¼¼°èÀÇ DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º ½ÃÀå
DNA and Gene Cloning Services
»óǰÄÚµå : 1791631
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 178 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º ½ÃÀåÀº 2030³â±îÁö 78¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 16.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 78¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ À¯ÀüÀÚ ÇÕ¼º ¼­ºñ½º´Â CAGR 18.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 37¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ä¿½ºÅÒ Å¬·Î´× ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 13.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 2,220¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º ½ÃÀåÀº 2024³â¿¡´Â 8¾ï 2,220¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 15.4%¿Í 14.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÕ¼º»ý¹°ÇÐÀÇ ¿ªÇÒ È®´ë·Î º¹Á¦ ¼­ºñ½º ¼ö¿ä Áõ°¡?

ÇÕ¼º»ý¹°ÇÐÀº »ý¸í°øÇÐ, ÇコÄɾî, »ê¾÷ ºÐ¾ß¿¡¼­ Àü·Ê ¾ø´Â Çõ½ÅÀ» ÁÖµµÇÏ°í º¯È­¸¦ °¡Á®¿Ã ºÐ¾ß·Î ±ÞºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀÇ Á߽ɿ¡´Â DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½º°¡ ÀÖÀ¸¸ç, À¯Àü ¹°ÁúÀ» Á¶ÀÛÇÏ¿© »õ·Î¿î »ý¹°ÇÐÀû ½Ã½ºÅÛ ¹× Á¦Ç°À» ¼³°èÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü À¯ÀüÀÚ ÇÕ¼º, º¤ÅÍ ±¸Ãà, Çö󽺹̵å Ŭ·Î´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Â÷¼¼´ë Ä¡·áÁ¦, ¹é½Å, Áø´Ü¾à, ¹ÙÀÌ¿À ¼ÒÀç °³¹ß¿¡¼­ ÇÕ¼º»ý¹°ÇÐÀÇ ÀÀ¿ë È®´ë¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ÀǾàǰ ¿¬±¸°³¹ß¿¡¼­ À¯ÀüÀÚ Å¬·Î´×Àº Ä¡·á¿ë ´Ü¹éÁúÀÇ ¹ßÇö, À¯ÀüÀÚ ±â´É ¿¬±¸, Áúº´ ¸ðµ¨ ±¸Ãà¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Äڷγª19 ÆÒµ¥¹ÍÀ» Æ÷ÇÔÇÑ ÃÖ±Ù ¼¼°è º¸°Ç µ¿Çâ¿¡ µû¶ó ¹é½Å °³¹ßÀ» À§ÇÑ ½Å¼ÓÇÑ À¯Àü°øÇÐÀÇ Á߿伺ÀÌ ºÎ°¢µÇ¸é¼­ DNA ¹× À¯ÀüÀÚ º¹Á¦ÀÇ Á߿伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. Ŭ·Î´× ¼­ºñ½º´Â ¿¬±¸ÀÚµéÀÌ Æ¯Á¤ DNA ¿°±â¼­¿­À» ³ôÀº Á¤È®µµ·Î º¹Á¦ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ÀçÁ¶ÇÕ ´Ü¹éÁúÀ̳ª ´ÜŬ·Ð Ç×ü¸¦ ´ë±Ô¸ð·Î »ý»êÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Çаè, »ý¸í°øÇÐ ±â¾÷, CRO(ÀǾàǰ °³¹ß ¼öʱâ°ü)ÀÇ Çù·ÂÀÌ ÁøÇàµÇ¸é¼­, º¹Á¦ ¼­ºñ½º¸¦ °íµµÀÇ ºÐÀÚ»ý¹°ÇÐÀû ¿ª·®À» °®Ãá Àü¹® º¥´õ°¡ Á¦°øÇÏ´Â ¾Æ¿ô¼Ò½ÌÀÇ ¿òÁ÷ÀÓÀÌ ²ÙÁØÈ÷ È®»êµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾÷ü´Â À¯ÀüÀÚ ¼³°èºÎÅÍ ¹ßÇö °ËÁõ±îÁö ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ¿¬±¸ ÀÏÁ¤À» °£¼ÒÈ­ÇÏ°í ±â¼úÀû À庮À» ³·Ãä´Ï´Ù. ¶ÇÇÑ, º¹Á¦ ŰƮ, ÀÚµ¿È­ µµ±¸, ¿Â¶óÀÎ µðÀÚÀÎ Ç÷§ÆûÀÇ µîÀåÀ¸·Î ºñÀü¹®°¡ ¿¬±¸½ÇÀÇ Á¢±Ù¼ºÀÌ È®´ëµÇ¸é¼­ À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ÀÌ¿ëÀÌ ¹ÎÁÖÈ­µÇ°í ÀÖ½À´Ï´Ù. CRISPR-Cas ½Ã½ºÅÛ ¹× À¯Àüü °øÇÐÀÇ Çõ½Å ¼Óµµ°¡ »¡¶óÁö¸é¼­ À¯ÀüÀÚ ³ìÀÎ, ³ì¾Æ¿ô, µ¹¿¬º¯ÀÌ ¿¬±¸¸¦ Áö¿øÇÏ´Â °íÃæ½Çµµ Ŭ·Î´× ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, DNA ¹× À¯ÀüÀÚ Å¬·Î´×Àº »ý¸í°øÇÐÀÇ ¹Ì·¡¿¡ ÀÖ¾î ÇÙ½ÉÀÔ´Ï´Ù. »ý¸í°øÇÐÀÇ ¹Ì·¡¿¡ ÀÖ¾î ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº º¹Á¦ °úÁ¤ÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀ̰í Àִ°¡?

ºÐÀÚ»ý¹°ÇÐ ¹× À¯ÀüüÇÐ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½ºÀÇ È¿À²¼º, Á¤È®¼º, È®À强À» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Á¦ÇÑÈ¿¼Ò ¹× ¸®°¡Á¦¸¦ Æ÷ÇÔÇÑ ÀüÅëÀûÀÎ ¹æ¹ýÀº ±é½¼ ¾î¼Àºí¸®, °ñµç°ÔÀÌÆ® Ŭ·Î´×, ºÎÀ§ ƯÀÌÀû µ¹¿¬º¯ÀÌ À¯¹ß°ú °°Àº º¸´Ù Á¤±³ÇÑ ±â¼ú·Î ÁøÈ­ÇÏ¿© º¸´Ù ºü¸£°í ¿øÈ°ÇÑ DNA ¾î¼Àºí¸®¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¤ÅÍ¿¡ À¯ÀüÀÚ ¿°±â¼­¿­À» Á¤È®ÇÏ°Ô »ðÀÔÇÒ ¼ö ÀÖ°í, º¹Á¦ ¿À·ù¸¦ ÁÙÀ̸ç, º¹ÀâÇÑ À¯ÀüÀÚ È¸·Î¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ¶Ç ´Ù¸¥ Å« º¯È­ÀÔ´Ï´Ù. ÇöÀç °í󸮷® ·Îº¿ ½Ã½ºÅÛÀº ¹Ýº¹ÀûÀÎ º¹Á¦ ÀÛ¾÷À» ³î¶ó¿î ¼Óµµ¿Í ÀçÇö¼ºÀ¸·Î ¼öÇàÇÏ¿© ¼­ºñ½º Á¦°ø¾÷ü°¡ ºü¸¥ ½Ã°£ ³»¿¡ ´ë·®ÀÇ ¸ÂÃãÇü DNA ±¸Ã๰À» Á¦°øÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ PCR ¹× Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) °ËÁõ°ú ÇÔ²² ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àüü Ŭ·Î´× ¿öÅ©Ç÷ο쿡 °ÉÃÄ °íǰÁú °ü¸®¸¦ º¸ÀåÇÕ´Ï´Ù. ÀΰøÁö´ÉÀº ƯÈ÷ ´ëÀå±Õ, È¿¸ð, Æ÷À¯·ù ¼¼Æ÷ µî ´Ù¾çÇÑ ¼÷ÁÖ »ý¹°¿¡¼­ ¹ßÇöÀ» À§ÇÑ À¯ÀüÀÚ ¼­¿­ ÃÖÀûÈ­¿¡ À־µµ ±× ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ÄÚµ·ÀÇ »ç¿ë, mRNAÀÇ ±¸Á¶, GC ÇÔ·®À» ºÐ¼®ÇÏ¿© ¹ø¿ª È¿À²°ú ´Ü¹éÁú ¼öÀ²À» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, À¯µµ¼º, ´ÙÁßŬ·ÐÈ­, Á¶Á÷ ƯÀÌÀû ¹ßÇö ½Ã½ºÅÛ °³¹ß µî º¤ÅÍ ¼³°èÀÇ Çõ½ÅÀ¸·Î Ä¡·á, ³ó¾÷, »ê¾÷ °¢ ºÐ¾ß¿¡¼­ À¯ÀüÀÚ º¹Á¦ ÀÀ¿ëÀÇ ¹ü¿ë¼ºÀÌ È®´ëµÇ¾ú½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÇÁ·ÎÁ§Æ® °ü¸® ¹× LIMS Ç÷§ÆûÀº °í°´°ú ¼­ºñ½º Á¦°ø¾÷ü °£ÀÇ ¿øÈ°ÇÑ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Åõ¸í¼º, ÃßÀû¼º, µ¥ÀÌÅÍ °øÀ¯¸¦ Çâ»ó½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû µµ¾àÀº ¿¬±¸ ¼º°ú¸¦ Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, ƯÈ÷ º¹Á¦ À¯ÀüÀÚÀÇ ÀÓ»ó ¹× »ó¾÷¿ë ÀÀ¿ë ºÐ¾ß¿¡¼­ ¿¬±¸ ±â°üÀÌ ¾ö°ÝÇÑ ±ÔÁ¦ ¹× ǰÁú ±âÁØÀ» ÃæÁ·ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤¹Ð »ý¸í°øÇп¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ÀÌ·¯ÇÑ ÃÖ÷´Ü ÅøÀÇ ÅëÇÕÀº DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½º.NETÀÇ »õ·Î¿î ¼º´É º¥Ä¡¸¶Å©¸¦ Áö¼ÓÀûÀ¸·Î ¼³Á¤Çϰí ÀÖ½À´Ï´Ù.

¾Æ¿ô¼Ò½Ì°ú Ä¿½ºÅ͸¶ÀÌ¡À¸·ÎÀÇ ÀüȯÀº ¼­ºñ½º Á¦°ø ¸ðµ¨À» ÀçÁ¤ÀÇÇÒ °ÍÀΰ¡?

»ý¸í°øÇÐ ¹× Á¦¾à ¿¬±¸°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í µ¥ÀÌÅÍ Áß½ÉÈ­µÊ¿¡ µû¶ó, Á¶Á÷µéÀº °³¹ß ±â°£À» ´ÜÃàÇϰí Àü¹® Áö½ÄÀ» Ȱ¿ëÇϱâ À§ÇÑ Àü·«Àû ¿òÁ÷ÀÓÀ¸·Î ¾Æ¿ô¼Ò½ÌÀ¸·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. DNA ¹× À¯ÀüÀÚ Å¬·Î´× ¼­ºñ½º´Â ÀÌ·¯ÇÑ ¾Æ¿ô¼Ò½Ì Æ®·»µåÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, À¯ÀüÀÚ ÇÕ¼º, º¤ÅÍ ¿£Áö´Ï¾î¸µ, ¹ßÇö °ËÁõ, ¶óÀ̺귯¸® ±¸Ãà µîÀÇ ÀÛ¾÷¿¡¼­ ±â¾÷µéÀº ¿ÜºÎ ÆÄÆ®³Ê¸¦ ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¾Æ¿ô¼Ò½Ì ¸ðµ¨¿¡´Â ºü¸¥ ÇÁ·ÎÁ§Æ® ó¸®, Àü¹® ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¢±Ù¼º, ºñ¿ë È¿À²¼º µî ºÐ¸íÇÑ ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼­ºñ½º Á¦°ø¾÷üµéÀº ÇöÀç °íµµÀÇ ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, °í°´Àº ±æÀÌ, ¼­¿­, ű×, ¹ßÇö ½Ã½ºÅÛ, ½ÉÁö¾î ÄÚµ· ÃÖÀûÈ­ ¼±È£µµ¿¡ µû¶ó À¯ÀüÀÚ ±¸Á¶¹°À» ÁöÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ Ä¿½ºÅ͸¶ÀÌ¡Àº ÇÕ¼º ½ÃÀÛ Àü À¯ÀüÀÚ ¼³°è, ¿À·ù °Ë»ç, ÃÖÀûÈ­¸¦ Áö¿øÇϴ ÷´Ü ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Ç÷§Æû¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. ¶ÇÇÑ, ´Ü¹éÁú ¹ßÇö, Á¤Á¦, ±â´É ºÐ¼®°ú °°Àº ´Ù¿î½ºÆ®¸² ¿ëµµ°ú ¼­ºñ½º°¡ ¹øµé·Î Á¦°øµÇ´Â °æ¿ì°¡ ¸¹¾Æ ¿£µå Åõ ¿£µå ºÐÀÚ»ý¹°ÇÐÀû ¼Ö·ç¼ÇÀ» Áß¾Ó¿¡¼­ Á¦°øÇÕ´Ï´Ù. º¹Á¦µÈ À¯ÀüÀÚ ¿°±â¼­¿­Àº ±â¼ú Çõ½Å ÆÄÀÌÇÁ¶óÀο¡ Áß¿äÇÑ µ¶Á¡ Á¤º¸ÀÎ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ÁöÀûÀç»ê±Ç º¸È£¿Í ±â¹Ð À¯Áö°¡ Áß¿ä½ÃµÇ°í ÀÖ½À´Ï´Ù. °¢ ¾÷üµéÀº ºí·ÏüÀÎÀ» Ȱ¿ëÇÑ »ùÇà ÃßÀû, ½ÃÄö½Ì ¾Ïȣȭ Àü¼Û µî ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸¾È ÇÁ·ÎÅäÄÝÀ» µµÀÔÇÏ¿© ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹, Àεµ µî ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ¼­ºñ½º Á¦°ø¾÷üµéÀÌ Ç°Áú¿¡ ´ëÇÑ Å¸Çù ¾øÀÌ ºñ¿ë È¿À²ÀûÀÎ ¼±ÅñÇÀ» Á¦°øÇϸ鼭 °æÀï°ú Çõ½ÅÀ» ´õ¿í Ä¡¿­ÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. Çмú ±â°üµéµµ ´ë±Ô¸ð °øµ¿ ÇÁ·ÎÁ§Æ®¸¦ À§ÇØ º¹Á¦ ¼­ºñ½º¸¦ ´ë±Ô¸ð·Î ÀÌ¿ëÇϱâ À§ÇØ »ó¾÷Àû Á¦°ø¾÷ü¿Í Á¦ÈÞÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼­ºñ½º Á¦°øÀÇ º¯È­´Â ¿¬±¸ »ý»ê¼ºÀ» ÃÖÀûÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, DNA ¹× À¯ÀüÀÚ Å¬·Î´×À» º¸´Ù ±¤¹üÀ§ÇÑ »ý¸í°úÇÐ »ýŰ迡¼­ Áß¿äÇÑ ¾Æ¿ô¼Ò½Ì À¯Æ¿¸®Æ¼·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½º ½ÃÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀåÀº »ý¸í°øÇÐ ¹× »ý¸í°úÇÐ ºÐ¾ßÀÇ ±â¼ú ¹ßÀü, ¿¬±¸ÀÇ ´Ù¾çÈ­, ¼ÒºñÀÚ ÇൿÀÇ º¯È­¿Í Á÷Á¢ÀûÀ¸·Î °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÇÕ¼º »ý¹°ÇÐ, ¸é¿ª ¿ä¹ý, ¹é½Å °³¹ß, ³ó¾÷ »ý¸í °øÇÐ ¹× ±âŸ ºÐ¾ß¿¡¼­ À¯ÀüÀÚ Á¶»ç ¹üÀ§°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ¸ðµÎ ½ÇÇè ¹× Ä¡·á ¿ëµµÀÇ ±â´ÉÀû ±¸Á¶¹°À» ¸¸µé±â À§ÇØ À¯ÀüÀÚ º¹Á¦¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. CRISPR-Cas9 ¹× TALEN°ú °°Àº À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀº Áúº´ ¸ðµ¨¸µÀ̳ª ±â´ÉÀû À¯ÀüÀÚ ½ºÅ©¸®´×À» À§ÇØ À¯ÀüÀÚ º¯ÇüÀ» Áö¿øÇÏ´Â Á¤¹Ð Ŭ·Î´× ¼­ºñ½ºÀÇ Çʿ伺À» ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²², ¹ÙÀÌ¿À ÀǾàǰ ÆÄÀÌÇÁ¶óÀο¡¼­ ´ÜÀÏŬ·ÐÇ×ü, ¼¼Æ÷ ±â¹Ý Ä¡·áÁ¦, ÀçÁ¶ÇÕ ´Ü¹éÁúÀÇ ºÎ»óÀ¸·Î ÀÎÇØ Ŭ·Î´×À» ÅëÇØ ±¸ÃàµÈ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹ßÇö ½Ã½ºÅÛ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â »ý¸í°úÇÐ ºÐ¾ßÀÇ Å»Áß¾ÓÈ­ Ãß¼¼ÀÔ´Ï´Ù. Áß¼Ò±â¾÷(SME), Çмú ½ºÇÉ¿ÀÇÁ ±â¾÷, µ¶¸³ ¿¬±¸¼Ò´Â º¸´Ù ¾ß½ÉÂù ÇÁ·ÎÁ§Æ®¿¡ µµÀüÇϰí ÀÖÁö¸¸, º¹ÀâÇÑ º¹Á¦ ÀÛ¾÷À» À§ÇÑ ³»ºÎ ¿ª·®ÀÌ ºÎÁ·ÇÑ °æ¿ì°¡ ¸¹¾Æ Àü¹® ¼­ºñ½º Á¦°ø¾÷ü¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í Ç¥Àû Ä¡·á¸¦ ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓµµ °³º° ȯÀÚ ÇÁ·ÎÆÄÀϰú Æ´»õ ÀûÀÀÁõ¿¡ ¸Â´Â ¸ÂÃãÇü À¯ÀüÀÚ ±¸Á¶¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Å¾à Ÿ°Ù, È¿¼Ò, °áÇÕ µµ¸ÞÀÎ ½ºÅ©¸®´×À» À§ÇÑ ÇÕ¼º À¯ÀüÀÚ ¶óÀ̺귯¸® °³¹ßÀº ±âÁ¸ÀÇ ¿¬±¸ ¿ëµµ¸¦ ³Ñ¾î Ŭ·Î´× ¼­ºñ½ºÀÇ À¯¿ë¼ºÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­µÈ ÇÏÀ̽º·çDz ½Ã½ºÅÛ, AI ±â¹Ý ¹è¿­ ¼³°è, °í±Þ º¤ÅÍ ½Ã½ºÅÛ°ú °°Àº ±â¼ú Àο¡ÀÌºí·¯´Â È®À强°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃÄÑ °ø±ÞÀÚ°¡ º¹ÀâÇÑ ¿ä±¸ »çÇ×À» °¡Áø ´õ ´Ù¾çÇÑ °í°´¿¡°Ô ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ±¹Á¦ °øµ¿¿¬±¸, ¿¬±¸ºñ Áö¿ø, Á¤ºÎ Áö¿ø À¯Àüü ÀÌ´Ï¼ÅÆ¼ºê´Â ºÐÀÚ»ý¹°ÇÐ ÀÎÇÁ¶ó¿¡ ¸·´ëÇÑ ÀÚ±ÝÀ» ÅõÀÔÇÏ¿© Áö¼ÓÀûÀÎ ½ÃÀå È®´ë¸¦ À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¾ÇÕÀûÀÎ ÈûÀ¸·Î ½ÃÀåÀÇ Àúº¯ÀÌ È®´ëµÉ »Ó¸¸ ¾Æ´Ï¶ó DNA ¹× À¯ÀüÀÚ º¹Á¦ ¼­ºñ½º°¡ Çö´ë »ý¸í°úÇÐ Çõ½ÅÀÇ ±âº» ¿ä¼Ò·Î È®°íÇÑ ÀÔÁö¸¦ ±¸ÃàÇØ ³ª°¡°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¼­ºñ½º(À¯ÀüÀÚ ÇÕ¼º ¼­ºñ½º, Ä¿½ºÅÒ Å¬·Î´× ¼­ºñ½º, ¼­ºê Ŭ·Î´× ¼­ºñ½º, ±âŸ ¼­ºñ½º), ¿ëµµ(DNA ½ÃÄö½Ì ¿ëµµ, µ¹¿¬º¯ÀÌ À¯¹ß ¿ëµµ, À¯ÀüÀÚÇü ÆÇÁ¤ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Çмú±â°ü ¹× ¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ, Á¦¾à ¹× ¹ÙÀÌ¿À ±â¾÷ ÃÖÁ¾ ¿ëµµ, CMO ¹× CRO ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global DNA and Gene Cloning Services Market to Reach US$7.8 Billion by 2030

The global market for DNA and Gene Cloning Services estimated at US$3.1 Billion in the year 2024, is expected to reach US$7.8 Billion by 2030, growing at a CAGR of 16.5% over the analysis period 2024-2030. Gene Synthesis Service, one of the segments analyzed in the report, is expected to record a 18.0% CAGR and reach US$3.7 Billion by the end of the analysis period. Growth in the Custom Cloning Service segment is estimated at 13.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$822.2 Million While China is Forecast to Grow at 15.4% CAGR

The DNA and Gene Cloning Services market in the U.S. is estimated at US$822.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 15.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.4% and 14.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.9% CAGR.

Global DNA and Gene Cloning Services Market - Key Trends & Drivers Summarized

Is the Expanding Role of Synthetic Biology Elevating the Demand for Cloning Services?

Synthetic biology has rapidly emerged as a transformative field, driving unprecedented innovation across biotechnology, healthcare, and industrial sectors. At the heart of this movement lies DNA and gene cloning services, which have become essential tools for manipulating genetic material to design novel biological systems and products. The rising demand for custom gene synthesis, vector construction, and plasmid cloning is closely tied to the growing applications of synthetic biology in developing next-generation therapeutics, vaccines, diagnostics, and bio-based materials. In pharmaceutical R&D, gene cloning is used extensively to express therapeutic proteins, study gene function, and engineer disease models. Moreover, in the wake of recent global health challenges, including the COVID-19 pandemic, the importance of rapid genetic engineering for vaccine development has pushed DNA and gene cloning into the spotlight. Cloning services enable researchers to replicate specific DNA sequences with high precision, which is vital for producing recombinant proteins and monoclonal antibodies at scale. The growing collaboration between academic institutions, biotech firms, and contract research organizations (CROs) has led to a steady outsourcing trend, where cloning services are provided by specialized vendors with advanced molecular biology capabilities. These vendors offer integrated solutions-from gene design to expression validation-streamlining research timelines and reducing technical barriers. Additionally, the availability of cloning kits, automation tools, and online design platforms is expanding access to non-specialist labs, democratizing the use of gene editing technologies. The increasing pace of innovation in CRISPR-Cas systems and genome engineering is further accelerating demand for high-fidelity cloning services that support gene knock-ins, knockouts, and mutagenesis studies, making DNA and gene cloning central to the future of bioengineering.

Are Technological Advancements Enhancing the Efficiency and Precision of Cloning Processes?

Technological advancements in molecular biology and genomics are significantly enhancing the efficiency, accuracy, and scalability of DNA and gene cloning services. Traditional methods involving restriction enzymes and ligases have evolved into more sophisticated techniques such as Gibson Assembly, Golden Gate cloning, and site-directed mutagenesis, enabling faster and more seamless DNA assembly. These techniques allow for the precise insertion of genetic sequences into vectors, reducing cloning errors and enabling the construction of complex genetic circuits. Automation is another major game-changer-high-throughput robotic systems now perform repetitive cloning tasks with remarkable speed and reproducibility, allowing service providers to deliver large volumes of customized DNA constructs within short turnaround times. Coupled with real-time PCR and next-generation sequencing (NGS) validation, these systems ensure high-quality control across the cloning workflow. Artificial intelligence is also playing a growing role, particularly in gene sequence optimization for expression in various host organisms, such as E. coli, yeast, or mammalian cells. AI algorithms analyze codon usage, mRNA structure, and GC content to improve translation efficiency and protein yield. Furthermore, innovations in vector design-such as the development of inducible, multi-cloning, and tissue-specific expression systems-have expanded the versatility of gene cloning applications across therapeutic, agricultural, and industrial domains. Cloud-based project management and LIMS platforms now allow seamless communication between clients and service providers, improving transparency, traceability, and data sharing. These technological leaps are not only improving research output but also helping institutions meet rigorous regulatory and quality standards, particularly in clinical and commercial-grade applications of cloned genes. As the demand for precision biotechnology rises, the integration of these cutting-edge tools continues to set new performance benchmarks for DNA and gene cloning services.

Is the Shift Toward Outsourcing and Customization Redefining Service Delivery Models?

As biotechnology and pharmaceutical research becomes increasingly complex and data-driven, organizations are turning to outsourcing as a strategic move to accelerate development timelines and access specialized expertise. DNA and gene cloning services are at the forefront of this outsourcing trend, with companies preferring external partners for tasks such as gene synthesis, vector engineering, expression validation, and library construction. The outsourcing model offers clear advantages: faster project turnaround, access to specialized infrastructure, and cost efficiency-especially for smaller labs and startups with limited in-house capabilities. Leading service providers now offer highly customizable solutions, where clients can specify gene constructs based on length, sequence, tags, expression systems, and even codon optimization preferences. This level of customization is supported by advanced bioinformatics platforms that assist in gene design, error checking, and optimization before synthesis begins. Additionally, services are often bundled with downstream applications such as protein expression, purification, and functional assays, providing end-to-end molecular biology solutions under one roof. There is also a growing emphasis on IP protection and confidentiality, as cloned genetic sequences often represent proprietary information critical to innovation pipelines. Companies are responding by implementing stringent data security protocols, including blockchain-based sample tracking and encrypted sequence delivery. Global expansion of service providers, particularly in Asia-Pacific regions like China and India, is driving cost-effective options without compromising quality, further intensifying competition and innovation. Academic institutions, too, are increasingly partnering with commercial providers to access cloning services at scale for large collaborative projects. This shift in service delivery is not only optimizing research productivity but is also establishing DNA and gene cloning as a critical outsourced utility in the broader life sciences ecosystem.

What Are the Main Growth Accelerators Fueling the DNA and Gene Cloning Services Market?

The growth in the DNA and gene cloning services market is driven by several factors directly linked to technological progression, research diversification, and shifting consumer behavior in biotech and life sciences. One of the primary accelerators is the expanding scope of genetic research in fields such as synthetic biology, immunotherapy, vaccine development, and agricultural biotech, all of which rely heavily on gene cloning to create functional constructs for experimental and therapeutic use. The widespread adoption of gene editing technologies like CRISPR-Cas9 and TALEN has further increased the need for precise cloning services to support genetic modifications, whether for disease modeling or functional gene screening. In parallel, the rise of monoclonal antibodies, cell-based therapies, and recombinant proteins in biopharmaceutical pipelines is generating sustained demand for reliable expression systems constructed through cloning. Another significant factor is the trend toward decentralization in life sciences, where small and mid-sized enterprises (SMEs), academic spin-offs, and independent research labs are taking on more ambitious projects, yet often lack the in-house capabilities for complex cloning tasks-thus turning to specialized service providers. The global movement toward personalized medicine and targeted therapies is also fueling demand for custom gene constructs tailored to individual patient profiles or niche indications. Moreover, the development of synthetic gene libraries for screening drug targets, enzymes, or binding domains is expanding the utility of cloning services beyond traditional research applications. Technological enablers such as automated high-throughput systems, AI-driven sequence design, and advanced vector systems are improving scalability and reliability, allowing providers to serve a more diverse clientele with complex requirements. Finally, international collaborations, research grants, and government-backed genomic initiatives are injecting substantial funding into molecular biology infrastructure, creating fertile ground for sustained market expansion. These collective forces are not only broadening the market base but are solidifying DNA and gene cloning services as a fundamental component of modern bioscience innovation.

SCOPE OF STUDY:

The report analyzes the DNA and Gene Cloning Services market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Service (Gene Synthesis Service, Custom Cloning Service, Sub-cloning Service, Other Services); Application (DNA Sequencing Application, Mutagenesis Application, Genotyping Application, Other Applications); End-Use (Academic & Research Institutes End-Use, Pharma & Biotech Companies End-Use, CMOs & CROs End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â