¼¼°èÀÇ °æÁú Æú¸®¿ì·¹Åº Æû ½ÃÀå
Rigid Polyurethane Foams
»óǰÄÚµå : 1792747
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 493 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°æÁú Æú¸®¿ì·¹Åº Æû ¼¼°è ½ÃÀåÀº 2030³â±îÁö 34¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °æÁú Æú¸®¿ì·¹Åº Æû ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 1.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 34¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½ÃÆ® À¯ÇüÀº CAGR 2.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºí·Ï À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 1.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 8¾ï 3,390¸¸ ´Þ·¯, Áß±¹Àº CAGR 3.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °æÁú Æú¸®¿ì·¹Åº Æû ½ÃÀåÀº 2024³â¿¡ 8¾ï 3,390¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï 3,360¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 3.5%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 0.6%¿Í 1.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 0.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °æÁú Æú¸®¿ì·¹Åº Æû ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹Ì·¡ÀÇ ´Ü¿­ : °æÁú PU ÆûÀÌ ¿¡³ÊÁö È¿À²°ú ±¸Á¶Àû ¼º´ÉÀ» À§ÇÑ ÇÙ½É ºÎǰÀ¸·Î ÁøÈ­ÇÏ´Â ¹æ¹ý

°æÁú PU ÆûÀÌ ´Ü¿­ ½ÃÀåÀÇ ÇÙ½É Àç·á·Î ºÎ»óÇÏ´Â ÀÌÀ¯

°æÁú Æú¸®¿ì·¹Åº(PU) ÆûÀº ¿ì¼öÇÑ ´Ü¿­ Ư¼º°ú ±¸Á¶Àû °­¼ºÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ °ÇÃà ¹× »ê¾÷ ºÐ¾ß¿¡¼­ Áö¼ÓÀûÀÎ ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °ÇÃ๰ÀÇ ¿¡³ÊÁö ±ÔÁ¦°¡ °­È­µÇ°í °í¼º´É ¿­ À庮ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ °æÁú PU ÆûÀº ´Ü¿­ ÆÐ³Î, ³Ãµ¿ ½Ã½ºÅÛ, ¹è°ü ´Ü¿­, Á¶¸³½Ä º®Ã¼ µîÀÇ ¿ëµµ·Î ¼±ÅõǴ Àç·á°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿­ÀüµµÀ²ÀÌ º¸Åë 0.020-0.025W/m-K·Î ¸Å¿ì ³·±â ¶§¹®¿¡ Æú¸®½ºÆ¼·»À̳ª À¯¸®¼¶À¯¿Í °°Àº ±âÁ¸ Àç·á¿Í ºñ±³ÇÏ¿© ´õ ¾ãÀº ´Ü¿­ÃþÀ¸·Î µ¿µî ÀÌ»óÀÇ ¿­ ¼º´ÉÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

LEED, BREEAM, WELL µî ģȯ°æ °ÇÃà ÀÎÁõÀ¸·ÎÀÇ ÀüȯÀº ½ÅÃà ¹× °³º¸¼ö ÇÁ·ÎÁ§Æ®¿¡¼­ °æÁú PU ÆûÀÇ ¿ªÇÒÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. Æú¸®¿ì·¹ÅºÀÇ µ¶¸³ ±âÆ÷ ±¸Á¶´Â °ø±â¿Í ½À±âÀÇ Ä§ÀÔÀ» ÃÖ¼ÒÈ­ÇÏ¿© ³ôÀº ¿­È¿À²À» ½ÇÇöÇϰí, °Ç¹°ÀÇ ¼ö¸íÀÌ ´ÙÇÒ ¶§±îÁö °øÁ¶ ºÎÇϸ¦ ÁÙ¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, Æú¸®¿ì·¹ÅºÀÇ Ä¡¼ö ¾ÈÁ¤¼º, ³»½À¼º, Àå±âÀûÀÎ R°ª À¯Áö·Î ÀÎÇØ ÁöºØ ½Ã½ºÅÛ, Áß°øº®, »ó¾÷¿ë ¹× ÁÖ°Å¿ë ±¸Á¶¹°¿¡ »ç¿ëµÇ´Â ¿¬¼Ó ´Ü¿­ º¸µå¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ» ³ôÀÔ´Ï´Ù. ³ÃÀå ¿î¼Û ¹× ÄݵåüÀÎ ¹°·ù¿¡¼­ °æÁú PU ÆûÀº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̸鼭 ¾ö°ÝÇÑ ¿Âµµ Á¦¾î¸¦ º¸ÀåÇÕ´Ï´Ù.

°ÇÃ๰ ¿Ü¿¡µµ ÀúÀå ÅÊÅ©, LNG ¿ë±â, HVAC ½Ã½ºÅÛ µî »ê¾÷¿ë ´Ü¿­Àç·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­´Â °æÁú PU ÆûÀÇ ³ôÀº °­µµ ´ë Áß·®ºñ°¡ ±¸Á¶ ÇÏÁß °¨¼Ò¿¡ ±â¿©Çϰí, ´Ü¿­ÀçÀÇ ºÎÇǺñ¸¦ °³¼±ÇÑ ÄÄÆÑÆ®ÇÑ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Á¤ºÎ¿Í ±â¾÷ÀÌ ÀÌ»êȭź¼Ò °¨Ãà ¸ñÇ¥¿Í ¼ø Á¦·Î ¸ñÇ¥¸¦ äÅÃÇÏ´Â °¡¿îµ¥, °æÁú PU ÆûÀÇ ¿ì¼öÇÑ ´Ü¿­ ¼º´ÉÀº Żź¼ÒÈ­ ¸ñÇ¥¿Í »õ·Î¿î ¿¡³ÊÁö ±Ô¹ü¿¡ ºÎÇÕÇÕ´Ï´Ù.

¼º´É°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â Á¦Á¶ Çõ½Å°ú ¼ÒÀç ¹èÇÕÀ̶õ?

°æÁú PU Æû ½ÃÀåÀº ¹èÇÕ È­ÇÐ, ¹ßÆ÷Á¦ ¼±ÅÃ, ÆÐ³Î ¼³°è¿¡¼­ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Å¬·Î·ÎÇ÷ç¿À·ÎÄ«º»(CFC) ¹× ÇÏÀ̵å·ÎŬ·Î·ÎÇ÷ç¿À·ÎÄ«º»(HCFC) ¹ßÆ÷Á¦´Â ¿ÀÁ¸Ãþ ÆÄ±« ¹× Áö±¸ ¿Â³­È­ °¡´É¼ºÀ¸·Î ÀÎÇØ ´Ü°èÀûÀ¸·Î ÆóÁöµÇ°í ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº ÇÏÀ̵å·ÎÇ÷ç¿À·Î¿Ã·¹ÇÉ(HFO) ¹× ÆæÅº ±â¹ÝÀÇ ´ëüǰÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ HFO´Â ¾ÈÁ¤µÈ Æû ±¸Á¶, ³·Àº k-°è¼ö, ¿ÀÇÁ°¡½º °¨¼Ò¸¦ ½ÇÇöÇϸ鼭 ÃÊÀú GWP(Áö±¸¿Â³­È­Áö¼ö)¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­´Â ¸óÆ®¸®¿Ã ÀÇÁ¤¼­ÀÇ Å°°¥¸® ¼öÁ¤Á¶Ç×ÀÇ ¸ñÇ¥¿Í EUÀÇ F°¡½º ±ÔÁ¦¿Í °°Àº Áö¿ªÀû Àǹ«¿¡ ´ëÀÀÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¼ÒÀç Á¦Á¶¾÷üµéµµ ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿Ã°ú ÀçȰ¿ë ÄÁÅÙÃ÷¸¦ ÅëÇÕÇÏ·Á´Â ½Ãµµ¸¦ Çϰí ÀÖ½À´Ï´Ù. Æú¸®¿Ã ±â¼úÀÇ ¹ßÀüÀ¸·Î ¼®À¯È­ÇÐ À¯·¡ ¼ººÐÀÇ ÀϺθ¦ ½Ä¹°¼º ¿ÀÀÏ À¯µµÃ¼¿Í Àç»ý Æú¸®¿ì·¹Åº Æó±â¹°·Î ´ëüÇÒ ¼ö ÀÖ°Ô µÇ¾î ź¼Ò¹ßÀÚ±¹À» ÁÙÀÌ°í ¼øÈ¯ °æÁ¦ÀÇ ¿øÄ¢¿¡ ºÎÇÕÇÏ°Ô µÇ¾ú½À´Ï´Ù. °¢ Á¦Á¶»ç´Â ȯ°æ Á¦Ç° ¼±¾ð(EPD)°ú ¿ä¶÷¿¡¼­ ¹®±îÁö ¶óÀÌÇÁ »çÀÌŬ ºÐ¼®À» Á¦°øÇÔÀ¸·Î½á, ƯÈ÷ ģȯ°æ ÀÎÁõ ÇÁ·ÎÁ§Æ®¿¡¼­ °æÁú PU ÆûÀ» Áö¼Ó°¡´ÉÇÑ Àç·á·Î Æ÷Áö¼Å´×Çϰí ÀÖ½À´Ï´Ù.

±¸Á¶Àû Çõ½Å Ãø¸é¿¡¼­´Â °æÁú PU Æû Äھ ±Ý¼Ó ¶Ç´Â º¹ÇÕÀç ÆäÀ̽ÌÀ» °áÇÕÇÑ »÷µåÀ§Ä¡ ÆÐ³ÎÀÌ Á¶¸³½Ä °ÇÃà°ú ¸ðµâ½Ä °ÇÃà¿¡ äÅõǰí ÀÖ½À´Ï´Ù. ÀÌ ÆÐ³ÎÀº ³ôÀº ´Ü¿­¼º, ±¸Á¶Àû ³»ÇÏÁß, ³»È­¼ºÀ» Á¶¸³½Ä ´ÜÀÏ À¯´ÖÀ¸·Î Á¦°øÇÕ´Ï´Ù. µðÁöÅзΠÁ¦¾îµÇ´Â ¹ßÆ÷ ½Ã½ºÅÛ°ú »çÃâ °øÁ¤Àº Á¤¹ÐÇÑ ¹Ðµµ Á¦¾î, Ä¡¼ö °øÂ÷ °³¼±, ÄÚ¾î¿Í ÆäÀÌ½Ì »çÀÌÀÇ Á¢Âø·Â Çâ»ó, ¿¡³ÊÁö ¼º´É ÀÎÁõ ¹× Àå±â ³»±¸¼º Ç¥ÁØÀ» ´Þ¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

ÃÖÁ¾ ¿ëµµ ºÎ¹®°ú Áö¿ª ±ÔÁ¦´Â ¾î¶»°Ô ¼ö¿ä ±Ëµµ¸¦ Çü¼ºÇϰí Àִ°¡?

°ÇÃà ¹× °Ç¼³ »ê¾÷Àº ¿©ÀüÈ÷ °æÁú PU ÆûÀÇ ÁÖ¿ä ÃÖÁ¾»ç¿ëÀÚÀ̸ç, Àü ¼¼°è ¼ÒºñÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÕ´Ï´Ù. À¯·´¿¬ÇÕ(EU), ij³ª´Ù, ¹Ì±¹ µîÀÇ Áö¿ª¿¡¼­´Â Á¦·Î¿¡³ÊÁöºôµù(ZEB) ¹× ´Ï¾îÁ¦·Î¿¡³ÊÁöºôµù(nZEB)ÀÇ ÃßÁøÀ¸·Î º®Ã¼, ÁöºØ, ±âÃÊ ½½·¡ºê Àüü¿¡ °í´Ü¿­ Àç·áÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¹ßÆ÷º¸µå, ¹ßÆ÷ PU, °æÁú PU Äھ ³»ÀåÇÑ ±¸Á¶¿ë ´Ü¿­ ÆÐ³Î(SIP)Àº ¿­±³ ¾ïÁ¦¿Í ¿ÜÇÇÀÇ ±â¹Ð¼ºÀ» ´Þ¼ºÇϱâ À§ÇØ ÇʼöÀûÀ̸ç, Â÷¼¼´ë °Ç¹°ÀÇ Áß¿äÇÑ ¼º´É ÁöÇ¥°¡ µÇ°í ÀÖ½À´Ï´Ù.

ÄݵåüÀÎ ºÐ¾ß, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ¶óƾ¾Æ¸Þ¸®Ä«¿¡¼­´Â ³ÃÀå â°í, ¹é½Å º¸°ü¼Ò, ½Äǰ À¯Åë ¹°·ùÀÇ Áõ°¡·Î ÀÎÇØ °æÁú PU Æû ±â¹Ý ´Ü¿­Àç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀç°¡ °¡Áø ¿­ º¯µ¿À» ÃÖ¼ÒÈ­ÇÏ°í º¸°ü ¿Âµµ¸¦ ³·°Ô À¯ÁöÇÏ´Â ´É·ÂÀº ½Å¼±½ÄǰÀ̳ª ¿Âµµ¿¡ ¹Î°¨ÇÑ ÀǾàǰ¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¶ÇÇÑ, Á¶Á÷È­µÈ ¼Ò¸Å, E-Commerce¸¦ ÅëÇÑ ½Ä·áǰ ¹è¼Û, ¶ó½ºÆ® ¸¶ÀÏ ¹°·ùÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ °æÁú PU ´Ü¿­À縦 »ç¿ëÇÑ ÈÞ´ë¿ë ³ÃÀå ÄÁÅ×À̳ʿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Áö¿ªÀûÀ¸·Î´Â ±ÔÁ¦¿Í Àμ¾Æ¼ºê¿¡ µû¶ó ¼ºÀå·üÀÌ ´Ù¸£°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù. EU¿¡¼­´Â °Ç¹° ¿¡³ÊÁö ¼º´É Áöħ(EPBD), ´Ü¿­ °³º¸¼ö¿¡ ´ëÇÑ ¼¼¾×°øÁ¦ µîÀÇ Á¤Ã¥ÀÌ ´ë±Ô¸ð äÅÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ½ÃÀåÀº DOEÀÇ ZERH(Zero Energy Ready Home) ÇÁ·Î±×·¥°ú ÀÎÇ÷¹ÀÌ¼Ç °¨¼Ò¹ýÀÇ ¿¡³ÊÁö È¿À² °³¼±¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÝÀÀÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾Æ¿¡¼­´Â Áß±¹ÀÇ GBEL(Green Building Evaluation Label)°ú ÀεµÀÇ ECBC ±âÁØÀÌ ´ë±Ô¸ð µµ½Ã ÀÎÇÁ¶ó ¹× °ø°ø °ÇÃ๰ÀÇ ÀÚÀç ¼±Åÿ¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

°æÁú PU Æû ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

°æÁú Æú¸®¿ì·¹Åº Æû ½ÃÀåÀÇ ¼ºÀåÀº ¼º´É ¿ä±¸, ȯ°æÀû ¿ä±¸, ½ÃÀå ´Ùº¯È­ÀÇ ÇÕ·ù·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ±× ÇÙ½ÉÀº PU ÆûÀÇ ¿ì¼öÇÑ ´Ü¿­ ¼º´ÉÀ¸·Î °ÇÃà, ±³Åë, »ê¾÷ ÀÎÇÁ¶óÀÇ ¿¡³ÊÁö Àý¾à°ú ±âÈÄ º¯È­¿¡ ´ëÇÑ ÀúÇ׿¡ ÇʼöÀûÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °ÇÃ๰ÀÇ Å»Åº¼ÒÈ­ ¹× ¿¡³ÊÁö È¿À² Çâ»ó¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â °¡¿îµ¥, ¿­°ü¸® ¹× Á¦·Î¿¡³ÊÁö ±ÔÁ¦ ´ëÀÀ¿¡ ÀÖ¾î °æÁú PU ÆûÀÇ ¿ªÇÒÀº ¾ÕÀ¸·Î ´õ¿í Ä¿Áú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ȯ°æÁ¤Ã¥°ú ±âÈĺ¯È­¿¡ ÃÊÁ¡À» ¸ÂÃá ¹ý·üÀº ¼ö¿ä È®´ë¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. °ÇÃà ȯ°æÀÇ ¿¡³ÊÁö È¿À²È­ Àǹ«È­´Â °³º¸¼ö¿¡ ´ëÇÑ °ø°ø º¸Á¶±Ý°ú ÇÔ²² °æÁú PU ´Ü¿­ÀçÀÇ ½ÃÀå ħÅõÀ²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº Àç»ý °¡´ÉÇÑ Æú¸®¿Ã ¹× Àú GWP ¹ßÆ÷Á¦ µî Àç·áÀÇ È¯°æ ¹ßÀÚ±¹À» ÇØ°áÇϰí ÇâÈÄ ¹ý±Ô Áؼö¸¦ º¸ÀåÇÏ´Â Áö¼Ó°¡´ÉÇÑ ¹èÇÕÀÇ ¹ßÀüÀ¸·Î °­È­µÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¸ðµâ½Ä °ÇÃà, ³ÃÀå â°í¸Á, Á¶¸³½Ä ÁÖÅÃÀÇ Áõ°¡·Î ÀÎÇØ PU ÆûÀÇ ¿ëµµ´Â »õ·Î¿î ÁöÆòÀ» ¿­¾î°¡°í ÀÖ½À´Ï´Ù. °æ·®, °í¼º´É, È®À强ÀÌ ¶Ù¾î³­ °æÁú PU ÆûÀº ºü¸¥ Àü°³°¡ °¡´ÉÇÑ °ÇÃà, ±×¸° ¹°·ù, ÆÐ½Ãºê ÇϿ콺 °ÇÃà¿¡ ÀûÇÕÇÕ´Ï´Ù. Àç·á °úÇÐÀÌ °­µµ, ¾ÈÀü¼º, ȯ°æ ÇÁ·ÎÆÄÀÏÀ» Áö¼ÓÀûÀ¸·Î °³¼±Çϰí ÀÖ´Â °¡¿îµ¥, °æÁú PU ÆûÀº Àü ¼¼°èÀûÀ¸·Î Áö¼Ó°¡´ÉÇÏ°í ¿­È¿À²ÀûÀÎ ÀÎÇÁ¶ó¸¦ ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ÇÙ½É ¼ÒÀç°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(½ÃÆ® À¯Çü, ºí·Ï À¯Çü, ¼ºÇü À¯Çü), ¿øÀç·á(µðÀ̼ҽþƳ×ÀÌÆ® ¿øÀç·á, Æú¸®¿Ã ¿øÀç·á), ¿ëµµ(ÀÇ·á¿ë ¿µ»ó ±â±â ¿ëµµ, ¿øÀÚ·Â ¿ë±â ¿ëµµ, ³ÃÀå°í¡¤³Ãµ¿°í ¿ëµµ, ´Ü¿­ ½Ã½ºÅÛ ¿ëµµ, °ø±¸¡¤±ÝÇü ¿ëµµ, ½ÃÀÛǰ¡¤¸ðÇü ¿ëµµ, ³ÃÀå½Ç ¿ëµµ, ´í½º Ç÷ξ½ºÆ÷Ã÷ ÇÃ·Î¾î ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(Àü±â¡¤ÀüÀÚ ÃÖÁ¾»ç¿ëÀÚ, °Ç¼³ ÃÖÁ¾»ç¿ëÀÚ, ¼ÒºñÀç ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, ½ºÆ÷Ã÷ ÃÖÁ¾»ç¿ëÀÚ, °¡±¸¡¤Ä§±¸ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Rigid Polyurethane Foams Market to Reach US$3.4 Billion by 2030

The global market for Rigid Polyurethane Foams estimated at US$3.1 Billion in the year 2024, is expected to reach US$3.4 Billion by 2030, growing at a CAGR of 1.7% over the analysis period 2024-2030. Sheets Type, one of the segments analyzed in the report, is expected to record a 2.0% CAGR and reach US$2.0 Billion by the end of the analysis period. Growth in the Blocks Type segment is estimated at 1.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$833.9 Million While China is Forecast to Grow at 3.5% CAGR

The Rigid Polyurethane Foams market in the U.S. is estimated at US$833.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$633.6 Million by the year 2030 trailing a CAGR of 3.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 0.6% and 1.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 0.8% CAGR.

Global Rigid Polyurethane Foams Market - Key Trends & Drivers Summarized

Insulating the Future: How Rigid PU Foams Are Evolving into Critical Components for Energy Efficiency and Structural Performance

Why Are Rigid PU Foams Emerging as Core Materials in Thermal Insulation Markets?

Rigid polyurethane (PU) foams are experiencing sustained demand across multiple construction and industrial applications due to their outstanding thermal insulation properties and structural rigidity. As global building energy codes tighten and the need for high-performance thermal barriers increases, rigid PU foams have become a material of choice for applications such as insulating panels, refrigeration systems, piping insulation, and prefabricated walls. Their exceptionally low thermal conductivity, typically ranging from 0.020 to 0.025 W/m·K, allows thinner insulation layers to achieve the same or better thermal performance compared to conventional materials like polystyrene or fiberglass.

The shift toward green building certifications such as LEED, BREEAM, and WELL has further elevated the role of rigid PU foams in new construction and retrofitting projects. Polyurethane’s closed-cell structure minimizes air and moisture infiltration, delivering higher thermal efficiency and reducing HVAC loads over a building's lifetime. The material’s dimensional stability, moisture resistance, and long-term R-value retention also enhance its suitability in roofing systems, cavity walls, and continuous insulation boards used in commercial and residential structures. In refrigerated transport and cold chain logistics, rigid PU foams ensure tight thermal control while reducing fuel consumption.

Beyond buildings, the material is gaining traction in industrial insulation for storage tanks, LNG vessels, and HVAC systems. In these domains, the high strength-to-weight ratio of rigid PU foams contributes to reduced structural loads, enabling compact designs with improved insulation-to-volume ratios. As governments and corporations adopt carbon reduction goals and net-zero targets, the superior insulating capacity of rigid PU foams is aligned with decarbonization objectives and emerging energy codes.

What Manufacturing Innovations and Material Formulations Are Enhancing Performance and Sustainability?

The rigid PU foam market is undergoing continuous innovation in formulation chemistry, blowing agent selection, and panel design. With traditional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) blowing agents being phased out due to their ozone depletion and global warming potential, manufacturers have adopted hydrofluoroolefin (HFO) and pentane-based alternatives. HFOs in particular offer ultra-low global warming potential (GWP) while delivering consistent foam structure, low k-factors, and reduced off-gassing. This evolution is critical in meeting the Kigali Amendment goals under the Montreal Protocol and regional mandates such as the EU’s F-Gas Regulation.

Material producers are also experimenting with bio-based polyols and recycled content integration. Advances in polyol technology now allow the partial substitution of petrochemical-derived components with vegetable oil derivatives or reclaimed polyurethane waste, thereby reducing the carbon footprint and aligning with circular economy principles. Manufacturers are increasingly offering Environmental Product Declarations (EPDs) and cradle-to-gate life cycle analyses to position rigid PU foam as a sustainable material choice, particularly in green-certified projects.

In terms of structural innovation, sandwich panel configurations that combine rigid PU foam cores with metallic or composite facings are gaining adoption in prefabricated buildings and modular construction. These panels provide high thermal insulation, structural load-bearing capacity, and fire resistance, all in a single prefabricated unit. Digitally-controlled foaming systems and injection processes have further enabled precise density control, better dimensional tolerances, and improved adhesion between core and facings, which is critical in achieving energy performance certifications and long-term durability standards.

How Are End-Use Sectors and Regional Regulations Shaping Demand Trajectories?

The building and construction industry remains the primary end-user of rigid PU foams, accounting for a majority share of global consumption. The push for zero-energy buildings (ZEBs) and near-zero energy buildings (nZEBs) in regions such as the European Union, Canada, and the U.S. is accelerating the adoption of highly insulating materials across wall assemblies, roofs, and foundation slabs. Foam boards, spray-applied PU, and structural insulated panels (SIPs) incorporating rigid PU cores are integral to achieving thermal bridging control and envelope tightness-key performance metrics in next-gen buildings.

In the cold chain sector, particularly in Asia-Pacific and Latin America, there is a surge in demand for rigid PU foam-based insulation due to the rise in refrigerated warehouses, vaccine storage, and food distribution logistics. The material’s ability to maintain low internal temperatures with minimal thermal fluctuation is essential for perishable goods and temperature-sensitive pharmaceuticals. Moreover, the growth of organized retail, e-commerce grocery delivery, and last-mile logistics are expanding demand for portable refrigerated containers made with rigid PU insulation.

Regionally, regulations and incentives are creating divergent growth rates. In the EU, policies like the Energy Performance of Buildings Directive (EPBD) and tax credits for insulation retrofits are spurring large-scale adoption. The U.S. market is responding to DOE Zero Energy Ready Home (ZERH) programs and the Inflation Reduction Act's investment in energy efficiency upgrades. In Asia, China’s Green Building Evaluation Label (GBEL) and India's ECBC codes are influencing material selection in large urban infrastructure and public buildings.

What Factors Are Driving the Long-Term Growth of the Rigid PU Foams Market?

The growth in the rigid polyurethane foams market is driven by a confluence of performance demands, environmental imperatives, and market diversification. At the core lies the superior insulating performance of PU foams, which is essential for energy savings and climate resilience across buildings, transport, and industrial infrastructure. As global attention turns to building decarbonization and energy-efficiency upgrades, the role of rigid PU foams in thermal management and compliance with zero-energy regulations is set to intensify.

Environmental policy and climate-focused legislation are playing pivotal roles in expanding demand. Energy efficiency mandates in the built environment, combined with public subsidies for retrofits, are increasing market penetration of rigid PU insulation. These factors are reinforced by advances in sustainable formulations, such as renewable polyols and low-GWP blowing agents, which address the material’s environmental footprint and ensure future regulatory compliance.

Additionally, the growth of modular construction, cold storage networks, and prefabricated housing is creating new frontiers for PU foam applications. Lightweight, high-performance, and scalable, rigid PU foams are aligned with rapid-deployment architecture, green logistics, and passive house construction. As material science continues to improve strength, safety, and environmental profiles, rigid PU foams will remain a cornerstone material in the push for sustainable and thermally-efficient infrastructure worldwide.

SCOPE OF STUDY:

The report analyzes the Rigid Polyurethane Foams market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Sheets Type, Blocks Type, Molded Type); Raw Material (Diisocyanates Raw Material, Polyols Raw Material); Application (Medical Imaging Equipment Application, Nuclear Containers Application, Refrigerator & Freezer Application, Thermal Insulation Systems Application, Tooling & Molds Application, Prototypes & Models Application, Cold Room Application, Dance Floors & Sports Flooring Application, Other Applications); End-Use (Electrical & Electronics End-Use, Construction End-Use, Consumer Goods End-Use, Healthcare End-Use, Automotive End-Use, Sports End-Use, Furniture & Bedding End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â