amplified DNA at the conclusion of the reaction cycle and is primarily used for qualitative analysis. It is widely adopted in routine genotyping, mutation detection, and microbial screening due to its affordability and simplicity. However, its limitation lies in quantification precision and reaction monitoring.

Real-time PCR (qPCR), on the other hand, allows the quantification of DNA or RNA during the exponential phase of amplification, providing dynamic data through fluorescent dye detection. This makes qPCR ideal for gene expression studies, pathogen detection, and viral load analysis. Digital PCR (dPCR), the most recent advancement, divides the PCR reaction into thousands or millions of partitions, enabling absolute quantification of nucleic acid targets without the need for standard curves. Its ability to detect low-abundance targets and rare mutations with ultra-high sensitivity positions it as a critical tool in oncology, cell-free DNA analysis, and infectious disease diagnostics. Together, these three formats form a robust PCR ecosystem supporting both basic research and clinical applications.

Which Applications and User Segments Are Driving Market Utilization?

The PCR market serves a broad spectrum of applications across research, clinical diagnostics, environmental testing, food safety, and forensics. In the life sciences research segment, qPCR remains the workhorse for gene expression profiling, SNP genotyping, and RNA quantification. Academic laboratories, pharmaceutical companies, and biotech firms rely on qPCR for drug development studies, biomarker discovery, and functional genomics. End-point PCR continues to be widely used in teaching labs, agricultural biotechnology, and low-resource field diagnostics due to its cost-effectiveness.

Digital PCR is increasingly favored in applications requiring precise quantification, such as detecting minimal residual disease in cancer patients, analyzing circulating tumor DNA (ctDNA), and quantifying viral load in latent infections like HIV or hepatitis B. Clinical laboratories and reference labs are incorporating dPCR into molecular diagnostics workflows to support liquid biopsy assays and prenatal screening. Public health institutions also use all three PCR methods in surveillance programs for emerging infectious diseases and antimicrobial resistance. Environmental monitoring agencies and food testing labs employ PCR for rapid detection of contaminants, allergens, and pathogens, underscoring its cross-industry relevance.

How Are Instrumentation, Workflow Integration, and Chemistry Enhancements Influencing Technology Adoption?

Innovation in PCR instrumentation is reshaping market dynamics, with newer systems offering higher multiplexing capabilities, faster thermal cycling, and integrated software for data analytics and result interpretation. Compact, benchtop qPCR machines with plug-and-play reagents are facilitating adoption in smaller labs and near-patient testing environments. Portable PCR systems, leveraging microfluidics and isothermal amplification alternatives, are gaining traction in field diagnostics and decentralized testing settings. Meanwhile, advanced dPCR platforms are adopting droplet-, chip-, and microwell-based partitioning technologies, enhancing precision and reducing sample input requirements.

Workflow integration is another major trend. High-throughput laboratories are demanding automation-friendly platforms compatible with liquid handling robots, barcode tracking, and laboratory information management systems (LIMS). Consumable innovations-such as freeze-dried master mixes, multiplex assay kits, and lyophilized primers-are reducing reagent handling errors and improving reproducibility. Fluorescent probe chemistries continue to evolve, supporting higher signal-to-noise ratios, greater multiplexing, and compatibility with emerging fluorophores. As PCR technology converges with next-generation sequencing (NGS) and CRISPR-based diagnostics, it remains a foundational tool that continues to benefit from incremental and transformative innovation.

What Factors Are Driving the Growth of the PCR Market Across All Modalities?

The growth in the PCR market across real-time, digital, and end-point modalities is driven by several critical factors including the global expansion of molecular diagnostics, rising demand for precision medicine, and continued investment in life sciences research. The COVID-19 pandemic dramatically expanded awareness and infrastructure for PCR testing, creating a lasting foundation for pathogen surveillance and decentralized molecular diagnostics. Emerging applications in liquid biopsy, pharmacogenomics, and companion diagnostics are boosting adoption of digital PCR, particularly in oncology and personalized therapy selection.

Government funding, research grants, and academic-industry collaborations are accelerating product development and assay validation. Technological convergence with AI-powered data analysis tools and cloud-based result sharing is expanding the usability of PCR in clinical and remote settings. The growing importance of point-of-care and rapid diagnostics, especially in developing economies, is stimulating demand for low-cost, user-friendly PCR systems that support real-time monitoring. With its entrenched role in both routine diagnostics and cutting-edge genomic applications, the PCR market is expected to sustain long-term growth, driven by diversification in user base, platform capabilities, and application range.

SCOPE OF STUDY:

The report analyzes the Real-Time, Digital and End-Point PCR market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Consumables & Reagents, Instruments, Software & Services); Technology (Quantitative Technology, Digital Technology, Endpoint Technology); Application (Clinical Application, Research Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â