¼¼°èÀÇ VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC) ½ÃÀå
VPX Single Board Computers (SBC)
»óǰÄÚµå : 1792888
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 477 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,206,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,620,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 3¾ï 2,460¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 7,950¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC) ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 3¾ï 2,460¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ NXP ÆÄ¿ö ¾ÆÅ°ÅØÃ³´Â CAGR 8.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 4,750¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Intel ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 12.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 4,890¸¸ ´Þ·¯, Áß±¹Àº CAGR 13.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC) ½ÃÀåÀº 2024³â¿¡ 4,890¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 13.9%·Î ÃßÁ¤µÇ¸ç, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 6,570¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.6%¿Í 9.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC) ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ´Â °í¼º´É ÀÓº£µðµå ÄÄÇ»ÆÃ ½Ã½ºÅÛÀ» ¾î¶»°Ô À籸¼ºÇϰí Àִ°¡?

VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ(SBC)´Â ¶Ù¾î³­ ó¸® ´É·Â, °ß°íÇÑ ½Å·Ú¼º, ¸ðµâ½Ä ¼³°è¸¦ ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ·Î Á¦°øÇÔÀ¸·Î½á °í¼º´É ÀÓº£µðµå ÄÄÇ»ÆÃÀÇ Àü¸ÁÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¸µå´Â ±¹¹æ, Ç×°ø¿ìÁÖ, »ê¾÷ ÀÚµ¿È­, ¹Ì¼Ç Å©¸®Æ¼Äà ¾ÖÇø®ÄÉÀÌ¼Ç µî ±âÁ¸ ÄÄÇ»ÆÃ ½Ã½ºÅÛÀÌ °íÀ峯 ¼ö Àִ ȯ°æ¿¡ ÀûÇÕÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. VPX SBC´Â VITA(VMEbus International Trade Association) Ç¥ÁØÀ» ±â¹ÝÀ¸·Î °í¼Ó ½ºÀ§Ä¡µå ÆÐºê¸¯ ¾ÆÅ°ÅØÃ³¸¦ äÅÃÇÏ¿© º¸´Ù ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ½Ã½ºÅÛ È®À强À» Á¦°øÇÕ´Ï´Ù. µû¶ó¼­ ³·Àº Áö¿¬ ½Ã°£°ú ³ôÀº 󸮷®ÀÌ Áß¿äÇÑ ¼¾¼­ ó¸®, ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀüÀÚÀü, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ½ÅÈ£ ÀÎÅÚ¸®Àü½º µî¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. °³¹æÇü ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ °³¹ßÀڴ ƯÁ¤ ¾ÖÇø®ÄÉÀÌ¼Ç ¿ä±¸¿¡ µû¶ó ´Ù¾çÇÑ ÇÁ·Î¼¼¼­, I/O ¸ðµâ, GPU, FPGA¸¦ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ãæ°Ý, Áøµ¿, ±ØÇÑÀÇ ¿Âµµ¿¡ ´ëÇÑ ³»¼ºÀ» Æ÷ÇÔÇÑ °ß°íÇÑ ¼³°è·Î ŸÇùÇÏÁö ¾Ê´Â ³»±¸¼ºÀÌ ¿ä±¸µÇ´Â ±º»ç ¹× Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. ¸ð¹ÙÀÏ ¹× ½Ç½Ã°£ ¿§Áö ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó VPX SBC´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÏ°í ¹Ð¸®ÃÊ ´ÜÀ§·Î ÀÀ´äÇØ¾ß ÇÏ´Â °í±Þ ÀÓº£µðµå ½Ã½ºÅÛÀÇ ÇÙ½É ±¸¼º¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ ¹æÀ§ »ê¾÷ü, Ç×°øÀüÀÚ Á¦Á¶¾÷ü, »ê¾÷¿ë ÅëÇÕ¾÷ü´Â º¸´Ù °í¼º´ÉÀÇ ¹ÎøÇÑ Ç÷§ÆûÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. VPX SBCÀÇ À¯¿¬¼º°ú ¼º´ÉÀ¸·Î VPX SBC´Â ÀÓº£µðµå ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖÀ¸¸ç, ±âÁ¸ ¾ÖÇø®ÄÉÀ̼ǰú Â÷¼¼´ë ¾ÖÇø®ÄÉÀ̼ÇÀÇ Áõ°¡ÇÏ´Â ¿ä±¸»çÇ×À» ÃæÁ·½Ã۱â À§ÇØ °è¼Ó ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

VPX SBC Ç÷§ÆûÀÇ ¿ª·®À» °­È­ÇÏ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍÀÇ ´É·ÂÀº ó¸® ´É·Â, ¹ü¿ë¼º ¹× ÅëÇÕ °¡´É¼ºÀ» È®ÀåÇÏ´Â ´Ù¾çÇÑ ±â¼ú ¹ßÀüÀ» ÅëÇØ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÃֽŠVPX SBC´Â ¸ÖƼ ÄÚ¾î ÀÎÅÚ, AMD, ARM ¾ÆÅ°ÅØÃ³¸¦ Æ÷ÇÔÇÑ ÃÖ÷´Ü ÇÁ·Î¼¼¼­¸¦ Ȱ¿ëÇÏ¿© ÃÖ¼ÒÇÑÀÇ Àü·Â ¼Òºñ·Î º¹ÀâÇÑ ÀÛ¾÷À» µ¿½Ã¿¡ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. FPGA(Field Programmable Gate Array) ¹× ¹ü¿ë GPU(GPGPU)¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ À̹ÌÁö ó¸®, AI Ãß·Ð, µðÁöÅÐ ½ÅÈ£ ó¸® µî µ¥ÀÌÅÍ·®ÀÌ ¸¹Àº ¿öÅ©·ÎµåÀÇ ½Ç½Ã°£ º´·Ä 󸮰¡ °¡´ÉÇÕ´Ï´Ù. PCI Express Gen4, 10/40/100 ±â°¡ºñÆ® ÀÌ´õ³Ý, Serial RapidIO µîÀÇ °í¼Ó ÀÎÅÍÄ¿³ØÆ®°¡ ±¸ÇöµÇ¾î ¸ðµâ °£ ÀúÁö¿¬ Åë½ÅÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ÀÀ´ä¼º°ú 󸮷®ÀÌ Å¸ÇùÇÒ ¼ö ¾ø´Â ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Àüµµ ³Ã°¢ ¹× ¾×ü ³Ã°¢°ú °°Àº °­È­µÈ ³Ã°¢ ±â¼úÀº ÄÄÆÑÆ®ÇÏ°í °í¼º´É ¼³°è·Î ¹æ¿­À» °ü¸®Çϱâ À§ÇØ Ã¤ÅõǾú½À´Ï´Ù. ¶ÇÇÑ, SOSA(Sensor Open System Architecture) ¹× OpenVPX ÇÁ·ÎÆÄÀÏ¿¡ ´ëÇÑ Áö¿ø °­È­·Î »óÈ£¿î¿ë¼ºÀÌ Çâ»óµÇ¾î ¿©·¯ º¥´õÀÇ ÄÄÆ÷³ÍÆ®¸¦ »ç¿ëÇÑ ½Ã½ºÅÛ ¼³°è°¡ ¿ëÀÌÇØÁ³½À´Ï´Ù. °í±Þ ½Ã½ºÅÛ °ü¸® ¹× »óÅ ¸ð´ÏÅ͸µ ±â´ÉÀ» ÅëÇØ ¿¹Ãø À¯Áöº¸¼ö°¡ °¡´ÉÇÏ¿© Àå±âÀûÀÎ ¹èÄ¡¿¡¼­ ¹Ì¼Ç º¸ÁõÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. º¸¾È ºÎÆÃ, TPM(Trusted Platform Module), Çϵå¿þ¾î ¾Ïȣȭ¿Í °°Àº »çÀ̹ö º¸¾È ±â´Éµµ Ç¥ÁØÀÌ µÇ°í ÀÖÀ¸¸ç, Àû´ëÀûÀΠȯ°æ¿¡¼­µµ ±â¹Ð µ¥ÀÌÅÍ¿Í ½Ã½ºÅÛ ¹«°á¼ºÀ» º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº VPX SBCÀÇ ±â´ÉÀû °¡´É¼ºÀ» ³ÐÈú »Ó¸¸ ¾Æ´Ï¶ó ÀÚÀ²ÁÖÇàÂ÷, ¹«ÀνýºÅÛ, ¿ìÁÖ°³¹ß µî »õ·Î¿î ºÐ¾ß·ÎÀÇ È°¿ëÀ» À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

±¹¹æ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß°¡ VPX SBC ½Ã½ºÅÛ µµÀÔÀ» ÃßÁøÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

±¹¹æ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß´Â ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ È¯°æ¿¡¼­ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â °í¼º´ÉÀÇ °ß°íÇÑ ÄÄÇ»ÆÃ Ç÷§Æû¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ VPX ½Ì±Ûº¸µå ÄÄÇ»ÅÍÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚÀü, ¹«ÀÎÇ×°ø±â(UAV), ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀüÀå Åë½Å°ú °°Àº ±º»ç ¾ÖÇø®ÄÉÀ̼ÇÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ±â´É°ú ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ, ¿­¾ÇÇÑ È¯°æ¿¡ ´ëÇÑ ³»¼ºÀ» ¿ä±¸ÇÕ´Ï´Ù. VPX SBC´Â ¸ðµâ½Ä °³¹æÇü ½Ã½ºÅÛ ¼³°è¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¿ä±¸»çÇ×À» ÃæÁ·Çϰí, ƯÁ¤ ¾÷¹«¿¡ ¸Â°Ô ½±°Ô ¾÷±×·¹ÀÌµå ¹× ±¸¼ºÇÒ ¼ö ÀÖ¾î ±¸Ãà ½Ã°£°ú ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Çö´ëÀÇ ±¹¹æ Ȱµ¿¿¡¼­ ¼¾¼­ À¶ÇÕ ¹× »óȲ ÀÎ½Ä Ç÷§ÆûÀº ¿©·¯ ¼Ò½º·ÎºÎÅÍÀÇ ÀÔ·ÂÀ» ½Å¼ÓÇÏ°Ô ºÐ¼®ÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­´Â VPX ½Ã½ºÅÛÀÇ ³»Áøµ¿¼º°ú ³»¿­¼ºÀÌ Ç×°ø±âÀÇ Ç×°øÀüÀÚ, À§¼º Á¦¾î, Ç×¹ý ½Ã½ºÅÛ¿¡ Àû¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­´Â »óÈ£¿î¿ë¼º°ú Áö¼Ó°¡´É¼º ¶ÇÇÑ Áß¿äÇÏ°Ô ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ÀÌ µÑÀº ¼­·Î ´Ù¸¥ Á¦Á¶¾÷üÀÇ Çϵå¿þ¾î ¸ðµâ °£ÀÇ Ç÷¯±× ¾Ø Ç÷¹ÀÌ È£È¯¼ºÀ» ½ÇÇöÇÏ´Â OpenVPX Ç¥ÁØ¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. ±¹¹æ ºÐ¾ßÀÇ ¿¹»ê Á¦¾à°ú Á¶´Þ Àü·«Àº Àå±âÀûÀÎ Á¦Ç° °ø±Þ°ú Áö¿øÀ» ¿ä±¸ÇÏ´Â °æ¿ì°¡ ¸¹Àºµ¥, VPX SBC´Â ¾ÈÁ¤ÀûÀÎ ÆûÆÑÅÍ¿Í È®À强ÀÌ ³ôÀº ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ À̸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, SOSA Ç¥ÁØ Ã¤Åðú °°Àº Á¤ºÎ ÁÖµµ ÀÌ´Ï¼ÅÆ¼ºê´Â »óÈ£ ¿î¿ë °¡´ÉÇÑ °³¹æÇü ¾ÆÅ°ÅØÃ³ »ç¿ëÀ» Àǹ«È­Çϰí ÀÖ¾î VPX ±â¹Ý ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. VPX SBC´Â ¹æÀ§ ¹× Ç×°ø¿ìÁÖ ºÐ¾ßÀÇ ÀÌÇØ°ü°èÀڵ鿡°Ô ÁøÈ­ÇÏ´Â ¹Ì¼Ç ÇÁ·ÎÆÄÀϰú ±â¼ú ¹ßÀüÀ» Áö¿øÇÒ ¼ö ÀÖ´Â °ß°íÇÏ°í ¹Ì·¡ÁöÇâÀûÀÎ ÄÄÇ»ÆÃ ±â¹ÝÀ» Á¦°øÇÕ´Ï´Ù.

VPX SBC ºÎ¹®ÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ½ÃÀå ¼¼·Â°ú ¾÷°è µ¿ÇâÀº ¹«¾ùÀΰ¡?

VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ ½ÃÀåÀÇ ¼ºÀåÀº ½ÃÀå ¼¼·Â, Àü·«Àû ÅõÀÚ ¹× °¢ »ê¾÷ ºÐ¾ßÀÇ ±â¼ú ¿ä±¸ »çÇ×ÀÇ ÁøÈ­°¡ °áÇյǾî ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áö¿¬½Ã°£, Å©±â, Àü·Â ¼ÒºñÀÇ Á¦¾àÀÌ Áß¿äÇÑ ºÐ¾ß¿¡¼­ ¿§Áö¿¡¼­ÀÇ ½Ç½Ã°£ 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ±¹¹æ, Ç×°ø¿ìÁÖ, »ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­ ÀÚÀ² ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀº Áß¾Ó ÁýÁᫎ µ¥ÀÌÅͼ¾ÅÍ¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ´ë·®ÀÇ ¼¾¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§ÆûÀÇ Çʿ伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î ¼³°èÀÇ ¸ðµâ¼º°ú À¯¿¬¼º Ãß±¸´Â VPX SBCÀÇ ÇÙ½É °­Á¡ÀÎ ½¬¿î Ä¿½ºÅ͸¶ÀÌ¡°ú ¾÷±×·¹ÀÌµå °æ·Î¿Í ÀÏÄ¡ÇÕ´Ï´Ù. OpenVPX ¹× SOSA¿Í °°Àº °³¹æÇü Ç¥ÁØÀÇ ¾÷°è Àü¹ÝÀÇ Ã¤ÅÃÀº º¸´Ù ¿ªµ¿ÀûÀÎ º¥´õ »ýŰ踦 ±¸ÃàÇϰí, °³¹ß ¸®½ºÅ©¸¦ ÁÙÀ̸ç, ½Ã½ºÅÛ ÅëÇÕ ±â°£À» ´ÜÃà½Ãŵ´Ï´Ù. ÀΰøÁö´É, ¸Ó½Å·¯´×, °íÇØ»óµµ À̹ÌÁö ó¸®¿Í °°Àº »õ·Î¿î »ç¿ë »ç·Ê°¡ µîÀåÇϸ鼭 °­·ÂÇÑ ÀÓº£µðµå ÄÄÇ»ÆÃ Ç÷§Æû¿¡ ´ëÇÑ ¿ä±¸´Â ±âÁ¸ ¿µ¿ªÀ» ³Ñ¾î ½º¸¶Æ® ±³Åë, ÀÇ·á¿ë ¿µ»ó ó¸®, ¿ìÁÖ ½Ã½ºÅÛ µî ´Ù¾çÇÑ ºÐ¾ß·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±â¼ú ¼ö·Åµµ ÇÑ ¸òÀ» Çϰí ÀÖÀ¸¸ç, VPX Ç÷§ÆûÀº °í±Þ ¿­ °ü¸®, º¸¾È ³×Æ®¿öÅ·, Àü·Â ÃÖÀûÈ­ ¸ðµâ µîÀÇ º¸¿Ï ½Ã½ºÅÛ°ú ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ºÏ¹Ì¿Í À¯·´ÀÇ Á¤ºÎ ±¹¹æ ¿¹»êÀº VPX ±â¹Ý ÁöÈÖÅëÁ¦ ÀÎÇÁ¶ó¸¦ Æ÷ÇÔÇÑ Â÷¼¼´ë ÀüÀÚ ½Ã½ºÅÛÀ» ¿ì¼±½ÃÇÏ´Â Çö´ëÈ­ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² VPX SBC´Â ½Ã½ºÅÛÀ» º¹ÀâÇÏ°Ô ¸¸µéÁö ¾Ê°í ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ¹æ¹ýÀ¸·Î OEM ¹× ½Ã½ºÅÛ ÅëÇÕ¾÷üµé »çÀÌ¿¡¼­ »ó¾÷Àû °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿Í ÇÔ²² VPX ½Ì±Û º¸µå ÄÄÇ»ÅÍ´Â ÀÓº£µðµå ¹× ¿§Áö ÄÄÇ»ÆÃ »ýŰèÀÇ ±¤¹üÀ§ÇÑ ÁøÈ­¿¡¼­ Àü·«Àû ±â¼ú·Î¼­ °­·ÂÇÑ ÃßÁø·ÂÀ» ¹ßÈÖÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(NXP ÆÄ¿ö ¾ÆÅ°ÅØÃ³, ÀÎÅÚ, ARM, ±âŸ Á¦Ç°), ·¢ À¯´Ö(3U, 6U), ¿ëµµ(ÀüÀÚÀü ¿ëµµ, ·¹ÀÌ´õ ¿ëµµ, ¹Ì¼Ç ÄÄÇ»ÅÍ ¿ëµµ, ISR ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(¹æÀ§ ¿ëµµ, Ç×°ø¿ìÁÖ ¿ëµµ, »ó¾÷ ¿ëµµ, »ê¾÷ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global VPX Single Board Computers (SBC) Market to Reach US$324.6 Million by 2030

The global market for VPX Single Board Computers (SBC) estimated at US$179.5 Million in the year 2024, is expected to reach US$324.6 Million by 2030, growing at a CAGR of 10.4% over the analysis period 2024-2030. NXP Power Architecture, one of the segments analyzed in the report, is expected to record a 8.9% CAGR and reach US$147.5 Million by the end of the analysis period. Growth in the Intel segment is estimated at 12.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$48.9 Million While China is Forecast to Grow at 13.9% CAGR

The VPX Single Board Computers (SBC) market in the U.S. is estimated at US$48.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$65.7 Million by the year 2030 trailing a CAGR of 13.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.6% and 9.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.1% CAGR.

Global VPX Single Board Computers (SBC) Market - Key Trends & Drivers Summarized

How Are VPX Single Board Computers Reshaping High-Performance Embedded Computing Systems?

VPX Single Board Computers (SBCs) are redefining the landscape of high-performance embedded computing by delivering exceptional processing power, rugged reliability, and modular design in compact form factors. These boards are engineered for environments where traditional computing systems would fail, such as defense, aerospace, industrial automation, and mission-critical applications. VPX SBCs are based on the VITA (VMEbus International Trade Association) standard and use a high-speed switched fabric architecture to facilitate faster data movement and system scalability. This makes them especially suitable for sensor processing, radar systems, electronic warfare, real-time data acquisition, and signal intelligence, where low latency and high throughput are critical. Their open architecture allows developers to integrate a wide range of processors, I/O modules, GPUs, and FPGAs depending on specific application needs. Moreover, their ruggedized design, including resistance to shock, vibration, and temperature extremes, makes them ideal for military and aerospace use cases that demand uncompromising durability. As the demand for mobile, real-time edge computing increases, VPX SBCs are becoming a core component in advanced embedded systems that must process large volumes of data locally and respond in milliseconds. These capabilities are enabling defense contractors, avionics firms, and industrial integrators to deliver more capable and agile platforms. The flexibility and performance of VPX SBCs are ensuring they remain at the forefront of embedded system architecture, evolving to meet the escalating demands of both traditional and next-generation applications.

What Technological Advancements Are Elevating the Capabilities of VPX SBC Platforms?

The capabilities of VPX Single Board Computers are being significantly elevated through a range of technological advancements that are expanding their processing power, versatility, and integration potential. Modern VPX SBCs are leveraging cutting-edge processors, including multi-core Intel, AMD, and ARM architectures, which allow for simultaneous execution of complex tasks with minimal power consumption. Integration with field-programmable gate arrays (FPGAs) and general-purpose GPUs (GPGPUs) is enabling real-time parallel processing of data-intensive workloads such as image processing, AI inference, and digital signal processing. High-speed interconnects, including PCI Express Gen4, 10/40/100 Gigabit Ethernet, and Serial RapidIO, are being implemented to support low-latency communication between modules. These developments are crucial for applications where responsiveness and throughput cannot be compromised. Enhanced cooling technologies, such as conduction and liquid cooling, are being adopted to manage heat dissipation in compact, high-performance designs. Moreover, the increasing support for SOSA (Sensor Open Systems Architecture) and OpenVPX profiles is improving interoperability, making it easier to design systems using components from multiple vendors. Advanced system management and health monitoring features allow for predictive maintenance and improved mission assurance in long-duration deployments. Cybersecurity features such as secure boot, trusted platform modules (TPM), and hardware encryption are also becoming standard, protecting sensitive data and system integrity in hostile environments. These technological innovations are not only expanding the functional capabilities of VPX SBCs but are also paving the way for their use in emerging sectors such as autonomous vehicles, unmanned systems, and space exploration.

Why Are Defense and Aerospace Sectors Driving the Adoption of VPX SBC Systems?

The defense and aerospace sectors are playing a central role in driving the adoption of VPX Single Board Computers due to their need for high-performance, rugged computing platforms that can operate reliably in mission-critical environments. Military applications such as electronic warfare, unmanned aerial vehicles (UAVs), radar systems, and battlefield communications demand real-time data processing capabilities combined with compact form factors and extreme environmental resilience. VPX SBCs meet these requirements through modular open system designs that can be easily upgraded or configured for specific tasks, reducing time-to-deployment and lifecycle costs. In modern defense operations, sensor fusion and situational awareness platforms require rapid analysis of inputs from multiple sources, a process that VPX SBCs are well-equipped to handle with high-bandwidth interfaces and parallel processing support. The aerospace industry also benefits from the vibration-resistant and temperature-tolerant nature of VPX systems, which are suited for deployment in aircraft avionics, satellite control, and navigation systems. These sectors are also placing increased emphasis on interoperability and sustainability, both of which are supported by OpenVPX standards that allow plug-and-play compatibility between hardware modules from different manufacturers. Budget constraints and procurement strategies in defense often demand long-term product availability and support, which VPX SBCs can provide due to their stable form factor and scalable architecture. Additionally, government-backed initiatives such as the adoption of the SOSA standard are mandating the use of interoperable and open architectures, further accelerating the shift toward VPX-based solutions. For defense and aerospace stakeholders, VPX SBCs offer a robust, future-ready computing foundation capable of supporting evolving mission profiles and technological advancements.

What Market Forces and Industry Trends Are Propelling Growth in the VPX SBC Segment?

The growth in the VPX Single Board Computers market is being fueled by a confluence of market forces, strategic investments, and evolving technological requirements across industries. One of the primary drivers is the rising demand for real-time processing at the edge, particularly in sectors where latency, size, and power constraints are critical. The shift toward autonomous systems in defense, aerospace, and industrial automation is amplifying the need for onboard computing platforms capable of processing massive amounts of sensor data without depending on centralized data centers. The push for modularity and flexibility in hardware design is aligning with the core strengths of VPX SBCs, which offer easy customization and upgrade paths. Industry-wide adoption of open standards such as OpenVPX and SOSA is creating a more dynamic vendor ecosystem, reducing development risk and shortening system integration timelines. As new use cases emerge in artificial intelligence, machine learning, and high-resolution imaging, the need for powerful embedded computing platforms is expanding beyond traditional domains into areas like smart transportation, medical imaging, and spaceborne systems. Technological convergence is also playing a role, with VPX platforms being increasingly integrated with complementary systems such as advanced thermal management, secure networking, and power optimization modules. Government defense budgets, particularly in North America and Europe, are supporting modernization initiatives that prioritize next-generation electronic systems, including VPX-based command and control infrastructure. In parallel, commercial interest is growing among OEMs and system integrators who see VPX SBCs as a way to enhance performance without increasing system complexity. These combined trends are creating strong momentum for VPX Single Board Computers, positioning them as a strategic technology in the broader evolution of embedded and edge computing ecosystems.

SCOPE OF STUDY:

The report analyzes the VPX Single Board Computers (SBC) market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (NXP Power Architecture, Intel, ARM, Other Products); Rack Unit (3U, 6U); Application (Electronic Warfare Application, Radars Application, Mission Computers Application, ISR Application, Other Applications); End-Use (Defense End-Use, Aerospace End-Use, Commercial End-Use, Industrial End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â