¼¼°èÀÇ Á¤¹Ð Åõ¿© ½ÃÀå
Precision Dosing
»óǰÄÚµå : 1793744
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 390 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,186,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,559,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Á¤¹Ð Åõ¿© ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 7,340¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 8,810¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Á¤¹Ð Åõ¿© ¼¼°è ½ÃÀåÀº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 6.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 7,340¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ò¾Æ ȯÀÚ´Â CAGR 7.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 1,390¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ëÀΠȯÀÚ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5,130¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Á¤¹Ð Åõ¿© ½ÃÀåÀº 2024³â¿¡ 5,130¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 10.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 5,700¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.1%¿Í 6.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Á¤¹Ð Åõ¿© ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±â¼ú Ç÷§ÆûÀº ¾î¶»°Ô Á¤¹Ð Åõ¿©ÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» ³ôÀ̴°¡?

Á¤¹Ð Åõ¿©´Â ÇコÄɾî, ³ó¾÷, »ê¾÷ ºÐ¾ß¿¡¼­ ÀǾàǰ, È­ÇÐÁ¦Ç°, »ý¸®È°¼º È­ÇÕ¹°ÀÇ Åõ¿© ¹æ¹ýÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ º¯È­ÀÇ Á߽ɿ¡´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, ¼¾¼­ ÅëÇÕ, ÀÚµ¿ Á¦¾î ½Ã½ºÅÛÀ» °áÇÕÇÏ¿© ³ôÀº Á¤È®µµ·Î °³º°È­µÈ Åõ¾àÀ» ½ÇÇöÇÏ´Â ±â¼úÀÌ ÀÖ½À´Ï´Ù. ¾à¹°Àü´Þ ºÐ¾ß¿¡¼­´Â Â÷¼¼´ë ÁÖÀÔ ÆßÇÁ, ½º¸¶Æ® ÁÖ»ç±â, À̽ÄÇü Àü´Þ ÀåÄ¡°¡ ¸¶ÀÌÅ©·ÎÀ¯Ã¼°øÇÐ, MEMS ¾×Ãß¿¡ÀÌÅÍ, AI ±â¹Ý ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© ȯÀÚÀÇ ³ªÀÌ, üÁß, ´ë»çÀ², À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ µû¶ó ¾à¹° Åõ¿©¸¦ ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

Æ÷µµ´ç, È£¸£¸ó ¼öÄ¡, Ç÷¾Ð µîÀÇ ¹ÙÀÌ¿À¸¶Ä¿¸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ°í ½Ç½Ã°£À¸·Î ¿ë·®À» Á¶ÀýÇÏ´Â Æó¼âÇü ·çÇÁ ½Ã½ºÅÛÀº ¸ÂÃãÇü ÀÇ·áÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â GPS, LiDAR, ´ÙÁß ½ºÆåÆ®·³ ¿µ»óó¸® µîÀ» Ȱ¿ëÇÏ¿© ºñ·á³ª ÀÛ¹°º¸È£Á¦¸¦ Á¤È®ÇÑ ¾ç¸¸Å­ »ìÆ÷ÇÏ¿© ȯ°æ À¯Ãâ°ú ÅõÀÔ¹° ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â À¯·® °¡º¯Çü ¾îÇø®ÄÉÀÌÅÍ, ·Îº¿ »ìÆ÷±â µîÀÇ Á¤¹Ð µµÆ÷ µµ±¸°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷¿ë ¾ÖÇø®ÄÉÀ̼ÇÀÇ °æ¿ì, PLC¿Í ÅëÇÕµÈ ½º¸¶Æ® ÅäÃâ ¹ëºê ¹× Á¤·® µð½ºÆæ¼­´Â ½Äǰ, È­ÇÐ ¹× È­Àåǰ Á¦Á¶¿¡¼­ ÅäÃâ Á¤È®µµ¸¦ Çâ»ó½Ã۰í ÀϰüµÈ Á¦Ç° ǰÁú°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù.

Á¤¹Ð Åõ¿© ¼Ö·ç¼ÇÀÇ ¼ö¿ä¸¦ °¡Àå ¸¹ÀÌ °ßÀÎÇÏ´Â ÀÀ¿ë ºÐ¾ß´Â?

ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â Á¾¾çÇÐ, ´ç´¢º´ °ü¸®, ¸¶ÃëÇÐ, ÁßȯÀÚ Ä¡·á¿¡¼­ Á¤¹Ð Åõ¿©°¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾àµ¿ÇÐ ¸ðµ¨¸µ¿¡ ±â¹ÝÇÑ °³º°È­µÈ È­Çпä¹ý ÇÁ·ÎÅäÄÝÀÌ °³¹ßµÇ¾î È¿´ÉÀ» À¯ÁöÇϸ鼭 µ¶¼ºÀ» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ¾Ë°í¸®Áò¿¡ ±â¹ÝÇÑ º¼·¯½º Á¶Àý ±â´ÉÀ» °®Ãá Àν¶¸° Àü´Þ ½Ã½ºÅÛÀº ´ç´¢º´ ȯÀÚ°¡ º¸´Ù ¾ö°ÝÇÑ Ç÷´ç Á¶ÀýÀ» À¯ÁöÇϵµ·Ï µ½°í ÀÖ½À´Ï´Ù. Åõ¾à ¹Î°¨µµ°¡ Áß¿äÇÑ ¼Ò¾Æ ¹× ³ëÀÎÀÇ·á ºÐ¾ß¿¡¼­´Â üǥ¸éÀû(BSA) ¹× Àå±â ±â´É Á¶ÀýÇü Åõ¾à Ç÷§ÆûÀÇ Ã¤Åõµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

³ó¾÷ ºÐ¾ß¿¡¼­´Â Á¤¹Ð Åõ¿© µµ±¸°¡ °íºÎ°¡°¡Ä¡ ÀÛ¹°, ¾ç½Ä¾÷, ¿Â½Ç Àç¹è¿¡ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¿µ¾çºÐ Çǵå¹é ·çÇÁ¸¦ °®Ãá ½Ãºñ ½Ã½ºÅÛÀº ¹° ºÎÁ· Áö¿ªÀÇ »Ñ¸® ¿µ¿ª È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. Ãà»ê ºÐ¾ß¿¡¼­´Â ½º¸¶Æ® »ç·á Åõ¿© ½Ã½ºÅÛÀÌ ¼ºÀå·ü ÃÖÀûÈ­, Ç×»ýÁ¦ ¿À³²¿ë °¨¼Ò, »ç·á »ý»ê ºñÀ² ÃßÀû¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀǾàǰ Á¦Á¶ ºÐ¾ß¿¡¼­´Â ÇÁ¸®Çʵå ÁÖ»ç±â ¶óÀÎ, ¹«±Õ ÃæÀü ½Ã½ºÅÛ, µ¿°á°ÇÁ¶ ¾àǰÀÇ À籸¼ºÀ» À§ÇØ Á¤¹Ð Åõ¿©¸¦ äÅÃÇÏ¿© ¹èÄ¡ÀÇ Àϰü¼º°ú ±ÔÁ¦ ÃßÀû¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

±ÔÁ¦ µ¿Çâ°ú ¼ÒºñÀÚ ±â´ë´Â ±â¼ú äÅÃÀ» ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?

FDA, EMA, CDSCO µî ±ÔÁ¦ ±â°üÀº °³º°È­µÈ Åõ¾à°ú °á°ú ±â¹Ý Åõ¾àÀÇ Á߿伺À» °­Á¶Çϸç, ÀǾàǰ °³¹ßÀÚ¿Í ÀÇ·á ¼­ºñ½º Á¦°øÀÚ¿¡°Ô Á¤¹Ð Åõ¿© Ç÷§ÆûÀÇ Ã¤ÅÃÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¸ðµ¨ Á¤º¸ ÀǾàǰ °³¹ß(MIDD) ¹× »ý¸®Àû ¾àµ¿ÇÐ(PBPK) ¸ðµ¨¸µ¿¡ ´ëÇÑ ÁöħÀº Á¦¾àȸ»çµéÀÌ ÀǾàǰ ½ÂÀÎ ÇÁ·Î¼¼½º¿¡ Åõ¿© ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÒ °ÍÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ³ó¾÷ÀÇ È¯°æ ±ÔÁ¦´Â ¿µ¾çºÐ À¯Ãâ, ³ó¾àÀÇ µå¸®ÇÁÆ®, ÅõÀÔ¹° °ú´Ù »ìÆ÷¿¡ µû¸¥ ¿Â½Ç °¡½º ¹èÃâÀ» ¾ïÁ¦Çϱâ À§ÇØ Á¤¹Ð Åõ¿© µµ±¸ÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÇコÄɾî, Áö¼Ó°¡´ÉÇÑ ³ó¾÷, Ŭ¸° ¶óº§ ½Äǰ »ý»ê¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë´Â Á¦Ç° °³¹ß ÆÄÀÌÇÁ¶óÀÎÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ȯÀÚ´Â ºÎÀÛ¿ëÀÌ ÀûÀº ¾ÈÀüÇÑ ¾à¹°À» ¿øÇϰí, ¼ÒºñÀÚ´Â ÀÜ·ù¹°ÀÌ ¾ø´Â °úÀÏ, ä¼Ò, Ãà»ê¹°À» ¿øÇÕ´Ï´Ù. ±× °á°ú, ¼­ºñ½º Á¦°ø¾÷ü, ³ó¾÷ ±â¼ú ½ºÅ¸Æ®¾÷, µðÁöÅÐ Çコ Ç÷§ÆûÀÌ Áø´Ü, Åõ¾à, ¸ð´ÏÅ͸µÀ» ÅëÇÕÇÏ´Â »ýŰ踦 ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¾ÈÀü¼º, »óÈ£¿î¿ë¼º, »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º´Â ±â¼úÀÇ ¼ö¿ë°ú Àå±âÀûÀΠäÅÿ¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

¼¼°è Á¤¹Ð Åõ¿© ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¼¼°è Á¤¹Ð Åõ¿© ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇÏ´Â °ÍÀº ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Åõ¾à Á¤È®µµ¿¡ ´ëÇÑ ±ÔÁ¦ Àǹ«È­, °ø±Þ¸Á µðÁöÅÐÈ­ µîÀÔ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â °¡Ä¡ ±â¹Ý ÀÇ·á·ÎÀÇ ÀüȯÀÌ º´¿ø°ú º¸Çè»ç¿¡°Ô Åõ¾à ¿À·ù¸¦ ÁÙÀÌ°í °³ÀÎÈ­µÈ Åõ¾à µµ±¸¸¦ ÅëÇØ Ä¡·á °á°ú¸¦ °³¼±Çϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ÀÓ»óÆÇ´ÜÁö¿ø½Ã½ºÅÛ(CDSS)Àº ÀüÀڰǰ­±â·Ï(EHR)°ú ÅëÇյǾî ȯÀÚ ÇÁ·ÎÇʰú °Ë»ç °á°ú¿¡ µû¶ó ½Ç½Ã°£À¸·Î ¿ë·®À» Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï ±ÇÀåÇϰí ÀÖ½À´Ï´Ù.

³ó¾÷ÀÇ °æ¿ì, ±âÈĺ¯È­¿Í ÀÚ¿ø ºÎÁ·À¸·Î ÀÎÇØ ³óºÎµéÀº ¼¾¼­ ±â¹Ý ¹× µ¥ÀÌÅÍ ±â¹Ý Åõ¾à Ç÷§ÆûÀ» ÅëÇØ ÅõÀÔ¹° »ç¿ë È¿À²À» ±Ø´ëÈ­ÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. IoT Áö¿ø »ìÆ÷±â, µå·Ð ±â¹Ý ¾îÇø®ÄÉÀÌÅÍ, À§¼º °¡ÀÌµå °ü°³ ½Ã½ºÅÛÀº ¼Ò±Ô¸ðºÎÅÍ ´ë±Ô¸ð ³óÀå °æ¿µ¿¡ À̸£±â±îÁö Á¤¹Ð µµ±¸¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ º¸Á¶±Ý°ú Áö¼Ó°¡´É¼º¿¡ ¿¬µ¿µÈ ³ó¾÷ ´ëÃâÀº ƯÈ÷ ½ÅÈï °æÁ¦±¹¿¡¼­ ÀÌ·¯ÇÑ ±â¼úÀ» º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

½Äǰ °¡°ø, È­Àåǰ, È­ÇÐ µîÀÇ »ê¾÷Àº ǰÁú ±âÁØÀ» À¯ÁöÇϰí, ¿øÀÚÀç ³¶ºñ¸¦ ÁÙÀ̰í, ûÁ¤ Á¦Á¶ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϱâ À§ÇØ Á¤¹Ð Åõ¿©¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. B. Braun, Bayer CropScience, Thermo Fisher, Syngenta µî ÁÖ¿ä ±â¾÷µéÀº µðÁöÅÐ Ç÷§Æû, AI ÅëÇÕ, Ŭ¶ó¿ìµå ¿¬°á¿¡ ÅõÀÚÇÏ¿© Åõ¿© Á¦Ç° Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¼¾¼­, ±â°èÇнÀ, ¿ø°Ý Áø´ÜÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î Á¤¹Ð Åõ¿© ½ÃÀåÀº ¿©·¯ ºÐ¾ß¿¡¼­ Áö¼ÓÀûÀÎ ¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, È¿À²¼º, ¾ÈÀü¼º, °³ÀÎÈ­¸¦ ´ë±Ô¸ð·Î ½ÇÇöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

ȯÀÚ À¯Çü(¼Ò¾Æ ȯÀÚ, ³ëÀΠȯÀÚ, ´Ù¾àÁ¦ º¹¿ë ȯÀÚ, ¸»´Ü Àå±â ±â´É Àå¾Ö ȯÀÚ, ±âŸ ȯÀÚ À¯Çü), ¼ÒÇÁÆ®¿þ¾î(À¥ ±â¹Ý ¼ÒÇÁÆ®¿þ¾î, µ¥½ºÅ©Åé ±â¹Ý ¼ÒÇÁÆ®¿þ¾î), ¾à¹° Á¾·ù(Ç×»ýÁ¦, Ç×Áø±ÕÁ¦, ¸é¿ª¾ïÁ¦Á¦, Ç×°æ·ÃÁ¦, Ç×Á¾¾çÁ¦, Ç׿ì¿ïÁ¦, ±âŸ ¾à¹° Á¾·ùº°)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø·Î ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Precision Dosing Market to Reach US$273.4 Million by 2030

The global market for Precision Dosing estimated at US$188.1 Million in the year 2024, is expected to reach US$273.4 Million by 2030, growing at a CAGR of 6.4% over the analysis period 2024-2030. Pediatric Patient, one of the segments analyzed in the report, is expected to record a 7.9% CAGR and reach US$113.9 Million by the end of the analysis period. Growth in the Geriatrics Patient segment is estimated at 6.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$51.3 Million While China is Forecast to Grow at 10.3% CAGR

The Precision Dosing market in the U.S. is estimated at US$51.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$57.0 Million by the year 2030 trailing a CAGR of 10.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 6.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.2% CAGR.

Global Precision Dosing Market - Key Trends & Drivers Summarized

How Are Technology Platforms Enhancing Accuracy and Efficiency in Precision Dosing?

Precision dosing is transforming how drugs, chemicals, and bioactive compounds are administered across healthcare, agriculture, and industrial sectors. At the heart of this transformation are technologies that combine real-time data analytics, sensor integration, and automated control systems to deliver highly accurate and individualized dosing. In pharmaceuticals, next-generation infusion pumps, smart syringes, and implantable delivery devices are leveraging microfluidics, MEMS actuators, and AI-based algorithms to optimize drug administration based on a patient’s age, weight, metabolic rate, and genetic profile.

Closed-loop systems, which adjust dosing in real-time based on continuous monitoring of biomarkers such as glucose, hormone levels, or blood pressure, are becoming central to personalized medicine. In agriculture, precision dosing tools-such as variable-rate applicators and robotic sprayers-are using GPS, LiDAR, and multispectral imaging to deliver fertilizers and crop protection agents in exact quantities, minimizing environmental runoff and input wastage. In industrial applications, smart dosing valves and volumetric dispensers integrated with PLCs are improving dosing precision in food, chemical, and cosmetics manufacturing, ensuring consistent product quality and regulatory compliance.

Which Application Areas Are Driving the Most Demand for Precision Dosing Solutions?

In healthcare, precision dosing is gaining widespread use in oncology, diabetes management, anesthesiology, and critical care. Personalized chemotherapy protocols are being developed based on pharmacokinetic modeling, reducing toxicity while maintaining efficacy. Insulin delivery systems with algorithm-based bolus adjustments are helping diabetic patients maintain tighter glycemic control. Pediatric and geriatric care, where dosing sensitivity is crucial, are also witnessing increased adoption of body surface area (BSA) and organ-function-adjusted dosing platforms.

In agriculture, precision dosing tools are being deployed extensively in high-value crops, aquaculture, and greenhouse farming. Fertigation systems with real-time nutrient feedback loops are improving root-zone efficiency in water-scarce regions. In animal husbandry, smart feed dosing systems are helping optimize growth rates, reduce antibiotic misuse, and track feed-to-output ratios. The pharmaceutical manufacturing sector is employing precision dosing in prefilled syringe lines, aseptic filling systems, and lyophilized drug reconstitution, ensuring batch consistency and regulatory traceability.

How Are Regulatory Trends and Consumer Expectations Driving Technology Adoption?

Regulatory agencies such as the FDA, EMA, and CDSCO are emphasizing the importance of individualized dosing and outcome-based medication, prompting drug developers and healthcare providers to adopt precision dosing platforms. Guidance on Model-Informed Drug Development (MIDD) and physiologically based pharmacokinetic (PBPK) modeling is encouraging pharmaceutical companies to build dosing algorithms into drug approval processes. Similarly, environmental regulations in agriculture are promoting the use of precision dosing tools to curb nutrient runoff, pesticide drift, and greenhouse gas emissions from over-application of inputs.

Consumer expectations around personalized healthcare, sustainable farming, and clean-label food production are reshaping product development pipelines. Patients are demanding safer drug regimens with fewer side effects, while consumers want residue-free fruits, vegetables, and animal products. As a result, service providers, agritech startups, and digital health platforms are building ecosystems that combine diagnostics, dosing, and monitoring into unified offerings. Data security, interoperability, and user-friendly interfaces are becoming crucial factors in technology acceptance and long-term adoption.

What Forces Are Accelerating the Growth of the Global Precision Dosing Market?

The growth in the global precision dosing market is driven by rising demand for personalized medicine, regulatory mandates for dosing accuracy, and digitalization of supply chains. In healthcare, the shift toward value-based care is pushing hospitals and insurers to reduce medication errors and improve treatment outcomes through individualized dosing tools. Clinical decision support systems (CDSS) are integrating with electronic health records (EHRs) to recommend dosage adjustments in real-time based on patient profiles and laboratory results.

In agriculture, climate change and resource scarcity are compelling farmers to maximize input use efficiency through sensor-based and data-driven dosing platforms. IoT-enabled sprayers, drone-based applicators, and satellite-guided irrigation systems are expanding access to precision tools across small and large farm operations. Government subsidies and sustainability-linked agri-loans are making these technologies more accessible, particularly in developing economies.

Industries such as food processing, cosmetics, and chemicals are embracing precision dosing to maintain quality standards, reduce raw material wastage, and support clean manufacturing initiatives. Major players including B. Braun, Bayer CropScience, Thermo Fisher, and Syngenta are investing in digital platforms, AI integration, and cloud connectivity to strengthen their dosing product portfolios. With ongoing advances in biosensors, machine learning, and remote diagnostics, the precision dosing market is expected to register sustained growth across multiple sectors, enabling efficiency, safety, and personalization at scale.

SCOPE OF STUDY:

The report analyzes the Precision Dosing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Patient Type (Pediatric Patient, Geriatrics Patient, Patients on Polypharmacy, Patients with End Organ Dysfunction, Other Patient Types); Software (Web-based Software, Desktop-based Software); Drug Class (Antibiotics, Antimycotics, Immunosuppressives, Antiepileptics, Antitumoral Drugs, Antidepressants, Other Drug Classes)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â