¼¼°èÀÇ ½º¿ú ·Îº¸Æ½½º ½ÃÀå
Swarm Robotics
»óǰÄÚµå : 1788365
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 183 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½º¿ú ·Îº¸Æ½½º ½ÃÀåÀº 2030³â±îÁö 62¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ½º¿ú ·Îº¸Æ½½º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 33.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 62¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ UAV´Â CAGR 34.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. UGV ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 30.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 2¾ï 9,720¸¸ ´Þ·¯, Áß±¹Àº CAGR 31.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½º¿ú ·Îº¸Æ½½º ½ÃÀåÀº 2024³â¿¡ 2¾ï 9,720¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 31.1%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 9¾ï 3,250¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 30.4%¿Í 28.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 22.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½º¿ú ·Îº¸Æ½½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö ¼¼°è´Â ·Îº¿ °øÇÐÀÇ ´ÙÀ½ µµ¾àÀ» À§ÇØ ¸ô·Áµå´Â°¡?

ÀÚ¿¬°èÀÇ Áý´Ü Çൿ¿¡¼­ ¿µ°¨À» ¾òÀº ½º¿ú ·Îº¸Æ½½º´Â º¹ÀâÇÑ ¿î¿µ ¹®Á¦¿¡ ´ëÇÑ ºÐ»êÇü, È®ÀåÇü, ÀûÀÀÇü ¼Ö·ç¼ÇÀ» ¸ð»öÇÏ´Â »ê¾÷°è°¡ ºü¸£°Ô ÁÖ¸ñÇϰí ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. ½º¿ú ·Îº¸Æ½½º´Â ±âÁ¸ÀÇ ·Îº¿ÀÌ °³º°ÀûÀ¸·Î ¶Ç´Â Áß¾ÓÁýÁᫎ Á¦¾î ÇÏ¿¡ ÀÛµ¿ÇÏ´Â °Í°ú ´Þ¸®, ºñ±³Àû °£´ÜÇϰí Àú·ÅÇÑ ºñ¿ëÀ¸·Î ±¹¼ÒÀûÀ¸·Î »óÈ£ ÀÛ¿ëÇÏ´Â ´ë±Ô¸ðÀÇ ·Îº¿ ±×·ìÀ» Ȱ¿ëÇÏ¿© ÀÚ±â Á¶Á÷È­¸¦ ÅëÇØ ¼¼°è ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº °³¹Ì ±ºÁý, ¹úÁý, »õ ¶¼, ¹°°í±â ¶¼¿¡¼­ Á÷Á¢ ¿µ°¨À» ¾ò¾úÀ¸¸ç, °£´ÜÇÑ ±ÔÄ¢ÀÌ Ã¢¹ßÀû Áö´É°ú ȸº¹·ÂÀ» °¡Á®´ÙÁÖ´Â °ÍÀÔ´Ï´Ù. Àç³­ º¹±¸, ±º Á¤Âû, ȯ°æ ¸ð´ÏÅ͸µ, ¿ìÁÖ Å½»ç µî ¿¹Ãø ºÒ°¡´É¼º, È®À强, Áߺ¹¼ºÀÌ ÇÙ½ÉÀΠȯ°æ¿¡¼­ ½º¿ú ·Îº¸Æ½½º´Â µ¶º¸ÀûÀÎ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ¼¾¼­, ¿§Áö ÄÄÇ»ÆÃ, ¹«¼±Åë½Å, ½Ç½Ã°£ ó¸®ÀÇ ¹ßÀüÀ¸·Î ÀÚÀ²ÀûÀ¸·Î Ç×ÇØ, Çù¾÷, ÇнÀÇÒ ¼ö ÀÖ´Â ·Îº¿ Áý´ÜÀÇ ¹èÄ¡°¡ Á¡Á¡ ´õ Çö½ÇÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ °³³äÀº ´õ ÀÌ»ó ÇмúÀûÀÎ °³³äÀÌ ¾Æ´Ï¸ç, Á¤ºÎ, ±¹¹æ ±â°ü, ¹°·ù ±â¾÷, ³ó¾÷ »ç¾÷ÀÚ µîÀÌ Áß¿äÇÑ ¿ëµµ·Î ½ÇÁ¦ ±ºÁý ½Ã½ºÅÛÀ» ½ÃÇèÀûÀ¸·Î µµÀÔÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÛÀü ȯ°æÀÌ º¹ÀâÇØÁü¿¡ µû¶ó È®Àå °¡´ÉÇÑ ºÐ»êÇü ÀÎÅÚ¸®Àü½ºÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖÀ¸¸ç, ½º¿ú ·Îº¸Æ½½º´Â ¹Ì·¡ÁöÇâÀûÀÎ °³³ä¿¡¼­ ÀÚµ¿È­ÀÇ ½Ç¿ëÀûÀÎ ÆÐ·¯´ÙÀÓÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À¿¡¼­ ¿µ°¨À» ¹ÞÀº ¾Ë°í¸®Áò°ú AI´Â ¾î¶»°Ô Áö´ÉÇü ¹«¸®ÀÇ ºÎ»óÀ» °¡´ÉÇÏ°Ô Çϴ°¡?

½º¿ú ·Îº¸Æ½½ºÀÇ Á߽ɿ¡´Â ¾Ë°í¸®Áò¿¡ ÀÇÇÑ Áö´ÉÀÌ ÀÖÀ¸¸ç, °¡Àå Èï¹Ì·Î¿î Çõ½ÅÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ¿£Áö´Ï¾î¿Í ÄÄÇ»ÅÍ °úÇÐÀÚµéÀº ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ ·Îº¿ÀÇ ÇൿÀ» À¯µµÇϱâ À§ÇØ °³¹Ì ±ºÁý ÃÖÀûÈ­, ÀÔÀÚ±º ÃÖÀûÈ­, Àΰø ¸é¿ª ½Ã½ºÅÛ°ú °°Àº »ý¹°Ã¼¿¡¼­ ¿µ°¨À» ¾òÀº ¾Ë°í¸®Áò¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾Ë°í¸®ÁòÀ» ÅëÇØ ·Îº¿Àº Áß¾Ó Á¶Á¤ÀÌ ¾Æ´Ñ ±¹¼ÒÀûÀÎ »óÈ£ÀÛ¿ë°ú °øÀ¯ Çǵå¹é ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¹× °­È­ ÇнÀ ±â¼ú°ú °áÇÕÇÏ¿© ¹ÌÁöÀÇ ÁöÇü¿¡ ÀûÀÀÇϰí, Àå¾Ö¹°À» ÇÇÇϰí, º¯È­ÇÏ´Â °úÁ¦¿¡ µû¶ó Áý´Ü ÇൿÀ» ÃÖÀûÈ­Çϵµ·Ï ¹«¸®¸¦ ÈÆ·Ã½Ãų ¼ö ÀÖ½À´Ï´Ù. AI´Â ¿ªµ¿ÀûÀÎ ¿ªÇÒ ºÐ´ã, ½Ç½Ã°£ °æ·Î °èȹ, Çൿ ÁøÈ­¸¦ °¡´ÉÇÏ°Ô Çϸç, ÀÌ´Â ÀÚÀ² ³ó¾÷, ¼ö»ö ¹× ±¸Á¶ ÀÓ¹«, ÁÖº¯ ¹æ¾î µîÀÇ ½Ã³ª¸®¿À¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ´ÙÁß ¿¡ÀÌÀüÆ® ½Ã¹Ä·¹À̼ÇÀº ¹èÄ¡ Àü ¹«¸®ÀÇ »çÀü ÈÆ·Ã¿¡µµ »ç¿ëµÇ¾î ÇöÀåÀÇ ½ÇÆÐ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ 5G¿Í ¿§Áö AIÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó ½º¿ú À¯´Ö °£ ÃÊÀúÁö¿¬ Åë½ÅÀÌ °¡´ÉÇØÁ® ÀÀ´ä¼ºÀÌ Çâ»óµÇ°í, Ŭ¶ó¿ìµå ¿¬°á¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁý´Ï´Ù. Àüü°¡ ºÎºÐÀÇ ÇÕº¸´Ù ÈξÀ ´õ Å« â¹ßÀû Áö´ÉÀ¸·Î ±â´ÉÇÏ´Â ¹«¸®ÀÇ ´É·ÂÀº Â÷¼¼´ë ·Îº¿ °øÇÐÀÇ °áÁ¤ÀûÀΠƯ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

½º¿ú ·Îº¸Æ½½º·Î °æÀï ¿ìÀ§¸¦ Á¡Çϰí ÀÖ´Â »ê¾÷Àº?

´õ ¸¹Àº »ê¾÷ÀÌ ±× ÆÄ±«ÀûÀÎ ÀáÀç·ÂÀ» ÀνÄÇÔ¿¡ µû¶ó ½º¿ú ·Îº¸Æ½½º´Â ÀÌ·ÐÀû ޱ¸¿¡¼­ »ó¾÷Àû ½ÇÇàÀ¸·Î ¿Å°Ü°¡°í ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â ÀÛ¹° ¸ð´ÏÅ͸µ, º´ÃæÇØ ¹æÁ¦, Á¤¹Ð »ìÆ÷¿¡ ¼ÒÇü ÀÚÀ² Áö»ó ·Îº¿°ú °øÁß ·Îº¿ ¹«¸®°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹°·ù ¹× â°í °ü¸®¿¡¼­´Â Àç°í ó¸®, µ¿Àû °æ·Î Ž»ö, Çù¾÷ Ç®ÇÊ¸ÕÆ® ¾÷¹«¿¡ À̵¿ ·Îº¿ÀÇ ¹«¸®°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¹¹æ ºÐ¾ß¿¡¼­´Â ±º ¿¬±¸ ÇÁ·Î±×·¥À» ÅëÇØ °¨½Ã, Ç¥Àû Æ÷Âø, ¿µ¿ª °ÅºÎ ÀÓ¹«¸¦ À§ÇÑ µå·Ð ±º´ÜÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. Swarm Robotics´Â Áö¿¬ ½Ã°£À̳ª ȯ°æÀû ¹ÌÁöÀÇ ¹®Á¦·Î ÀÎÇØ Áß¾Ó ÁýÁᫎ Á¦¾î°¡ Çö½ÇÀûÀÌÁö ¾ÊÀº ½ÉÇØ ¹× ¿ìÁÖ Å½»ç¸¦ À§ÇØ Å×½ºÆ®µÇ°í ÀÖ½À´Ï´Ù. »êºÒ ÃßÀû, ¿À¿° ¸ÅÇÎ, »ý¹° ´Ù¾ç¼º Æò°¡¿Í °°Àº ȯ°æ ¸ð´ÏÅ͸µµµ ·Îº¿ ±º´ÜÀÌ ¹æ´ëÇÏ°í º¹ÀâÇÑ ÁöÇüÀ» µ¿½Ã¿¡ Ä¿¹öÇÒ ¼ö ÀÖ´Â À¯¸Á ºÐ¾ßÀÔ´Ï´Ù. °Ç¼³À̳ª ÀÎÇÁ¶ó ±¸Ãà¿¡¼­µµ ºÐ»êÇü ¼¾½Ì, ÀÚÀç ¿î¹Ý, 3D ÇÁ¸°ÆÃÀ» À§ÇØ ·Îº¿ÀÇ ÁýÇÕü°¡ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷º° ±¸ÇöÀº ½º¿ú ·Îº¸Æ½½º°¡ ´Ü¼øÇÑ ¿¬±¸ ´ë»óÀÌ ¾Æ´Ï¶ó »õ·Î¿î ÇüÅÂÀÇ È¿À²¼º, ÀÚÀ²¼º, ÀûÀÀ¼ºÀ» ½ÇÇöÇÏ´Â Çö½ÇÀûÀÎ ¼Ö·ç¼ÇÀÓÀ» Áõ¸íÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ½º¿ú ·Îº¸Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±ºÁý ·Îº¿ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼úÀû ¼º¼÷µµ, ¿ëµµ Á᫐ ¼ö¿ä, ÁøÈ­ÇÏ´Â ÀÎÇÁ¶ó ´É·ÂÀÇ ¼ö·ÅÀ» ÅëÇØ ÀÌ·ç¾îÁú °ÍÀÔ´Ï´Ù. ¼¾¼­, ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, ¾×Ãß¿¡ÀÌÅÍÀÇ Àú°¡È­ ¹× ¼ÒÇüÈ­·Î ÀÎÇØ ±ºÁý ¹èÄ¡¿¡ ÀûÇÕÇÑ ¼ÒÇü Áö´ÉÇü ·Îº¿ÀÇ ´ë·® »ý»êÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ¸ÖƼ ¿¡ÀÌÀüÆ® Çù¾÷ ¾Ë°í¸®Áò, ½Ç½Ã°£ ÇöÁöÈ­, ºÐ»êÇü ÀÇ»ç°áÁ¤ µîÀÇ ±â¼ú ¹ßÀüÀ¸·Î ´Ù¾çÇÑ ÁöÇü°ú ÀÓ¹«¿¡ ´ëÀÀÇÏ´Â ±ºÁý ¿î¿ëÀÇ È®ÀåÀÌ ¿ëÀÌÇØÁ³½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú °í³»±¸¼º ÀÚÀ² ½Ã½ºÅÛÀÇ Çʿ伺¿¡ µû¸¥ ±¹¹æ ¹× ¾Èº¸ ºÐ¾ß ¼ö¿ä Áõ°¡´Â µå·Ð ±º´Ü °³¹ß¿¡ ´ëÇÑ °­·ÂÇÑ ÅõÀÚ¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â ±âÈÄ º¯È­¿Í ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ ³ó°¡°¡ ¹çÀ» ¸ð´ÏÅ͸µÇÏ°í °³ÀÔÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ·Îº¿ ¼Ö·ç¼Ç¿¡ ´«À» µ¹¸®°í ÀÖÀ¸¸ç, ÀÌ´Â ±ºÁý ±â¹Ý ±â¼úÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® â°í¿Í ÀÚµ¿È­µÈ ¹°·ù ÇãºêÀÇ ºÎ»óµµ À¯µ¿ÀûÀÎ Àç°í ½Ã½ºÅÛ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â Çùµ¿ ·Îº¿±º¿¡ ´ëÇÑ »ó¾÷Àû ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Çаè¿Í R&D ¿¬±¸¼Ò´Â AI, ·Îº¿°øÇÐ, ¿§Áö ÄÄÇ»ÆÃ ºÐ¾ß¿¡¼­ ±¹°¡ÀÇ ÀçÁ¤Àû Áö¿øÀ» ¹Þ¾Æ ÀÌ·ÐÀû ¸ðµ¨À» ¹èÆ÷ °¡´ÉÇÑ ½Ã½ºÅÛÀ¸·Î ÀüȯÇϱâ À§ÇØ ½ºÅ¸Æ®¾÷ ¹× ±¹¹æ ±â°ü°ú Àû±ØÀûÀ¸·Î Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ Å½»ç, ½ÉÇØ Ž»ç, Àç³­ º¹±¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ºñ¿ë, Ä¿¹ö¸®Áö, º¹¿ø·Â Ãø¸é¿¡¼­ ¹«¸®°¡ µ¶º¸ÀûÀÎ ÀÌÁ¡À» Á¦°øÇÏ´Â ÀÌ¿ë »ç·Ê¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Çõ½Å, »ê¾÷ ´ëÀÀ, ¿ëµµÀÇ ´Ù¾ç¼º µî ÀÌ·¯ÇÑ ÃËÁø¿äÀÎÀÌ °áÇÕµÇ¾î ±ºÁý ·Îº¿ ½ÃÀåÀº ºü¸£°Ô °¡¼ÓÈ­µÇ¾î ¼¼°è °ü·Ã¼ºÀ» °®´Â ´Ü°è·Î ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Ç÷§Æû(UAV, UGV, ±âŸ Ç÷§Æû), ¿ëµµ(º¸¾È, °Ë»ç¡¤°¨½Ã ¿ëµµ, ÁöµµÁ¦ÀÛ¡¤Ãø·® ¿ëµµ, ¼ö»ö¡¤±¸Á¶¡¤Àç³­ ±¸Á¶ ¿ëµµ, °ø±Þ¸Á¡¤Ã¢°í °ü¸® ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(±º¡¤¹æÀ§ ÃÖÁ¾ ¿ëµµ, »ê¾÷ ÃÖÁ¾ ¿ëµµ, ³ó¾÷ ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Swarm Robotics Market to Reach US$6.2 Billion by 2030

The global market for Swarm Robotics estimated at US$1.1 Billion in the year 2024, is expected to reach US$6.2 Billion by 2030, growing at a CAGR of 33.0% over the analysis period 2024-2030. UAV, one of the segments analyzed in the report, is expected to record a 34.9% CAGR and reach US$4.3 Billion by the end of the analysis period. Growth in the UGV segment is estimated at 30.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$297.2 Million While China is Forecast to Grow at 31.1% CAGR

The Swarm Robotics market in the U.S. is estimated at US$297.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$932.5 Million by the year 2030 trailing a CAGR of 31.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 30.4% and 28.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 22.7% CAGR.

Global Swarm Robotics Market - Key Trends & Drivers Summarized

Why Is the World Looking to Swarms for the Next Leap in Robotics?

Swarm robotics-a field inspired by collective behavior in nature-is rapidly gaining attention as industries search for decentralized, scalable, and adaptable solutions to complex operational challenges. Unlike traditional robots that operate individually or under centralized control, swarm robotics leverages large groups of relatively simple, low-cost robots that interact locally to achieve global objectives through self-organization. This approach draws direct inspiration from ant colonies, bee hives, bird flocks, and fish schools, where simple rules lead to emergent intelligence and resilience. In environments where unpredictability, scalability, and redundancy are key-such as disaster recovery, military reconnaissance, environmental monitoring, and space exploration-swarm robotics presents an unmatched advantage. Advances in sensors, edge computing, wireless communication, and real-time processing are making it increasingly feasible to deploy robot collectives that can navigate, collaborate, and learn autonomously. The concept is no longer just academic; governments, defense agencies, logistics companies, and agriculture operators are beginning to pilot real-world swarm systems for critical applications. As the complexity of operational environments grows, the case for scalable, distributed intelligence becomes even stronger-turning swarm robotics from a futuristic concept into a practical paradigm shift in automation.

How Are Bio-Inspired Algorithms and AI Enabling the Rise of Intelligent Swarms?

At the heart of swarm robotics lies algorithmic intelligence-and it is here that some of the most exciting innovation is taking place. Engineers and computer scientists are increasingly turning to bio-inspired algorithms, such as ant colony optimization, particle swarm optimization, and artificial immune systems, to guide robot behavior in dynamic environments. These algorithms allow robots to make decisions not through central coordination, but through local interactions and shared feedback mechanisms. When combined with machine learning and reinforcement learning techniques, swarms can be trained to adapt to unknown terrain, avoid obstacles, and optimize their collective behavior based on changing tasks. AI enables dynamic role assignment, real-time path planning, and behavioral evolution, which are crucial in scenarios like autonomous agriculture, search and rescue missions, or perimeter defense. Multi-agent simulations are also being used to pre-train swarms before deployment, reducing the risk of field failures. Furthermore, the growing integration of 5G and edge AI enables ultra-low-latency communication among swarm units, enhancing responsiveness and reducing dependence on cloud connectivity. The ability of swarms to function with emergent intelligence-where the whole is truly greater than the sum of its parts-is becoming a defining feature of the next generation of robotics.

Which Industries Are Unlocking Competitive Advantage Through Swarm Robotics?

Swarm robotics is moving from theoretical exploration to commercial execution as more industries recognize its disruptive potential. In agriculture, swarms of small autonomous ground or aerial robots are being used for crop monitoring, pest control, and precision spraying-offering scalability and redundancy without the cost of larger singular machines. Logistics and warehousing are leveraging swarm-like fleets of mobile robots for inventory handling, dynamic pathfinding, and collaborative fulfillment operations. In defense, military research programs are developing drone swarms for surveillance, target acquisition, and area denial missions, with the added benefits of low detectability and resilience through redundancy. Swarm robotics is also being tested for deep-sea and space exploration, where centralized control is impractical due to latency and environmental unknowns. Environmental monitoring, including forest fire tracking, pollution mapping, and biodiversity assessments, is another promising domain where robotic swarms can cover large and complex terrains simultaneously. Even in construction and infrastructure maintenance, robotic collectives are being explored for distributed sensing, material delivery, and 3D printing. These industry-specific implementations are proving that swarm robotics is not just a research fascination-it is a real-world solution unlocking new forms of efficiency, autonomy, and adaptability.

What’s Fueling the Growth of the Global Swarm Robotics Market?

The growth in the swarm robotics market is driven by a convergence of technical maturity, application-driven demand, and evolving infrastructure capabilities. The increasing affordability and miniaturization of sensors, microcontrollers, and actuators are enabling mass production of compact, intelligent robots suitable for swarm deployment. Technological advances in multi-agent coordination algorithms, real-time localization, and decentralized decision-making are making it easier to scale up swarm operations across diverse terrains and missions. Growing demand from defense and security sectors-driven by geopolitical tensions and the need for high-resilience autonomous systems-is generating strong investment in drone swarm development. In agriculture, climate change and labor shortages are pushing farmers toward scalable robotic solutions for field monitoring and intervention, creating fertile ground for swarm-based technologies. The rise of smart warehouses and automated logistics hubs is also creating a commercial need for coordinated robotic fleets capable of adapting to fluid inventory systems. Academic institutions and R&D labs are actively collaborating with startups and defense agencies to translate theoretical models into deployable systems, supported by national funding in AI, robotics, and edge computing. Furthermore, growing interest in space missions, deep-ocean exploration, and disaster recovery is fueling use cases where swarms offer unmatched advantages in cost, coverage, and resilience. Collectively, these drivers-spanning innovation, industry readiness, and application diversity-are pushing the swarm robotics market into a phase of rapid acceleration and global relevance.

SCOPE OF STUDY:

The report analyzes the Swarm Robotics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Platform (UAV, UGV, Other Platforms); Application (Security, Inspection & Monitoring Application, Mapping & Surveying Application, Search & Rescue & Disaster Relief Application, Supply Chain & Warehouse Management Application, Other Applications); End-Use (Military & Defense End-Use, Industrial End-Use, Agriculture End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â