¼¼°èÀÇ ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀå
Bio-based Construction Polymers
»óǰÄÚµå : 1791523
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 150 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀåÀº 2030³â±îÁö 406¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 164¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 16.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 406¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¹ÙÀÌ¿À Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®´Â CAGR 18.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 179¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÙÀÌ¿À Æú¸®¿ì·¹Åº ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR16.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 43¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀåÀº 2024³â¿¡´Â 43¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 62¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 15.3%¿Í 14.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.8%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó°¡ °ÇÃàÀÚÀç »ê¾÷À» º¯È­½ÃŰ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Áö¼Ó°¡´É¼ºÀÌ ÃÖ¿ì¼± °úÁ¦·Î ¶°¿À¸£¸é¼­ °Ç¼³ »ê¾÷Àº Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖÀ¸¸ç, ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó°¡ ±× ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. ½Ä¹°¼º ±â¸§, ÀüºÐ, ¸®±×´Ñ, ¼¿·ê·Î¿À½º, õ¿¬¼¶À¯ µî Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ» ¿ø·á·Î ÇÏ´Â ÀÌµé Æú¸®¸Ó´Â ±âÁ¸ ¼®À¯°è °ÇÃàÀÚÀ縦 ´ëüÇÒ ¼ö Àִ ģȯ°æÀûÀÎ ´ëüÀ縦 Á¦°øÇÕ´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ°ú ÀÚ¿ø °í°¥¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ Á¤ºÎ, °ÇÃà°¡, °Ç¼³»çµéÀº °ÇÃàÀÚÀçÀÇ °í¼º´É ±âÁØÀ» À¯ÁöÇϸ鼭 ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Ã¤ÅÃÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.

°ÇÃà ºÐ¾ß¿¡¼­ ¹ÙÀÌ¿À Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â ź¼Ò ¹èÃâ·®À» Å©°Ô ÁÙÀ̸鼭 ³»±¸¼º, À¯¿¬¼º, ±ØÇÑÀÇ ±â»ó Á¶°Ç¿¡ ´ëÇÑ ³»¼ºÀ» Á¦°øÇÏ´Â ´É·Â¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ¿¡´Â ¹ÙÀÌ¿À Á¢ÂøÁ¦, ½Ç¸µÀç, ´Ü¿­Àç, ÄÜÅ©¸®Æ® ÷°¡Á¦, ÄÚÆÃÁ¦, ¹Ù´ÚÀç ¼Ö·ç¼Ç µîÀÌ ÀÖ½À´Ï´Ù. ±×¸° ºôµùÀÇ ÃßÁøÀº Èֹ߼º À¯±â È­ÇÕ¹°(VOC) ¹× ź¼Ò ¹èÃâ¿¡ ´ëÇÑ ±ÔÁ¦ °­È­¿Í ÇÔ²² ÁÖ°Å, »ó¾÷ ¹× »ê¾÷ °Ç¼³ ÇÁ·ÎÁ§Æ®¿¡¼­ ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. °Ç¼³ ¾÷°è°¡ º¸´Ù ¼øÈ¯ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ °ÇÃà °üÇàÀ» ÁöÇâÇÏ´Â °¡¿îµ¥, ¹ÙÀÌ¿À Æú¸®¸Ó´Â ȯ°æ ģȭÀûÀÎ ÀÎÇÁ¶óÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

±â¼ú ¹ßÀüÀº ¾î¶»°Ô ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸ÓÀÇ ¼º´ÉÀ» Çâ»ó½Ã۰í Àִ°¡?

Àç·á°úÇÐ, °íºÐÀÚ °øÇÐ, »ý¸í°øÇÐÀÇ ¹ßÀüÀº ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸ÓÀÇ ¼º´É, È®À强, ÀÀ¿ë °¡´É¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå Áß¿äÇÑ Çõ½Å Áß Çϳª´Â õ¿¬¼¶À¯¿Í Æú¸®¸Ó ¸ÅÆ®¸¯½º¸¦ °áÇÕÇÏ¿© °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ±¸Á¶ÀûÀ¸·Î °ß°íÇÑ ¼ÒÀ縦 ¸¸µå´Â °í°­µµ ¹ÙÀÌ¿À º¹ÇÕÀç·áÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀç·á´Â °ÇÃà¿ë ÆÐ³Î, ´Ü¿­Àç, º¸°­Àç µîÀÇ ¿ëµµ·Î Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ±â°èÀû Ư¼ºÀÌ Çâ»óµÇ°í Áö¼Ó °¡´ÉÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸ÓÀÇ ¶Ç ´Ù¸¥ Å« Çõ½ÅÀº Á¢ÂøÁ¦¿Í ½Ç¸µÁ¦ÀÇ ³»±¸¼º, ³»½À¼º, Á¢Âø Ư¼ºÀ» Çâ»ó½ÃŰ´Â ¹ÙÀÌ¿À ¼öÁö ¹èÇÕÀÇ ¹ßÀüÀÔ´Ï´Ù. ¸®±×´Ñ ±â¹Ý Æú¸®¸Ó, Äá ±â¹Ý Æú¸®¿ì·¹Åº, ¹ÙÀÌ¿À ¿¡Æø½Ã¸¦ »ç¿ëÇÏ¿© ¼®À¯ ±â¹Ý°ú µ¿µîÇϰųª ±× ÀÌ»óÀÇ ¼º´ÉÀ» °¡Áø Áö¼Ó °¡´ÉÇÑ °ÇÃàÀÚÀçÀÇ °¡´É¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ª³ë±â¼úÀº ³»¿­¼º, Àڿܼ± Â÷´Ü, ³­¿¬¼ºÀ» °­È­ÇÏ¿© ¹ÙÀÌ¿À ÄÚÆÃ ¹× ´Ü¿­ÀçÀÇ ±â´É¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ ÇѰ谡 ±Øº¹µÇ°í ÀÖÀ¸¸ç, ´ë±Ô¸ð °Ç¼³ ÀÀ¿ë ºÐ¾ß¿¡¼­ÀÇ ½Ç¿ë¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó »ê¾÷ÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå µ¿ÇâÀº?

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä Æ®·»µå´Â Áö¼Ó °¡´ÉÇÑ °Ç¼³ ¹æ½Ä°ú ģȯ°æ °ÇÃà ÀÎÁõ¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Àü ¼¼°è Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº Àúź¼Ò ¹× Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ »ç¿ëÀ» Àå·ÁÇÏ´Â À¯·´¿¬ÇÕÀÇ ±×¸°µô, ¹Ì±¹ÀÇ ±×¸°ºôµù Ç¥ÁØ µî º¸´Ù ¾ö°ÝÇÑ È¯°æ Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ´Ü¿­Àç, ¹Ù´ÚÀç, ÁöºØÀç, ±¸Á¶¿ë ¹ÙÀÌ¿À Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, °Ç¼³»çµéÀº ºñ¿ë È¿À²¼ºÀ» À¯ÁöÇϸ鼭 Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» Çü¼ºÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀÇ ºÎ»óÀ¸·Î, °ÇÃàÀÚÀç´Â ÀçȰ¿ë °¡´É¼º°ú »ýºÐÇØ¼ºÀ» °í·ÁÇÏ¿© ¼³°èµÇ°í ÀÖ½À´Ï´Ù. Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ ¿ø·á·Î ÇÏ´Â ¹ÙÀÌ¿À Æú¸®¸Ó´Â ȯ°æ ¹ßÀÚ±¹À» ÁÙÀ̰í À¯ÇÑÇÑ È­¼® ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÓÀ¸·Î½á ÀÌ·¯ÇÑ ³ë·Â¿¡ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ¸ðµâ½Ä °ÇÃà°ú Á¶¸³½Ä °ÇÃà¿¡ ´ëÇÑ ÅõÀÚ È®´ë´Â ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ ¿ëµµ, ƯÈ÷ °æ·® ¹× °í¼º´É °ÇÃàÀÚÀç¿¡ ´ëÇÑ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ģȯ°æ ÁÖ°Å ¹× »ó¾÷ °ø°£¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ ¹ÙÀÌ¿À °ÇÃà ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, °Ç¼³¾÷üµéÀº ½º¸¶Æ® ÇϿ콺, ¿¡³ÊÁö Àý¾à °Ç¹°, Áö¼Ó °¡´ÉÇÑ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ¹ÙÀÌ¿À Æú¸®¸Ó¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀå Àü¸Á¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ Áö¿ø, ±â¼ú ¹ßÀü, Áö¼Ó °¡´ÉÇÑ °ÇÃàÀÚÀç äÅà Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ź¼ÒÁ߸³ ¹× ¼ø Á¦·Î ºôµùÀÇ ÃßÁøÀ¸·Î Áö¼Ó °¡´ÉÇÑ °³¹ß Àü·«ÀÇ ÀÏȯÀ¸·Î ¹ÙÀÌ¿À °ÇÃàÀÚÀç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ´ëÇü °Ç¼³»ç ¹× ºÎµ¿»ê °³¹ß¾÷üµéÀº LEED(Leadership in Energy and Environmental Design), BREEAM(Building Research Institute Environmental Assessment Method) µîÀÇ Ä£È¯°æ ÀÎÁõ ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ¹ÙÀÌ¿À Æú¸®¸Ó¸¦ ÇÁ·ÎÁ§Æ®¿¡ Àû¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» Çü¼ºÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ »ý»ê ºñ¿ëÀÇ °¨¼Ò·Î ÀÎÇØ ÀÌ·¯ÇÑ Àç·á°¡ ´õ ±¤¹üÀ§ÇÑ °ÇÃà ÀÀ¿ë ºÐ¾ß¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. È¿¼Ò ÁßÇÕ, ¹Ì»ý¹° ¹ßÈ¿ µî ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ±â¼úÀÇ ¹ßÀüÀ¸·Î ¹ÙÀÌ¿À ¼öÁö, Á¢ÂøÁ¦, º¹ÇÕÀç·á¸¦ ºñ¿ë È¿À²ÀûÀ¸·Î »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, °ÇÃàÀÚÀç Á¦Á¶¾÷ü, »ý¸í°øÇÐ ±â¾÷, Á¤ºÎ ±â°üÀÇ Çù·ÂÀ¸·Î ¹ÙÀÌ¿À °Ç¼³¿ë Æú¸®¸ÓÀÇ ¼º´É°ú È®À强À» Çâ»ó½Ã۱â À§ÇÑ ¿¬±¸ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. °Ç¼³ ¾÷°è°¡ ģȯ°æÀûÀÌ°í °í¼º´ÉÀÇ Àç·á·Î ÀüȯÇÏ´Â °¡¿îµ¥, ¹ÙÀÌ¿À Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â ºñ¾àÀûÀ¸·Î Áõ°¡ÇÏ¿© Çö´ë ÀÎÇÁ¶ó °³¹ßÀÇ Áö¼Ó°¡´É¼º°ú Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(¹ÙÀÌ¿À Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®, ¹ÙÀÌ¿À Æú¸®¿ì·¹Åº, ¹ÙÀÌ¿À ¿¡Æø½Ã, ¹ÙÀÌ¿À ¼¿·ê·Î¿À½º ¾Æ¼¼Å×ÀÌÆ®, ±âŸ Á¦Ç° À¯Çü), ¿ëµµ(ÆÄÀÌÇÁ ¿ëµµ, ´Ü¿­ ¿ëµµ, ÇÁ·ÎÆÄÀÏ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â °ÍÀÌ ¾Æ´Ï¶ó, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Bio-based Construction Polymers Market to Reach US$40.6 Billion by 2030

The global market for Bio-based Construction Polymers estimated at US$16.4 Billion in the year 2024, is expected to reach US$40.6 Billion by 2030, growing at a CAGR of 16.3% over the analysis period 2024-2030. Bio-based Polyethylene Terephthalate, one of the segments analyzed in the report, is expected to record a 18.0% CAGR and reach US$17.9 Billion by the end of the analysis period. Growth in the Bio-based Polyurethane segment is estimated at 16.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.3 Billion While China is Forecast to Grow at 15.3% CAGR

The Bio-based Construction Polymers market in the U.S. is estimated at US$4.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.2 Billion by the year 2030 trailing a CAGR of 15.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.3% and 14.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.8% CAGR.

Global Bio-Based Construction Polymers Market - Key Trends & Drivers Summarized

Why Are Bio-Based Construction Polymers Transforming the Building Materials Industry?

The construction industry is undergoing a significant transformation as sustainability becomes a top priority, and bio-based construction polymers are at the forefront of this shift. These polymers, derived from renewable sources such as plant oils, starches, lignin, cellulose, and natural fibers, offer an eco-friendly alternative to traditional petroleum-based construction materials. With growing concerns over carbon emissions and resource depletion, governments, architects, and construction firms are increasingly adopting bio-based polymers to reduce environmental impact while maintaining high-performance standards in building materials.

The demand for bio-based polymers in construction is driven by their ability to provide durability, flexibility, and resistance to extreme weather conditions while significantly lowering carbon footprints. Key applications include bio-based adhesives, sealants, insulation materials, concrete additives, coatings, and flooring solutions. The push for green buildings, coupled with stricter regulations on volatile organic compounds (VOCs) and carbon emissions, has further accelerated the adoption of bio-based polymers in residential, commercial, and industrial construction projects. As the construction industry moves toward more circular and sustainable building practices, bio-based polymers are expected to play a critical role in shaping the future of environmentally responsible infrastructure.

How Are Technological Advancements Enhancing the Performance of Bio-Based Construction Polymers?

Advancements in material science, polymer engineering, and biotechnology are significantly improving the performance, scalability, and application potential of bio-based construction polymers. One of the most important innovations in this field is the development of high-strength bio-based composites that combine natural fibers with polymer matrices to create lightweight, durable, and structurally robust materials. These composites are increasingly being used in construction panels, insulation materials, and reinforcement applications, offering enhanced mechanical properties and sustainability benefits.

Another major breakthrough in bio-based construction polymers is the advancement of bio-resin formulations, which enhance the durability, moisture resistance, and adhesion properties of adhesives and sealants. The use of lignin-based polymers, soy-based polyurethanes, and bio-based epoxies has expanded the possibilities for sustainable construction materials with comparable or superior performance to their petroleum-derived counterparts. Additionally, nanotechnology is playing a crucial role in improving the functionality of bio-based coatings and insulation materials by enhancing thermal resistance, UV protection, and fire retardancy. These innovations are helping to overcome previous limitations of bio-based polymers, making them more viable for large-scale construction applications.

Which Market Trends Are Driving Growth in the Bio-Based Construction Polymers Industry?

The increasing emphasis on sustainable construction practices and green building certifications is a major trend driving the growth of the bio-based construction polymers market. Governments and regulatory bodies worldwide are implementing stricter environmental policies, such as the European Union’s Green Deal and the U.S. Green Building Standards, which encourage the use of low-carbon and sustainable materials. This has led to a surge in demand for bio-based polymers in insulation, flooring, roofing, and structural applications, as construction companies seek to meet sustainability targets while maintaining cost-efficiency.

Another key trend shaping the market is the rise of circular economy initiatives, where construction materials are designed for recyclability and biodegradability. Bio-based polymers, derived from renewable feedstocks, align with these initiatives by offering a lower environmental footprint and reducing dependence on finite fossil resources. Additionally, the growing investment in modular and prefabricated construction is creating new opportunities for bio-based polymer applications, particularly in lightweight and high-performance building materials. The increasing consumer preference for eco-friendly residential and commercial spaces has also contributed to the demand for bio-based construction solutions, with builders integrating biopolymers into smart homes, energy-efficient buildings, and sustainable infrastructure projects.

What Are the Key Growth Drivers Shaping the Future of the Bio-Based Construction Polymers Market?

The growth in the bio-based construction polymers market is driven by several key factors, including regulatory support, technological advancements, and the rising adoption of sustainable construction materials. One of the primary growth drivers is the push for carbon-neutral and net-zero buildings, which has led to increased investment in bio-based construction materials as part of sustainable development strategies. Major construction firms and real estate developers are incorporating bio-based polymers into their projects to meet green certification standards such as LEED (Leadership in Energy and Environmental Design) and BREEAM (Building Research Establishment Environmental Assessment Method).

Another crucial driver shaping the market is the declining cost of bio-based polymer production, which has made these materials more accessible to a broader range of construction applications. Advances in bioprocessing technologies, such as enzymatic polymerization and microbial fermentation, are enabling cost-effective production of bio-based resins, adhesives, and composites. Additionally, collaborations between construction material manufacturers, biotech companies, and government agencies are fostering research and development efforts to improve the performance and scalability of bio-based construction polymers. As the construction industry continues its transition toward eco-friendly and high-performance materials, the demand for bio-based polymers is expected to witness exponential growth, driving sustainability and innovation in modern infrastructure development.

SCOPE OF STUDY:

The report analyzes the Bio-based Construction Polymers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (Bio-based Polyethylene Terephthalate, Bio-based Polyurethane, Bio-based Epoxies, Bio-based Cellulose Acetate, Other Product Types); Application (Pipes Application, Insulation Application, Profiles Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â