¼¼°èÀÇ ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ½ÃÀå
Laboratory Water Purification Systems
»óǰÄÚµå : 1792775
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 385 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 75¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 48¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 7.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 75¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ À¯Çü 1 - Ãʼø¼ö´Â CAGR 5.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 30¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯Çü 2 - ½ÇÇè½Ç µî±Þ ¹° ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 9.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 13¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 11.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 16¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 11.6%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.9%¿Í 7.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°í¼øµµ ¹° ½Ã½ºÅÛÀÌ Çö´ë ½ÇÇè½Ç¿¡¼­ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â °úÇÐÀû ¿öÅ©Ç÷οìÀÇ ÇÙ½ÉÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ¿Ö³ÄÇÏ¸é ±Þ¼ö ÁßÀÇ ¹Ì·® ¿À¿°¹°ÁúÁ¶Â÷µµ ºÐ¼® Á¤È®µµ, ÀçÇö¼º, ±â±â ¼ö¸íÀ» ÀúÇØÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¾×ü Å©·Î¸¶Åä±×·¡ÇÇ, Áú·® ºÐ¼®, ¼¼Æ÷¹è¾ç, ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ, ¹Ì·® ±Ý¼Ó ºÐ¼® µî Ãʹΰ¨ ±â¼úÀ» ¼öÇàÇÏ´Â ¿¬±¸ÀÚµéÀº °á°ú¸¦ ¿Ö°î½Ãų ¼ö ÀÖ´Â ÀÌ¿Â, À¯±â ºÐÀÚ, ¹Ì¸³ÀÚ ¹× ¹Ì»ý¹°À» Á¦°ÅÇØ¾ß ÇÕ´Ï´Ù. ÀǾàǰ ǰÁú °ü¸®, ÀÓ»ó Áø´Ü, ½Äǰ°Ë»çÀÇ ±ÔÁ¦ Àǹ«´Â ASTM, ISO, CLSI ±Ô°Ý µî ¼öÁú¿¡ °üÇÑ ¼¼°è Ç¥ÁØÀ» ÁؼöÇϰí ÀÖÀ½À» ÀÔÁõÇϵµ·Ï ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ½ÇÇè½ÇÀÌ ³ª³ë±â¼ú, ´ë»çüÇÐ, À¯ÀüÀÚ Ä¡·á ºÐ¾ß·Î ÁøÃâÇϸ鼭 ¹° ¼øµµ¿¡ ´ëÇÑ ¿ä±¸°¡ ´õ¿í ¾ö°ÝÇØÁ³°í, ŸÀÔ i ¶Ç´Â Ãʼø¼ö¸¦ ¿Âµð¸Çµå ¹æ½ÄÀ¸·Î °ø±ÞÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³»ºÐºñ ±³¶õ ¹°Áú°ú ¹Ì¼¼ ÇÃ¶ó½ºÆ½°ú °°Àº ¼û°ÜÁø ¿À¿° ¹°Áú¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¿ª»ïÅõ¾Ð, Àü±â Å»ÀÌ¿ÂÈ­, Àڿܼ± »êÈ­, ÇÑ¿Ü ¿©°ú¸¦ °áÇÕÇÑ ´Ù´Ü°è ó¸®ÀÇ Çʿ伺ÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. Çмú ȯ°æ¿¡¼­´Â ¿¬±¸ Ã¥ÀÓÀÚ°¡ °í°¡ÀÇ ½Ã¾à°ú ¼¶¼¼ÇÑ ºÐ¼®À» º¸È£Çϱâ À§ÇØ ±ú²ýÇÑ ¹°À» Áß¿äÇÏ°Ô »ý°¢Çϸç, »ê¾÷ ½ÇÇè½Ç¿¡¼­´Â Áö¼ÓÀûÀÎ »ý»ê °¡µ¿ ½Ã°£À» À¯ÁöÇϱâ À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â Á¤È­°¡ ÇʼöÀûÀ̶ó°í »ý°¢ÇÕ´Ï´Ù. ȯ°æ ½ÇÇè½Ç¿¡¼­´Â ¿À¿° ¹°ÁúÀÇ °ËÃâ ÇÏÇÑÀ» ³·°Ô ¼³Á¤ÇÏ°í ¹è°æ °£¼·À» ¹«½ÃÇÒ ¼ö ÀÖµµ·Ï Á¤Á¦¼ö¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î µðÁöÅÐ ¹®¼­È­ ¹× °¨»ç ÃßÀûÀ¸·ÎÀÇ ÀüȯÀº ǰÁú º¸Áõ ÆÀÀ» À§ÇØ ¼öÁú ÁöÇ¥¸¦ ±â·ÏÇÒ ¼ö ÀÖ´Â Á¤È­ ½Ã½ºÅÛÀÇ °¡Ä¡¿¡ ´ëÇØ¼­µµ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ½ÇÇè½ÇÀÇ ¼³Ä¡ ¸éÀûÀÌ È®´ëµÇ°í ¿öÅ©Ç÷ο찡 ´õ¿í Àü¹®È­µÊ¿¡ µû¶ó, ÇöÀå¿¡¼­ÀÇ ÇöÀå Á¤Á¦¼ö º¸ÁõÀº ÆíÀǼº¿¡¼­ °úÇÐÀû ½Å·Ú¼º°ú ¾÷¹« È¿À²¼ºÀ» À§ÇÑ ±âº» °¡Á¤À¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

Á¤È­ ½Ã½ºÅÛÀÇ ¼º´É°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â ±â¼ú ¹ßÀüÀº?

±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀ¸·Î ½ÇÇè½Ç ¼ø¼ö »ý»êÀº Á¤ÀûÀÎ À¯Æ¿¸®Æ¼¿¡¼­ ½º¸¶Æ®Çϰí È¿À²ÀûÀ̸ç ȯ°æ ģȭÀûÀÎ °øÁ¤À¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¼¾¼­¸¦ ÅëÇÕÇÏ¿© ½Ã½ºÅÛÀº ºñÀúÇ×, ÃÑ À¯±â ź¼Ò, ¹ÚÅ׸®¾Æ ºÎÇϸ¦ ¸ð´ÏÅ͸µÇϰí ÀϰüµÈ ǰÁúÀ» À¯ÁöÇϱâ À§ÇØ ÀÛµ¿ ¸Å°³ º¯¼ö¸¦ ÀÚµ¿À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÅÍÄ¡½ºÅ©¸° ÀÎÅÍÆäÀ̽º¿Í Ŭ¶ó¿ìµå¿¡ ¿¬°áµÈ ´ë½Ãº¸µå¸¦ ÅëÇØ »ç¿ëÀڴ īƮ¸®Áö ¼ö¸í, ¼­ºñ½º ¾Ë¸², °ú°Å ¼º´É µ¥ÀÌÅ͸¦ Áï½Ã ÆÄ¾ÇÇÒ ¼ö ÀÖ¾î ´Ù¿îŸÀÓ°ú ±â¼úÀÚ °³ÀÔÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °í±Þ ¿ª»ïÅõ¸·Àº ´õ ³·Àº ¾Ð·Â¿¡¼­ ´õ ³ôÀº Â÷´ÜÀ²À» ´Þ¼ºÇϰí, ¸·ÀÇ ¼ö¸íÀ» ¿¬ÀåÇϸ鼭 ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÔ´Ï´Ù. ¼±ÅÃÀû À̿±³È¯¼öÁö·Î °­È­µÈ Àü±â Å»À̿ ¸ðµâÀº È­ÇÐÀû Àç»ý ¾øÀÌ Áö¼ÓÀûÀÎ Å»ÀÌ¿ÂÈ­¸¦ ½ÇÇöÇÏ¿© ±×¸° ·¦ÀÇ ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. 185nm¿Í 254nmÀÇ ÆÄÀåÀ¸·Î ÀÛµ¿ÇÏ´Â Àڿܼ± ½Ã½ºÅÛÀº À¯±âÈ­ÇÕ¹° »êÈ­¿Í ¹Ì»ý¹° ¿À¿°¹°ÁúÀÇ »ì±ÕÀ» µ¿½Ã¿¡ ¼öÇàÇÏ¿© ±âÁ¸¿¡´Â º°µµÀÇ ÀåÄ¡°¡ ÇÊ¿äÇß´ø ¿¬¸¶ °øÁ¤À» ÇÑ ¹ø¿¡ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀϺΠÁ¦Á¶¾÷ü´Â ¿¡³ÊÁö ȸ¼ö ÆßÇÁ¿Í ¼ö¿ä¿¡ µû¶ó À¯·®À» Á¶ÀýÇÏ´Â °¡º¯ Á֯ļö ±¸µ¿ ÀåÄ¡¸¦ ÅëÇÕÇÏ¿© Àü·Â »ç¿ë·®À» ´õ¿í ÁÙ¿´½À´Ï´Ù. Àç¼øÈ¯ ·çÇÁ¿Í »ì±Õ »çÀÌŬÀº ¹ÙÀÌ¿ÀÇʸ§ Çü¼ºÀ» ¿¹ÃøÇÏ´Â ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ ÀÇÇØ ÃÖÀûÈ­µÇ¾î ÀÏÁ¤ÇÑ °£°ÝÀÌ ¾Æ´Ñ ÇÊ¿äÇÒ ¶§ Á¤È®ÇÏ°Ô ¿­Ã³¸® ¹× È­ÇÐÀû 󸮸¦ ½ºÄÉÁÙ¸µÇÕ´Ï´Ù. ¸ðµâ½Ä ¼³°è·Î Ç÷¯±×ÀΠīƮ¸®Áö³ª ó¸® ½ºÅ×ÀÌÁö¸¦ Ãß°¡ÇÏ¿© ¿ë·®À» È®ÀåÇÒ ¼ö ÀÖ¾î, ÀÎÇÁ¶ó¸¦ Å©°Ô º¯°æÇÏÁö ¾Ê°íµµ ½ÇÇè½ÇÀÇ Ã³¸®·® º¯È­¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç·á °úÇÐÀÚµéÀº À¯ÇØ Æó±â¹°ÀÇ Ã³¸®¸¦ ÁÙÀ̸鼭 ¼øµµ¸¦ À¯ÁöÇÏ´Â ÀúÃßÃ⼺ ÇÃ¶ó½ºÆ½°ú ģȯ°æ ¼öÁö¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ÀüüÀûÀ¸·Î ¼öÁú º¸ÁõÀ» °­È­Çϰí, ½Ã½ºÅÛ ¼ö¸íÀ» ¿¬ÀåÇϸç, ¿¬±¸¼Ò°¡ ¿î¿µ ¹× Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ¸ðµÎ ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

¾î¶² ½ÃÀå µ¿Çâ°ú »ç¿ëÀÚÀÇ ±â´ë°¡ Á¦Ç° °³¹ß Àü·«À» Çü¼ºÇϰí Àִ°¡?

½ÇÇè½Ç ¿ë¼ö ½Ã½ºÅÛ¿¡ ´ëÇÑ °í°´ÀÇ ±â´ë´Â µðÁöÅÐÈ­, Áö¼Ó°¡´É¼º, À¯¿¬ÇÑ ½ÇÇè½Ç ¼³°è¿Í °°Àº Å« Æ®·»µå¿Í ÇÔ²² ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÇöÀç °ø°£À» Àý¾àÇϸ鼭µµ µ¿ÀÏÇÑ ¼³Ä¡ °ø°£¿¡¼­ ´Ù¾çÇÑ ¿ëµµ¿¡ ¸Â´Â ´Ù¾çÇÑ ¹° µî±ÞÀ» Á¦°øÇÏ´Â ÄÄÆÑÆ®ÇÑ Å¹»óÇü ÀåÄ¡¸¦ ã°í ÀÖ½À´Ï´Ù. ¿©·¯ ºÐ¾ßÀÇ ¿¬±¸¼Ò°¡ ½Ã¼³À» °øÀ¯Çϸ鼭 ±³À° ½Ã°£À» ÃÖ¼ÒÈ­ÇÏ°í ´Ù±¹¾î ȯ°æÀ» Áö¿øÇÏ´Â Á÷°üÀûÀÎ »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼Ò¸ðǰ E-Commerce Á¶´Þ Ç÷§Æû°ú ±¸µ¶ ¸ðµ¨Àº ±¸¸Å ÇൿÀ» º¯È­½Ã۰í ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â »ç¿ë·® ºÐ¼®°ú ¿¬°èµÈ ¿¹ÃøÀû īƮ¸®Áö ±³Ã¼ ÇÁ·Î±×·¥À» Á¦°øÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ´ëÇаú Á¦¾àȸ»çÀÇ Ä£È¯°æ Á¶´Þ Á¤Ã¥Àº Àú¹è¼ö ºñÀ²°ú È­ÇÐÁ¦Ç° »ç¿ë·® °¨¼Ò ÀÎÁõÀ» ¹ÞÀº ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í, ȯ°æ-»çȸ-Áö¹è±¸Á¶ º¸°í¼­´Â ¿¡³ÊÁö¿Í ÇÃ¶ó½ºÆ½ ¼Òºñ¿¡ ´ëÇÑ Åõ¸í¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÇöÀå ½ÇÇè½Ç ¹× À̵¿½Ä Å×½ºÆ® Àåºñ´Â Á¦ÇÑµÈ À¯Æ¿¸®Æ¼¿¡¼­ ÀÛµ¿ÇÏ´Â °ß°íÇϰí ÈÞ´ë °¡´ÉÇÑ Á¤È­ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, ȯ°æ ¸ð´ÏÅ͸µ ¹× ÀεµÀû ¹èÄ¡·Î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½ÇÇè½Ç ºÎµ¿»ê ºñ¿ëÀÇ »ó½ÂÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü´Â ±âÁ¸ ÄÉÀ̽º¿öÅ©¿Í ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â º®°ÉÀÌÇü ¶Ç´Â ½ºÅÃÇü ½Ã½ºÅÛÀ» °³¹ßÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ´Â °¨»ç Áغñ¸¦ À§ÇÑ ¼öÁú µ¥ÀÌÅÍÀÇ ÀÚµ¿ ·Î±ëÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ°úÀÇ ¿¬°á¼ºÀ» Á¡Á¡ ´õ ¸¹ÀÌ ±â´ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÚÁîÇÁ¸® µð½ºÆæ½º, ¸ÂÃãÇü µð½ºÆæ½º ¾ç, ¹°ÀÇ µî±ÞÀ» Ç¥½ÃÇÏ´Â »ö»óº° Á¶¸í µî ÀÎü°øÇÐÀû ±â´ÉÀ¸·Î °æÀï»ç¿ÍÀÇ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ¼³Ä¡ ÈÄ ¼­ºñ½º¿¡ ´ëÇÑ ±â´ëµµ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, º¥´õµéÀº ¿ø°Ý Áø´Ü, Áõ°­Çö½ÇÀ» ÀÌ¿ëÇÑ À¯Áöº¸¼ö °¡À̵å, ¿¬Àå º¸Áõ ÆÐŰÁö µîÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼±È£µµ º¯È­·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº »ç¿ëÀÚ Áß½ÉÀÇ µðÀÚÀÎ, Ź¿ùÇÑ ¼­ºñ½º, Áö¼ÓÀûÀÎ Á¦Ç° ÁøÈ­¿¡ ÁýÁßÇÒ ¼ö¹Û¿¡ ¾ø°Ô µÇ¾ú½À´Ï´Ù.

¼¼°è ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ È®´ë, ±â¼ú ¹ßÀü, ±¤¹üÀ§ÇÑ ÀÇ·á ¹× ¿¬±¸ ÅõÀÚ¿¡ »Ñ¸®¸¦ µÐ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀǾàǰ, ÀÓ»ó °Ë»ç, »ê¾÷¿ë QCÀÇ Ç°Áú °¡À̵å¶óÀÎÀÌ °­È­µÇ¸é¼­ ¿À¿°¼ö°¡ ¾øÀ½À» Áõ¸íÇÒ ¼ö ÀÖ´Â ¹®¼­°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú°í, ½ÇÇè½ÇÀº ±âÁ¸ Àåºñ¸¦ ¾÷±×·¹À̵åÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. »ý¹°Á¦Á¦, ¹é½Å, Á¤¹ÐÀÇ·á ºÐ¾ßÀÇ ¿¬±¸°³¹ßºñ ±ÞÁõÀº ´õ ³ôÀº ó¸® ´É·Â°ú °í¼øµµ ½Ã¾àÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ¾ÈÁ¤ÀûÀΠŸÀÔ i ¹°À» °ø±ÞÇÒ ¼ö ÀÖ´Â °íµµÈ­µÈ Á¤Á¦ ÀåºñÀÇ ±¸¸Å¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼öŹ ¿¬±¸±â°ü°ú ºÐ»êÇü ½ÃÇè½Ã¼³ÀÇ º¸±ÞÀÌ È®»êµÇ°í °í°´ ±â¹ÝÀÌ È®´ëµÇ´Â ÇÑÆí, ½ÅÈï±¹¿¡¼­´Â ÇÁ·ÎÁ§Æ® ÃʱâºÎÅÍ Ãֽмø¼ö ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ »õ·Î¿î ½ÃÇè¼Ò ÀÎÇÁ¶ó°¡ ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× NGO°¡ Áö¿øÇϴ ȯ°æ ¹× ½Äǰ ¾ÈÀü ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥Àº ½ÃÀå ¹üÀ§¸¦ ´õ¿í È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿î¿µ ºñ¿ëÀ» ³·Ãß°í ¼Ò¸ðǰÀ» ÁÙÀÌ´Â ±â¼úÀÇ ¹ßÀüÀº ÅõÀÚ ¼öÀÍ·üÀ» ³ôÀ̰í, ¿¹»êÀ§¿øÈ¸¿¡¼­ äÅÃÀ» Á¤´çÈ­ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ³¶ºñ ¾ø´Â ½ÇÇè½Ç ¿î¿µ°ú Àç°í¸¦ ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ¿òÁ÷ÀÓÀº »ý¼öº¸´Ù »ç¿ë ½Ã »ý¼ºÀ» Áö¿øÇϸç, º¸°ü ¹× ¿À¿°ÀÇ À§ÇèÀ» Á¦°ÅÇÕ´Ï´Ù. ±â°ü ¹× ±â¾÷ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÇÇØ ¼³Á¤µÈ Áö¼Ó°¡´É¼º ¸ñÇ¥´Â È­ÇÐ Àç»ý ½Ã½ºÅÛÀ» º¸´Ù ģȯ°æÀûÀÎ Àü±â ÀÌ¿ÂÈ­ ¹× ÀúÆó±â¹° ¼³°è·Î ´ëüÇÒ ¼ö ÀÖ´Â µ¿±â¸¦ ºÎ¿©ÇÕ´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ °ø±Þ¸Á ȸº¹·Â¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¿ÜºÎ °ø±Þ¾÷ü¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ÀÚüÀûÀ¸·Î ¹°À» »ý»êÇÏ´Â °ÍÀÇ Á߿伺ÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. º¥´õÀÇ À¶ÀÚ °èȹ, ¼­ºñ½º °è¾à, ÄÄÇöóÀ̾𽺠´ëÀÀ ¹®¼­¸¦ ÅëÇØ Á¶´Þ À庮À» ³·Ãß°í ÆÇ¸Å Áֱ⸦ ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ½ÇÇè½Ç¿ë Á¤¼ö ½Ã½ºÅÛÀº °úÇÐÀû ¾ö°Ý¼º°ú ¿î¿µ»óÀÇ ¿ì¼ö¼ºÀ» Ãß±¸ÇÏ´Â Àü ¼¼°è ±â¾÷µé¿¡°Ô ÇʼöÀûÀÎ ÀÚº» ¼³ºñ·Î ÀÚ¸®¸Å±èÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¸ð¸àÅÒÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(À¯Çü 1 - Ãʼø¼ö, À¯Çü 2 - ½ÇÇè½Ç µî±Þ ¹°, À¯Çü 3 - 1Â÷ µî±Þ ¹°, ±âŸ À¯Çü), ¿ëµµ(Å©·Î¸¶Åä±×·¡ÇÇ ¿ëµµ, ºÐ±¤ºÐ¼® ¿ëµµ, ¹Ì»ý¹°ÇÐÀû ºÐ¼® ¿ëµµ, ÀÓ»ó »ýÈ­ÇÐ ºÐ¼® ¿ëµµ, ¼¼Æ÷¡¤Á¶Á÷¹è¾ç ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø¡¤Áø´Ü ½ÇÇè½Ç ÃÖÁ¾ ¿ëµµ, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¡¤Á¦¾à »ê¾÷ ÃÖÁ¾ ¿ëµµ, ¿¬±¸¡¤Çмú±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Laboratory Water Purification Systems Market to Reach US$7.5 Billion by 2030

The global market for Laboratory Water Purification Systems estimated at US$4.8 Billion in the year 2024, is expected to reach US$7.5 Billion by 2030, growing at a CAGR of 7.6% over the analysis period 2024-2030. Type 1 - Ultrapure Water, one of the segments analyzed in the report, is expected to record a 5.9% CAGR and reach US$3.0 Billion by the end of the analysis period. Growth in the Type 2 - Laboratory Grade Water segment is estimated at 9.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.3 Billion While China is Forecast to Grow at 11.6% CAGR

The Laboratory Water Purification Systems market in the U.S. is estimated at US$1.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.6 Billion by the year 2030 trailing a CAGR of 11.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.9% and 7.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.0% CAGR.

Global Laboratory Water Purification Systems Market - Key Trends & Drivers Summarized

Why Are High-Purity Water Systems Becoming Indispensable in Modern Laboratories?

Laboratory water purification systems sit at the heart of reliable scientific workflows because even trace contaminants in feed water can compromise analytical accuracy, reproducibility, and instrument longevity. Researchers conducting ultrasensitive techniques such as liquid chromatography, mass spectrometry, cell culture, polymerase chain reaction, and trace metal analysis must eliminate ions, organic molecules, particulates, and microorganisms that can skew results. Regulatory mandates in pharmaceutical quality control, clinical diagnostics, and food testing demand demonstrable compliance with global standards for water quality, including ASTM, ISO, and CLSI specifications. As laboratories expand into nanotechnology, metabolomics, and gene therapy, water purity requirements have tightened even further, pushing demand for systems that deliver Type I and ultrapure water on demand. Rising awareness of hidden contaminants like endocrine disruptors and microplastics underscores the need for multistage treatment that combines reverse osmosis, electrodeionization, ultraviolet oxidation, and ultrafiltration. In academic environments, principal investigators emphasize clean water to safeguard expensive reagents and sensitive assays, while industrial labs view reliable purification as essential to maintaining continuous production uptime. Environmental labs rely on purified water to establish low detection limits for pollutants, ensuring that background interference is negligible. The global shift toward digital documentation and audit trails also spotlights the value of purification systems capable of logging water quality metrics for quality assurance teams. With laboratory footprints expanding and workflows becoming more specialized, the assurance of on-site, point-of-use purified water has evolved from a convenience into a fundamental prerequisite for scientific credibility and operational efficiency.

How Are Technological Advancements Elevating Performance and Sustainability in Purification Systems?

Rapid innovation is transforming laboratory water purification from a static utility into a smart, efficient, and environmentally responsible process. Integration of real-time sensors allows systems to monitor resistivity, total organic carbon, and bacterial load, automatically adjusting operating parameters to maintain consistent quality. Touchscreen interfaces and cloud-connected dashboards give users immediate visibility into cartridge life, service alerts, and historical performance data, reducing downtime and technician intervention. Advanced reverse-osmosis membranes now achieve higher rejection rates at lower pressures, cutting energy consumption while extending membrane lifespan. Electrodeionization modules enhanced with selective ion exchange resins provide continuous deionization without the need for chemical regeneration, aligning with green lab objectives. Ultraviolet light systems operating at 185 nm and 254 nm wavelengths simultaneously oxidize organic compounds and sterilize microbial contaminants, allowing single-pass polish steps that previously required separate units. Some manufacturers incorporate energy-recovery pumps and variable-frequency drives that modulate flow based on demand, further trimming power use. Recirculation loops and sanitization cycles are being optimized through machine-learning algorithms that predict biofilm formation, scheduling heat or chemical treatments exactly when needed rather than on fixed intervals. Modular designs make it possible to expand capacity by adding plug-in cartridges or additional treatment stages, accommodating evolving lab throughput without major infrastructure changes. Materials scientists are developing low-extractable plastics and environmentally friendly resins that maintain purity while reducing hazardous waste disposal. These technological innovations collectively enhance water quality assurance, prolong system lifespan, and support laboratories in meeting both operational and sustainability goals.

What Market Trends and User Expectations Are Shaping Product Development Strategies?

Customer expectations for laboratory water systems are evolving alongside larger trends in digitization, sustainability, and flexible laboratory design. Researchers now look for compact, benchtop units that save space yet deliver multiple water grades for varied applications within the same footprint. As multi-disciplinary labs share facilities, demand is rising for intuitive user interfaces that minimize training time and support multilingual environments. E-commerce procurement platforms and subscription models for consumables are changing buying behavior, prompting suppliers to offer predictive cartridge replacement programs tied to usage analytics. Green procurement policies at universities and pharmaceutical firms are driving interest in systems certified for low water waste ratios and reduced chemical usage, while Environmental, Social, and Governance reporting encourages transparency in energy and plastic consumption. Field-lab and mobile testing units require rugged, portable purification solutions that can operate on limited utilities, expanding the market into environmental monitoring and humanitarian deployments. The escalating cost of laboratory real estate is pushing manufacturers to engineer wall-mounted or stackable systems that integrate seamlessly with existing casework. End users increasingly expect connectivity with laboratory information management systems, enabling automated logging of water quality data for audit readiness. Competitive differentiation is also emerging through ergonomic features such as hands-free dispensing, customizable dispense volumes, and color-coded lighting cues that indicate water grade. Post-installation service expectations are climbing, leading vendors to provide remote diagnostics, augmented-reality maintenance guides, and extended warranty packages. These shifting preferences compel manufacturers to focus on user-centric design, service excellence, and continuous product evolution.

What Factors Are Driving Growth in the Global Laboratory Water Purification Systems Market?

The growth in the global laboratory water purification systems market is driven by several factors rooted in regulatory expansion, technological progress, and broader healthcare and research investments. Intensifying quality guidelines across pharmaceuticals, clinical testing, and industrial QC require documented evidence of contaminant-free water, propelling laboratories to upgrade legacy equipment. Surging R&D spending in biologics, vaccines, and precision medicine demands higher throughput and purer reagents, stimulating purchases of advanced purification units capable of delivering consistent Type I water. Rising penetration of contract research organizations and decentralized testing sites broadens the customer base, while emerging economies are building new laboratory infrastructure that includes modern water systems from project inception. Environmental and food safety surveillance programs funded by governments and NGOs further extend market reach. Technological advances that lower operating costs and reduce consumables strengthen the return on investment case, making adoption easier to justify to budget committees. The move toward lean laboratory operations and minimized inventory supports point-of-use generation over bottled water, eliminating storage and contamination risks. Sustainability targets set by institutional and corporate initiatives incentivize replacement of chemical regeneration systems with greener electrodeionization and low-waste designs. Heightened awareness of supply-chain resilience after pandemic disruptions underscores the importance of in-house water production rather than relying on external suppliers. Vendor financing plans, service contracts, and compliance-ready documentation reduce procurement hurdles, accelerating sales cycles. Collectively these drivers create a strong momentum that positions laboratory water purification systems as essential capital equipment in the global pursuit of scientific rigor and operational excellence.

SCOPE OF STUDY:

The report analyzes the Laboratory Water Purification Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Type 1 - Ultrapure Water, Type 2 - Laboratory Grade Water, Type 3 - Primary Grade Water, Other Types); Application (Chromatography Application, Spectrometry Application, Microbiological Analysis Application, Clinical Biochemistry Analysis Application, Cell & Tissue Cultures Application, Other Applications); End-Use (Hospitals & Diagnostic Laboratories End-Use, Biotechnology & Pharmaceuticals Industries End-Use, Research & Academic Institutes End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â