¼¼°èÀÇ °íÈ­Áú Áöµµ ½ÃÀå
High Definition Maps
»óǰÄÚµå : 1792920
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 367 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°íÈ­Áú Áöµµ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 318¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 211¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °íÈ­Áú Áöµµ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 7.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 318¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î ±¸¼º¿ä¼Ò´Â CAGR 7.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 186¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 57¾ï ´Þ·¯, Áß±¹Àº CAGR 11.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ °íÈ­Áú Áöµµ ½ÃÀåÀº 2024³â¿¡ 57¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 67¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 11.2%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.5%¿Í 6.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °íÈ­Áú Áöµµ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°íÈ­Áú Áöµµ°¡ ÀÚÀ²ÁÖÇàÂ÷ Áö´ÉÀÇ Åä´ë°¡ µÉ ¼ö ÀÖÀ»±î?

°íÈ­Áú(HD) Áöµµ´Â ±âÁ¸ µðÁöÅÐ Áöµµº¸´Ù ¸î ¹è ÀÌ»óÀÇ ±íÀÌ¿Í Á¤È®µµ¸¦ Á¦°øÇϸç, ÀÚÀ²ÁÖÇàÂ÷(AV) ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÏ»óÀûÀÎ GPS ±â¹Ý ¾ÖÇø®ÄÉÀ̼ǿ¡ »ç¿ëµÇ´Â Ç¥ÁØ Áöµµ µµ±¸¿Í ´Þ¸®, HD Áöµµ´Â ¼¾Æ¼¹ÌÅÍ ´ÜÀ§ÀÇ Á¤È®µµ¿Í Â÷¼± °æ°è¼±, µµ·Î °æ»çµµ, ±³Åë Ç¥ÁöÆÇ, Ⱦ´Üº¸µµ, ³ë¸é À¯Çü µî ±â°è ¼öÁØÀÇ ÀÇ»ç°áÁ¤¿¡ ÇʼöÀûÀÎ ·¹À̾ ÄÁÅØ½ºÆ® Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áöµµ´Â °¨°¢À» º¸¿ÏÇÏ´Â ¿ªÇÒÀ» Çϸç, Ä«¸Þ¶ó³ª LiDAR¿Í °°Àº ½Ã°¢ ¼¾¼­°¡ ³¯¾¾³ª Àå¾Ö¹°¿¡ ÀÇÇØ ¼Õ»óµÈ °æ¿ì¿¡µµ ÀÚÀ²ÁÖÇàÂ÷°¡ ¸Å¿ì Á¤È®ÇÏ°Ô ÀÚ±â À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. HD¸ÊÀÇ ¼¼ºÐÈ­´Â º¸´Ù ¿øÈ°ÇÑ Â÷¼± º¯°æ, Á¤È®ÇÑ °æ·Î °èȹ, ¾ÈÀü¼º Çâ»óÀ» À§ÇÑ ¿¹Ãø ¸ðµ¨¸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà »ê¾÷ÀÌ ÇÁ·ÎÅäŸÀÔ Å×½ºÆ®¿¡¼­ ½Ç»ýȰ¿¡ Àû¿ëÇÏ´Â ´Ü°è·Î ¹ßÀüÇÔ¿¡ µû¶ó, ¿ªµ¿ÀûÀ̰í Áö¼ÓÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â HD Áöµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¤Àû Áöµµ¿Í ´Þ¸® AV¿ë HD Áöµµ´Â °ø»ç Áö¿ª, Àӽà Â÷¼± º¯°æ, »õ·Î¿î ±³Åë ±ÔÁ¦¸¦ ¹Ý¿µÇϱâ À§ÇØ ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇϸç, Â÷·®±º ¹× µµ·Îº¯ ¼¾¼­·ÎºÎÅÍÀÇ Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ Çǵå¹é ·çÇÁ°¡ ÇÊ¿äÇÕ´Ï´Ù. °¢ ¾÷üµéÀº AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ ÅõÀÚÇÏ¿© ´ë±Ô¸ð HD¸ÊÀÇ Ã³¸®¿Í ¾÷µ¥ÀÌÆ®¸¦ ÀÚµ¿È­Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ HD¸ÊÀÇ ¿ªÇÒÀº ¼öµ¿Àû Ž»ö¿¡¼­ ´Éµ¿Àû Àνİú ¿¹ÃøÀ¸·Î È®´ëµÇ¾î AV ±â¼ú ½ºÅÃÀÇ Áß¿äÇÑ ºÎºÐÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. HD¸ÊÀÇ °³¹ßÀº ÇöÀçÀÇ ¹ÝÀÚÀ²ÁÖÇàÀ» °¡´ÉÇÏ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ÀÇ ¿ÏÀüÀÚÀ²ÁÖÇàÀ» À§ÇÑ Ãʼ®À» ´ÙÁö´Â ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

AI, ¼¾¼­, Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ À¶ÇÕÀº HD¸Ê Á¦ÀÛÀ» ¾î¶»°Ô °­È­Çϰí Àִ°¡?

°íÈ­Áú Áöµµ Á¦ÀÛÀº ÀΰøÁö´É(AI), °íÇØ»óµµ ¼¾¼­, ¿§Áö ÄÄÇ»ÆÃ, Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ »ýÅÂ°è µî ÷´Ü ±â¼úÀÇ À¶ÇÕÀ» ÅëÇØ Çõ½ÅÀûÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. ¿À´Ã³¯ HD¸Ê °³¹ßÀº ´õ ÀÌ»ó ¼öÀÛ¾÷À̳ª Ãø·®»ç°¡ ÁÖµµÇÏ´Â ÀÛ¾÷ÀÌ ¾Æ´Ï¶ó LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó ½Ã½ºÅÛ, GNSS, °ü¼ºÇ×¹ýÀåÄ¡ÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ´Â ¿ªµ¿ÀûÀÎ ±â¼ú ÁÖµµÇü ÇÁ·Î¼¼½º°¡ µÇ¾ú½À´Ï´Ù. ÀÌ ¼¾¼­ À¶ÇÕÀ» ÅëÇØ ½ÇÁ¦ ȯ°æÀ» ¸Å¿ì ¼¼¹ÐÇÏ°í ´ÙÃþÀûÀ¸·Î Ç¥ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ÀÌ ¹æ´ëÇÑ ¾çÀÇ ¿ø½Ã µ¥ÀÌÅ͸¦ ÇØ¼®ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Â÷¼± Ç¥ÁöÆÇ ½Äº°, µµ·Î Ç¥ÁöÆÇ ºÐ·ù, ¿¬¼® ¸ð¾ç ÀνÄ, ¹Ì¹¦ÇÑ È¯°æ º¯È­ °¨Áö µîÀÔ´Ï´Ù. µ¥ÀÌÅͰ¡ 󸮵Ǹé Ãæ½Çµµ ³ôÀº Áöµµ·Î Á¤¸®µÇ°í, Å©¶ó¿ìµå ¼Ò½ÌÀ» ÅëÇÑ Çǵå¹é ·çÇÁ, ƯÈ÷ Ä¿³ØÆ¼µå ¼¾¼­°¡ ÀåÂøµÈ Â÷·®ÀÌ ½Ç½Ã°£À¸·Î °üÃø µ¥ÀÌÅ͸¦ Ŭ¶ó¿ìµå¿¡ ¾÷·ÎµåÇÏ´Â Çǵå¹é ·çÇÁ¸¦ ÅëÇØ Áö¼ÓÀûÀ¸·Î °³¼±µË´Ï´Ù. ÀÌ·¯ÇÑ ¾÷µ¥ÀÌÆ®´Â ƯÈ÷ ºü¸£°Ô º¯È­ÇÏ´Â µµ½Ã ȯ°æ¿¡¼­ HD¸ÊÀÇ Á¤È®¼º°ú À¯È¿¼ºÀ» À¯ÁöÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀ» ÅëÇÕÇϸé ĸó ÁöÁ¡¿¡ °¡±î¿î °÷¿¡¼­ ´õ ºü¸¥ µ¥ÀÌÅÍ Ã³¸®°¡ °¡´ÉÇØÁ® ´ë±â ½Ã°£ÀÌ ´ÜÃàµÇ°í ½Ç½Ã°£ ÀÀ´ä¼ºÀÌ Çâ»óµË´Ï´Ù. ÇÑÆí, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó´Â È®À强À» º¸ÀåÇϰí Áöµµ Á¦°ø¾÷ü°¡ Å×¶ó¹ÙÀÌÆ®±Þ ÁöÇü°ø°£ µ¥ÀÌÅ͸¦ ¹æ´ëÇÑ Â÷·®°ú Áö¿ª¿¡ °ÉÃÄ °ü¸® ¹× ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀÇ °áÇÕÀ¸·Î HD¸ÊÀº Çö½Ç ¼¼°è¿Í º´ÇàÇÏ¿© ÁøÈ­ÇÏ´Â »ì¾ÆÀÖ´Â ½Ã½ºÅÛÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÀÚÀ²ÁÖÇàÀÇ ¿ä±¸ »çÇ×À» Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹°·ù, µµ½Ã °èȹ, ½º¸¶Æ® ÀÎÇÁ¶ó °ü¸®¿Í °°Àº ´Ù¸¥ ºÐ¾ß¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

º¸´Ù ±¤¹üÀ§ÇÑ ¸ðºô¸®Æ¼ »ýŰ谡 °íÈ­Áú ¸ÅÇÎ ±â´ÉÀÇ ÇýÅÃÀ» ¹Þ°í Àִ°¡?

°íÈ­Áú Áöµµ¸¦ µÑ·¯½Ñ ³íÀÇ´Â ÀÚÀ²ÁÖÇàÂ÷¿¡ ÃÊÁ¡ÀÌ ¸ÂÃçÁö´Â °æ¿ì°¡ ¸¹Áö¸¸, ÀÌ ±â¼úÀÌ °®´Â Àǹ̴ ¿îÀüÀÚ ¾ø´Â ±³Åë¼ö´Ü¿¡ ±¹ÇѵÇÁö ¾Ê°í º¸´Ù ±¤¹üÀ§ÇÑ ¸ðºô¸®Æ¼¿Í ÀÎÇÁ¶ó »ýŰ迡±îÁö È®ÀåµË´Ï´Ù. ´ëÁß±³Åë¿¡¼­ HD¸ÊÀº °æ·Î ÃÖÀûÈ­, µµ·Î Æó¼â¿¡ µû¸¥ µ¿Àû °æ·Î º¯°æ, ±³Åë °ü¸® Ç÷§Æû°úÀÇ ½Ç½Ã°£ ÅëÇÕÀ» Áö¿øÇÏ¿© ¿îÇà È¿À²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹°·ù ¹× ¶ó½ºÆ® ¸¶ÀÏ ¹è¼Û¿¡¼­´Â ¼¾Æ¼¹ÌÅÍ ´ÜÀ§ÀÇ Á¤È®µµ·Î Ž»öÇÒ ¼ö ÀÖ´Â °ÍÀÌ Ã¢°í ÀÚµ¿È­, Ä¿ºê»çÀÌµå µå·Ó¿ÀÇÁ, µå·ÐÀ» ÅëÇÑ ¶ó¿ìÆÃ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, HD¸ÊÀº ½º¸¶Æ® ½ÃƼ °³¹ß¿¡µµ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÎÇÁ¶ó À¯Áö°ü¸®, µµ½Ã ¼³°è, ºñ»ó ´ëÀÀ °èȹÀ» Áö¿øÇÏ´Â »ó¼¼ÇÑ Áö¸®Àû °ø°£ ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, HD Áöµµ¿Í IoT ¼¾¼­ µ¥ÀÌÅ͸¦ ÁßøÇÏ¿© µµ½Ã´Â ±³Åë È帧À» ¸ð´ÏÅ͸µÇϰí, ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ¿© ½ÅÈ£µî°ú º¸ÇàÀÚ ½ÅÈ£¸¦ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. Åë½Å»çµéµµ µµ½Ã °æ°üÀÇ ¹Ì¼¼ÇÑ ÁöÇüÀ» ÆÄ¾ÇÇÏ¿© 5G Ÿ¿ö ¹èÄ¡¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ HD¸Ê Ȱ¿ëÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¸Çè»ç ¹× ±ÔÁ¦±â°üÀº HD¸ÊÀ» Ȱ¿ëÇÏ¿© »ç°í µ¥ÀÌÅ͸¦ Á¤¹ÐÇÏ°Ô ºÐ¼®ÇÏ¿© ±³Åë»ç°í °ú½Ç ÆÇ´Ü ¹× µµ·Î ¾ÈÀü ÇÁ·ÎÅäÄÝÀÇ ÃÖÀûÈ­¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷°èÀÇ µðÁöÅÐÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó HD¸ÊÀº °ø°£ ÀÎÅÚ¸®Àü½ºÀÇ °­·ÂÇÑ ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, °íÃæ½Çµµ ȯ°æ ÀνÄÀÌ ÇÊ¿äÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. HD¸ÊÀÇ ¿ªÇÒÀº ¸ðºô¸®Æ¼»Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ÀÇ µµ½Ã¿Í ¼­ºñ½º¸¦ µÞ¹ÞħÇÏ´Â µðÁöÅÐ ÀÎÇÁ¶ó¿¡ À־µµ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

°íÈ­Áú ÁöµµÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â ½ÃÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀϱî?

°íÈ­Áú Áöµµ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±³Åë ¸ðµ¨ÀÇ º¯È­, ½Ç½Ã°£ ÁöÇü°ø°£ ÀÎÅÚ¸®Àü½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ±× ÃÖÀü¼±¿¡ ÀÖ´Â °ÍÀÌ °¡¼ÓÈ­ÇÏ´Â ÀÚÀ²ÁÖÇàÂ÷ ¹× ¹ÝÀÚÀ²ÁÖÇàÂ÷ °³¹ßÀ̸ç, À̵éÀº Á¤È®ÇÑ À§Ä¡ ÆÄ¾Ç, ³»ºñ°ÔÀ̼Ç, ¾ÈÀü È®º¸¸¦ À§ÇØ HD¸Ê¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÇÏÀÌÅ×Å© ±â¾÷µéÀÌ ´õ ³ôÀº ¼öÁØÀÇ Â÷·® ÀÚÀ²¼ºÀ» À§ÇØ °æÀïÇÏ´Â °¡¿îµ¥, ½Å·ÚÇÒ ¼ö ÀÖ°í ½Ç½Ã°£À¸·Î ÀÚÁÖ ¾÷µ¥ÀÌÆ®µÇ´Â HD Áöµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó È®´ëµÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Ä¿³ØÆ¼µå Â÷·®°ú ½º¸¶Æ® ÀÎÇÁ¶óÀÇ È®»êÀ¸·Î HD¸ÊÀ» °­È­ÇÏ°í °³¼±ÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖÀ¸¸ç, Áö¼ÓÀûÀÎ °³¼±À̶ó´Â Àڱ⠰­È­Çü »ýŰ谡 ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù. µµ½ÃÈ­¿Í ÷´Ü µµ·Î±³Åë½Ã½ºÅÛ(ITS)ÀÇ ÃâÇöÀ¸·Î µ¿Àû ±³Åë Á¦¾î, ½ÂÂ÷°øÀ¯ Ç÷§Æû, º¸ÇàÀÚ ¶ó¿ìÆÃ ±â¼ú°ú ¿øÈ°ÇÏ°Ô ¿¬µ¿ÇÒ ¼ö ÀÖ´Â °íÁ¤¹Ð Áöµµ µµ±¸ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. »ó¾÷Àû °üÁ¡¿¡¼­ º¼ ¶§, ÀÚµ¿È­¿Í Á¤È®ÇÑ ³»ºñ°ÔÀ̼ÇÀÌ »ý»ê¼º°ú ¾ÈÀü¿¡ ÇʼöÀûÀÎ ¹°·ù, ³ó¾÷, ±¤¾÷, °Ç¼³ µîÀÇ »ê¾÷¿¡¼­ HD¸ÊÀÌ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ ¹× µµ½Ã °èȹ ´ç±¹ÀÇ ½º¸¶Æ® ¸ðºô¸®Æ¼ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ HD¸ÊÀÇ °³¹ß ¹× º¸±ÞÀ» ÀçÁ¤Àû, Á¤Ã¥ÀûÀ¸·Î Áö¿øÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀûÀ¸·Î´Â ¼¾¼­ÀÇ Àú°¡È­, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ °³¼±, ¿§Áö/Ŭ¶ó¿ìµå ÇÏÀ̺긮µå ÄÄÇ»ÆÃ ¸ðµ¨ÀÇ ºÎ»óÀ¸·Î ÀÎÇØ HD Áöµµ Á¦ÀÛÀÌ ´õ¿í È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¼ÒºñÀÚ¿Í ±â¾÷ ¸ðµÎ ´õ ºü¸£°í, ´õ ¾ÈÀüÇϰí, ´õ ½º¸¶Æ®ÇÑ ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ» ¿øÇϰí Àֱ⠶§¹®¿¡ HD¸ÊÀº ¼±ÅÃÀûÀÎ È®Àå ±â´ÉÀÌ ¾Æ´Ñ ¿©·¯ ºÐ¾ß¿¡ °ÉÄ£ µðÁöÅÐ ÀüȯÀÇ ´ÙÀ½ ´Ü°è¿¡ ÀÖ¾î Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(Çϵå¿þ¾î ±¸¼º¿ä¼Ò, ¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò, ¼­ºñ½º ±¸¼º¿ä¼Ò), Àü°³(Ŭ¶ó¿ìµå Àü°³, ¿ÂÇÁ·¹¹Ì½º Àü°³), ÃÖÁ¾»ç¿ëÀÚ(ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, ¹æÀ§¡¤Ç×°ø¿ìÁÖ ÃÖÁ¾»ç¿ëÀÚ, ÀÎÅÍ³Ý ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global High Definition Maps Market to Reach US$31.8 Billion by 2030

The global market for High Definition Maps estimated at US$21.1 Billion in the year 2024, is expected to reach US$31.8 Billion by 2030, growing at a CAGR of 7.1% over the analysis period 2024-2030. Hardware Component, one of the segments analyzed in the report, is expected to record a 7.8% CAGR and reach US$18.6 Billion by the end of the analysis period. Growth in the Software Component segment is estimated at 5.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$5.7 Billion While China is Forecast to Grow at 11.2% CAGR

The High Definition Maps market in the U.S. is estimated at US$5.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.7 Billion by the year 2030 trailing a CAGR of 11.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 6.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.7% CAGR.

Global High Definition Maps Market - Key Trends & Drivers Summarized

Are High Definition Maps Setting the Foundation for Autonomous Vehicle Intelligence?

High definition (HD) maps are becoming a cornerstone of autonomous vehicle (AV) navigation systems, offering a depth and precision that surpasses traditional digital maps by several orders of magnitude. Unlike standard mapping tools used for everyday GPS-based applications, HD maps deliver centimeter-level accuracy and layer-by-layer contextual information-such as lane boundaries, road gradients, traffic signs, crosswalks, and road surface types-which are critical for machine-level decision-making. These maps act as a sensory supplement, allowing self-driving cars to localize themselves with extraordinary precision, even when visual sensors like cameras or LiDAR are impaired by weather or obstacles. The granularity of HD maps enables predictive modeling for smoother lane changes, precise route planning, and enhanced safety. As the autonomous driving industry evolves from prototype testing to real-world deployment, the demand for dynamic and constantly updated HD mapping data is intensifying. Unlike static maps, HD maps for AVs need real-time updates to reflect construction zones, temporary lane shifts, and new traffic regulations-requiring a continuous data feedback loop from vehicle fleets and roadside sensors. Companies are investing in AI and machine learning algorithms to automate the processing and updating of HD maps at scale, which is essential for covering vast urban and rural road networks. The role of HD maps is thus expanding from passive navigation to active perception and prediction, forming a vital piece of the AV technology stack. Their development is not only enabling the current wave of semi-autonomous driving but also laying the groundwork for full autonomy in the future.

How Is the Convergence of AI, Sensors, and Cloud Platforms Enhancing HD Map Creation?

The creation of high definition maps is being revolutionized by the convergence of advanced technologies such as artificial intelligence (AI), high-resolution sensors, edge computing, and cloud-based data ecosystems. Today, HD map development is no longer a purely manual or surveyor-led task; it’s a dynamic, technology-driven process that blends data from LiDAR, radar, camera systems, GNSS, and inertial navigation units. This sensor fusion enables the generation of extremely detailed, multi-layered representations of real-world environments. AI algorithms play a crucial role in interpreting this massive volume of raw data-identifying lane markings, classifying road signs, recognizing curb geometry, and even detecting subtle environmental changes. Once processed, the data is compiled into high-fidelity maps, which are then continuously refined through crowdsourced feedback loops, especially from vehicles equipped with connected sensors that upload real-time observations to the cloud. These updates are critical for maintaining the accuracy and relevance of HD maps, particularly in rapidly changing urban environments. The integration of edge computing allows for faster data processing closer to the point of capture, reducing latency and enhancing real-time responsiveness. Meanwhile, cloud infrastructure ensures scalability, enabling map providers to manage and distribute terabytes of geospatial data across vast fleets and regions. Together, these technologies are transforming HD maps into living, breathing systems that evolve in parallel with the real world. This transformation not only supports the requirements of autonomous driving but also extends into other sectors such as logistics, urban planning, and smart infrastructure management.

Is the Broader Mobility Ecosystem Benefiting from High Definition Mapping Capabilities?

While autonomous vehicles are often the focal point of discussions around HD maps, the implications of this technology stretch well beyond driverless transport into the broader mobility and infrastructure ecosystem. For public transportation systems, HD maps can enhance operational efficiency by supporting route optimization, dynamic rerouting in response to road closures, and real-time integration with traffic management platforms. In logistics and last-mile delivery, the ability to navigate with centimeter-level accuracy is vital for warehouse automation, curbside drop-offs, and drone routing-where even slight deviations can lead to delays or operational errors. Additionally, HD maps are instrumental in smart city development, offering detailed geospatial frameworks that can support infrastructure maintenance, urban design, and emergency response planning. For example, by overlaying HD maps with IoT sensor data, cities can monitor traffic flow, detect anomalies, and adjust traffic lights or pedestrian signals accordingly. Telecommunications companies are also exploring the use of HD maps in optimizing 5G tower placement by understanding the micro-topography of urban landscapes. Moreover, insurance providers and regulatory agencies can leverage HD maps to analyze incident data with high precision, helping to determine fault in traffic accidents or optimize roadway safety protocols. As industries increasingly digitize their operations, HD maps are emerging as a powerful enabler of spatial intelligence, supporting applications that require high-fidelity environmental awareness. Their role is becoming indispensable not only for mobility but also for the digital infrastructure underpinning tomorrow’s cities and services.

What Are the Key Market Drivers Accelerating the Growth of High Definition Maps?

The growth in the high definition maps market is driven by a combination of technological advancements, shifting transportation models, and increasing demand for real-time geospatial intelligence. At the forefront is the accelerating development of autonomous and semi-autonomous vehicles, which depend heavily on HD maps for accurate localization, navigation, and safety assurance. As car manufacturers and tech firms race toward higher levels of vehicle autonomy, the need for reliable, real-time, and frequently updated HD mapping data continues to expand. Simultaneously, the proliferation of connected vehicles and smart infrastructure is generating vast volumes of data that can be used to enhance and refine HD maps, creating a self-reinforcing ecosystem of continuous improvement. Urbanization and the emergence of intelligent transportation systems (ITS) are also driving the need for precision mapping tools that can interface seamlessly with dynamic traffic control, ride-sharing platforms, and pedestrian routing technologies. From a commercial perspective, HD maps are gaining attention from industries like logistics, agriculture, mining, and construction, where automation and precise navigation are essential to productivity and safety. Moreover, investments from governments and city planning authorities into smart mobility infrastructure are providing financial and policy support for HD map development and deployment. On the technology side, the falling cost of sensors, improvements in real-time data processing, and the rise of edge/cloud hybrid computing models are making HD map creation more scalable and cost-efficient. As consumers and enterprises alike demand faster, safer, and smarter mobility solutions, HD maps are increasingly seen not as optional enhancements but as critical enablers in the next phase of digital transformation across multiple sectors.

SCOPE OF STUDY:

The report analyzes the High Definition Maps market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Hardware Component, Software Component, Services Component); Deployment (Cloud Deployment, On-Premise Deployment); End-Use (Automotive End-Use, Defense & Aerospace End-Use, Internet Service Providers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â