¼¼°èÀÇ ¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀå
Friction Pendulum Bearings
»óǰÄÚµå : 1791852
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 573 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀåÀº 2030³â±îÁö 25¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¸¶Âû ÁøÀÚ º£¾î¸µ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 4.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 25¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Single Concave Friction Pendulum BearingÀº CAGR 4.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 14¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Double Concave Friction Pendulum Bearing ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 3.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 4,400¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀåÀº 2024³â¿¡ 5¾ï 4,400¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5¾ï 2,060¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.6%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.6%¿Í 3.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¸¶Âû ÁøÀÚ º£¾î¸µÀÌ ÁöÁø ´ëÃ¥¿¡ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¸¶Âû ÁøÀÚ º£¾î¸µÀº ³»Áø°øÇÐÀÇ ±âÃʱâ¼ú·Î ±³·®, °íÃþºôµù, »ê¾÷ ÀÎÇÁ¶ó¿¡ ±¸Á¶Àû ¾ÈÁ¤¼º°ú ³»ÇÏÁßÀ» Á¦°øÇÕ´Ï´Ù. ÁöÁø ¿¡³ÊÁö¸¦ Èí¼öÇÏ°í ºÐ»êÇϵµ·Ï ¼³°èµÈ ÀÌ ÁöÁÖ´Â Á¦¾îµÈ ¿òÁ÷ÀÓÀ» °¡´ÉÇÏ°Ô Çϰí, Áö¹ÝÀÇ Èçµé¸²À¸·ÎºÎÅÍ ±¸Á¶¹°À» °Ý¸®½ÃÄÑ ÁöÁø ¹ß»ý ½Ã ÇÇÇØ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±âÁ¸ÀÇ °íÁ¤ ±âÃÊ¿Í ´Þ¸® ¸¶Âû ÁøÀÚ º£¾î¸µÀº Á¦¾îµÈ ¹Ì²ô·³ ¸¶Âû°ú º¹¿ø·ÂÀÇ ¿ø¸®·Î ÀÛµ¿Çϱ⠶§¹®¿¡ ÁöÁø ÈÄ °Ç¹°À̳ª ±³·®ÀÌ ¿ø·¡ À§Ä¡·Î µ¹¾Æ°¥ ¼ö ÀÖ½À´Ï´Ù.

ÀϺ», ¹Ì±¹, ÀÌÅ»¸®¾Æ, Æ¢¸£Å°¿¹, Ä¥·¹ µî ÁöÁøÀÌ ÀæÀº Áö¿ª¿¡¼­´Â ³»Áø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±âÈÄ º¯È­·Î ÀÎÇØ ÁöÁø Çö»óÀÇ ¿¹Ãø ºÒ°¡´É¼º°ú °­µµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¤ºÎ¿Í °Ç¼³»çµéÀº ¸¶Âû ÁøÀÚ º£¾î¸µ°ú °°Àº ¸éÁø ±â¼úÀ» Áß¿äÇÑ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼º´É±â¹Ý ³»Áø¼³°è(PBSD)ÀÇ ¹ßÀü°ú °ÇÃà¹ý ¹× ±ÔÁ¤ÀÇ ¾÷µ¥ÀÌÆ®·Î ¿¡³ÊÁö ¼Ò»ê¼º ±¸Á¶ºÎÀç »ç¿ëÀÌ Àǹ«È­µÇ¾î »ó¾÷, ÁÖ°Å, »ê¾÷ °¢ °ÇÃàºÎ¹®¿¡¼­ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ¾î¶»°Ô ¸¶Âû ÁøÀÚ º£¾î¸µÀ» °­È­Çϴ°¡?

Àç·á °úÇÐ, °è»ê ½Ã¹Ä·¹À̼Ç, Á¤¹Ð °øÇÐÀÇ ¹ßÀüÀ¸·Î ¸¶Âû ÁøÀÚ º£¾î¸µÀÇ ¼º´É, ³»±¸¼º, ³»ÇÏÁß¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. °í¼º´É ½ºÅ×Àθ®½º ÇÕ±Ý, º¹ÇÕ ¸¶ÂûÀç, ÀÚ±â À±È°¼º Æú¸®¸Ó ÄÚÆÃÀº ½½¶óÀ̵ù °è¸éÀ» °­È­ÇÏ°í ¸¶¸ð¸¦ ÁÙÀÌ¸ç ¹Ýº¹ÀûÀÎ ÁöÁø ÇÏÁß ÇÏ¿¡¼­ Àå±âÀûÀÎ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ´Ù¾çÇÑ ±Ô¸ðÀÇ ÁöÁø Ȱµ¿¿¡ ÀûÀÀÇÏ´Â °¡º¯ ÀÀ´ä ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÏ´Â ´Ù´Ü°è ¸¶Âû ÁøÀÚ º£¾î¸µ(MSFPB)ÀÇ °³¹ßÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

¶ÇÇÑ, À¯ÇÑ¿ä¼Ò ¸ðµ¨¸µ(FEM)°ú AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ¸¶Âû ÁøÀÚ º£¾î¸µÀÇ ¼³°è¿Í ½ÃÇèÀ» ÃÖÀûÈ­Çϰí, ¿£Áö´Ï¾î°¡ ´Ù¾çÇÑ ÁöÁø ½Ã³ª¸®¿À¿¡¼­ °Åµ¿À» Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¼¾¼­¿Í »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ÅëÇÕÀº º£¾î¸µÀÇ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí, ¸¶¸ðÀÇ Ãʱâ ¡Èĸ¦ ÆÄ¾ÇÇϸç, À¯Áöº¸¼ö ÇÁ·ÎÅäÄÝÀ» ÀÚµ¿È­ÇÔÀ¸·Î½á ¾÷°è¿¡ ¶Ç ´Ù¸¥ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D ÇÁ¸°ÆÃ°ú ÀûÃþ °¡°øÀÇ ±â¼ú Çõ½ÅÀº ¸ÂÃãÇü ¼³°èÀÇ ÇÁ·ÎÅäŸÀÔ Á¦ÀÛ°ú »ý»êÀ» °£¼ÒÈ­ÇÏ¿© Á¦Á¶ÀÇ Á¤È®¼º°ú ºñ¿ë È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

¸¶Âû ÁøÀÚ º£¾î¸µÀÇ °úÁ¦¿Í ½ÃÀå ±âȸ´Â?

¸¶Âû ÁøÀÚ º£¾î¸µÀº ±× È¿°ú¿¡µµ ºÒ±¸ÇÏ°í ºñ¿ë, °³Á¶ °¡´É¼º, Àç·áÀÇ ¼ö¸í°ú °ü·ÃµÈ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. °íǰÁú ¸éÁø ½Ã½ºÅÛ µµÀÔÀ» À§ÇÑ Ãʱâ ÅõÀÚºñ¿ëÀº ±âÁ¸ ±¸Á¶ º¸°­ °ø¹ýº¸´Ù ÈξÀ ´õ ³ôÀ» ¼ö ÀÖ¾î ¿¹»ê¿¡ ¹Î°¨ÇÑ °³¹ß¾÷ü¿Í ÁöÀÚü ´ç±¹ÀÇ ÁÖÀú¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ±¸Á¶¹°À» ¸¶Âû ÁøÀÚ º£¾î¸µÀ¸·Î °³Á¶ÇÏ·Á¸é Á¾ÇÕÀûÀÎ ±¸Á¶ Æò°¡, °ø°£ º¯°æ, ÇÏÁß ÀçºÐ¹è°¡ ÇÊ¿äÇϸç, ÀÌ´Â ¿À·¡µÈ °Ç¹°À̳ª ÀÎÇÁ¶ó¿¡ º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â °úÁ¤ÀÔ´Ï´Ù.

±×·¯³ª ÀÌ·¯ÇÑ µµÀüÀº ƯÈ÷ ÀçÇØ¿¡ °­ÇÑ ÀÎÇÁ¶ó¿Í ½º¸¶Æ®ÇÑ µµ½Ã°èȹ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Å« ¼ºÀåÀÇ ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °³¹ß¿¡¼­ ¹Î°üÇù·Â(PPP) Áõ°¡´Â ³»Áø ¾ÈÀü ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¸¦ ÃËÁøÇϰí, Á¤ºÎ°¡ »õ·Î °Ç¼³µÇ´Â °í¼Óµµ·Î, ±³·®, À§Çèµµ°¡ ³ôÀº µµ½Ã Áö¿ª¿¡ ¸¶Âû ÁøÀÚ º£¾î¸µÀ» ÅëÇÕÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í¼Óöµµ¸Á°ú ÇØ»ódz·Â¹ßÀü¼ÒÀÇ È®´ë·Î ³»Áø ±âÃʱâ¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ģȯ°æ °Ç¼³ ¹× Áö¼Ó °¡´ÉÇÑ ¿£Áö´Ï¾î¸µ ¼Ö·ç¼ÇÀÇ ÃßÁøÀ¸·Î ģȯ°æ ¸¶ÂûÀç ¹× ÀçȰ¿ë °¡´ÉÇÑ ¸éÁø ºÎÀçÀÇ ¿¬±¸°¡ ÃËÁøµÇ¾î º¸´Ù ģȯ°æÀûÀÎ ÀÀ¿ë ºÐ¾ß·Î ³ª¾Æ°¥ ¼ö ÀÖ´Â ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù.

¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀåÀÇ ¼ºÀåÀº Àç·á °úÇÐÀÇ ¹ßÀü, ³»Áø ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ Áõ°¡, ±¸Á¶Àû °ÇÀü¼º Æò°¡¸¦ À§ÇÑ ½º¸¶Æ® ¸ð´ÏÅ͸µ ±â¼úÀÇ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸Àü ½Ã½ºÅÛ, IoT¸¦ Ȱ¿ëÇÑ ½Ç½Ã°£ ¼º´É ÃßÀû, µðÁöÅÐ Æ®À© ½Ã¹Ä·¹À̼ÇÀÇ ÅëÇÕÀº ¸¶Âû ÁøÀÚ º£¾î¸µÀÇ ¸ð´ÏÅ͸µ, ÃÖÀûÈ­ ¹× À¯Áöº¸¼ö ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÃþ »ó¾÷¿ë °Ç¹°, ÁöÇÏö ÇÁ·ÎÁ§Æ®, ÇØ¾ç ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¸éÁø º£¾î¸µÀÇ ÃÖÁ¾ ¿ëµµ°¡ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¼º´É ±â¹Ý ³»Áø ¿£Áö´Ï¾î¸µ(PBSE), ¾ö°ÝÇÑ °ÇÃà ±âÁØ, º¸Çè¿¡ ±â¹ÝÇÑ ÄÄÇöóÀ̾𽺠±âÁØÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÁöÁø¿¡ Ãë¾àÇÑ Áö¿ª Àüü¿¡¼­ ¸¶Âû ÁøÀÚ º£¾î¸µ ½ÃÀå º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿³²¾Æ½Ã¾Æ, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ÀÇ ½ÅÈï±¹µéÀº ÀÎÇÁ¶ó Çö´ëÈ­°¡ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÁöÁø ´ëÃ¥ ¼Ö·ç¼ÇÀ» Àü¹®À¸·Î ÇÏ´Â Á¦Á¶¾÷ü¿Í ¿£Áö´Ï¾î¸µ ȸ»çµé¿¡°Ô »õ·Î¿î ¼öÀÍ ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. °í³»±¸¼º ¸¶ÂûÀç, ÀÚµ¿ Å×½ºÆ® ¹æ¹ý, ¸ðµâ½Ä ³»Áø ½Ã½ºÅÛ ¼³°è µî Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» ÅëÇØ Á¶»ç ¹æ¹ý ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ç¸ç Àü ¼¼°è ÁÖ¿ä ÀÎÇÁ¶óÀÇ Àå±âÀûÀÎ º¹¿ø·Â°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(½Ì¸£ÄÜÄÉÀÌºê ¸¶Âû ÁøÀÚ º£¾î¸µ, ´Ùºê¸£ÄÜÄÉÀÌºê ¸¶Âû ÁøÀÚ º£¾î¸µ, Æ®¸®ÇÁ¸£ÄÜÄÉÀÌºê ¸¶Âû ÁøÀÚ º£¾î¸µ), Àç·á(½ºÆ¿ Àç·á, º¹ÇÕÀç·á, ±âŸ Àç·á), ¼³Ä¡(½Å¼³, °³º¸¼ö), ³»ÇÏÁß(Àú³»ÇÏÁß, Áß³»ÇÏÁß, °í³»ÇÏÁß), ÃÖÁ¾»ç¿ëÀÚ(°Ç¼³ ÃÖÁ¾»ç¿ëÀÚ, ±³Åë ÀÎÇÁ¶ó ÃÖÁ¾»ç¿ëÀÚ, »ê¾÷½Ã¼³ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Friction Pendulum Bearings Market to Reach US$2.5 Billion by 2030

The global market for Friction Pendulum Bearings estimated at US$2.0 Billion in the year 2024, is expected to reach US$2.5 Billion by 2030, growing at a CAGR of 4.1% over the analysis period 2024-2030. Single Concave Friction Pendulum Bearing, one of the segments analyzed in the report, is expected to record a 4.7% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the Double Concave Friction Pendulum Bearing segment is estimated at 3.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$544.0 Million While China is Forecast to Grow at 7.6% CAGR

The Friction Pendulum Bearings market in the U.S. is estimated at US$544.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$520.6 Million by the year 2030 trailing a CAGR of 7.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.6% and 3.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.4% CAGR.

Global Friction Pendulum Bearings Market - Key Trends & Drivers Summarized

Why Are Friction Pendulum Bearings Critical in Seismic Protection?

Friction pendulum bearings have become a cornerstone technology in earthquake-resistant engineering, providing structural stability and load-bearing capacity for bridges, high-rise buildings, and industrial infrastructure. Designed to absorb and dissipate seismic energy, these bearings play a crucial role in minimizing damage during earthquakes by allowing controlled movement and isolating structures from ground shaking forces. Unlike traditional fixed-base foundations, friction pendulum bearings operate on principles of controlled sliding friction and restoring forces, allowing buildings and bridges to return to their original position after seismic activity.

The demand for seismic isolation solutions has risen dramatically in regions prone to earthquakes, including Japan, the United States, Italy, Turkey, and Chile. With climate change increasing the unpredictability and intensity of seismic events, governments and construction firms are incorporating base isolation technologies, such as friction pendulum bearings, into critical infrastructure projects. Additionally, advancements in performance-based seismic design (PBSD) and updates in building codes and regulations have mandated the use of energy-dissipating structural components, driving widespread adoption across commercial, residential, and industrial construction sectors.

How Are Technological Innovations Enhancing Friction Pendulum Bearings?

The evolution of materials science, computational simulations, and precision engineering has significantly improved the performance, durability, and load-bearing capacity of friction pendulum bearings. High-performance stainless steel alloys, composite friction materials, and self-lubricating polymer coatings are now being used to enhance the sliding interface, reduce wear, and improve long-term performance under cyclic seismic loading. These advancements have enabled the development of multi-stage friction pendulum bearings (MSFPBs) that offer variable response mechanisms, adapting to different magnitudes of seismic activity.

Additionally, finite element modeling (FEM) and AI-driven predictive simulations are being utilized to optimize the design and testing of friction pendulum bearings, allowing engineers to accurately predict their behavior under various earthquake scenarios. Smart sensors and Internet of Things (IoT) integration are further revolutionizing the industry by enabling real-time monitoring of bearing performance, identifying early signs of wear, and automating maintenance protocols. Furthermore, innovations in 3D printing and additive manufacturing are streamlining the prototyping and production of custom-designed friction pendulum bearings, allowing for greater precision and cost efficiency in manufacturing.

What Challenges and Market Opportunities Exist in Friction Pendulum Bearings?

Despite their effectiveness, the widespread adoption of friction pendulum bearings faces challenges related to cost, retrofitting feasibility, and material longevity. The initial investment for installing high-quality seismic isolation systems can be significantly higher than conventional structural reinforcement methods, leading to hesitation among budget-conscious developers and municipal authorities. Additionally, retrofitting existing structures with friction pendulum bearings requires comprehensive structural assessment, space modifications, and load redistribution, making it a complex and time-consuming process for older buildings and infrastructure.

However, these challenges also present significant growth opportunities, especially with the increasing emphasis on disaster-resilient infrastructure and smart urban planning. The rise of public-private partnerships (PPPs) in infrastructure development is facilitating large-scale investments in seismic safety projects, encouraging governments to integrate friction pendulum bearings into newly constructed highways, bridges, and high-risk urban zones. Moreover, the expansion of high-speed rail networks and offshore wind farms has increased the need for seismic-resistant foundation technologies, further driving market demand. The push for green construction and sustainable engineering solutions has also prompted research into environmentally friendly friction materials and recyclable seismic isolation components, paving the way for more eco-conscious applications.

What Is Driving Growth in the Friction Pendulum Bearings Market?

The growth in the friction pendulum bearings market is driven by several factors, including advancements in material science, increasing government investments in earthquake-resistant infrastructure, and the expansion of smart monitoring technologies for structural health assessment. The integration of AI-powered predictive maintenance systems, IoT-based real-time performance tracking, and digital twin simulations is revolutionizing how friction pendulum bearings are monitored, optimized, and maintained. Additionally, the rapid development of high-rise commercial buildings, metro rail projects, and offshore energy infrastructure has significantly expanded the end-use applications of seismic isolation bearings.

Furthermore, the increasing adoption of performance-based seismic engineering (PBSE), stringent building codes, and insurance-driven compliance standards is pushing for wider market adoption of friction pendulum bearings across earthquake-prone regions. Emerging economies in Southeast Asia, Latin America, and the Middle East are witnessing infrastructure modernization efforts, creating new revenue opportunities for manufacturers and engineering firms specializing in seismic protection solutions. With continued innovation in high-durability friction materials, automated testing methodologies, and modular isolation system designs, the friction pendulum bearings market is poised for sustained growth, ensuring the long-term resilience and safety of critical infrastructure worldwide.

SCOPE OF STUDY:

The report analyzes the Friction Pendulum Bearings market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Single Concave Friction Pendulum Bearing, Double Concave Friction Pendulum Bearing, Triple Concave Friction Pendulum Bearing); Material (Steel Material, Composite Material, Other Materials); Installation (New Installation, Retrofit Installation); Load Capacity (Low Load Capacity, Medium Load Capacity, High Load Capacity); End-User (Construction End-User, Transportation Infrastructure End-User, Industrial Facilities End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â