¼¼°èÀÇ ½ºÆäÀ̽º ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå
Space Power Electronics
»óǰÄÚµå : 1788351
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 149 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,229,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,687,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½ºÆäÀ̽º ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2030³â±îÁö 9¾ï 3,270¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 3¾ï 4,730¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ½ºÆäÀ̽º ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 17.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 9¾ï 3,270¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÆÄ¿ö µð½ºÅ©¸®Æ®´Â CAGR 19.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 5,490¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÆÄ¿ö ¸ðµâ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 14.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9,130¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 16.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½ºÆäÀ̽º ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2024³â¿¡ 9,130¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 16.8%·Î, 2030³â±îÁö 1¾ï 4,310¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 16.7%¿Í 15.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ½ºÆäÀ̽º ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º°¡ ¿ìÁÖ ½Ã½ºÅÛÀÇ ÇÙ½ÉÀ¸·Î ºÎ»óÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¿ìÁÖ¼± ½Ã½ºÅÛÀÇ º¹À⼺, ÀÚÀ²¼º ¹× »óÈ£ ¿¬°á¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÌ°í °­·ÂÇÑ Àü¿ø °ü¸®°¡ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, ¿ìÁÖ Àü·Â ÀüÀÚ´Â ¹Ì¼Ç ¼³°è ¹× ½Å·Ú¼ºÀÇ ÇÙ½ÉÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â ÀΰøÀ§¼º, ¿ìÁÖŽ»ç¼±, ·Î¹ö, ±Ëµµ»óÀÇ ÀÎÇÁ¶ó ³»¿¡¼­ Àü·ÂÀ» Á¶Á¤, Á¶Àý, º¯È¯ÇÏ´Â ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â žçÀüÁöÆÇÀ̳ª ¹èÅ͸®¿Í °°Àº žÀçµÈ Àü¿ø¿¡¼­ ÃßÁø, Åë½Å, ¿­ Á¶Àý, Ç×¹ý, ÆäÀ̷εå ÀÛµ¿À» Æ÷ÇÔÇÑ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¼­ºê½Ã½ºÅÛ¿¡ ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö ºÐ¹è¸¦ º¸ÀåÇÕ´Ï´Ù. Áö±¸ ±Ëµµ Àú±Ëµµ ¹× ½É¿ìÁÖ ÀÓ¹« ¸ðµÎ¿¡¼­ Á¤È®ÇÑ Àü·Â Á¦¾î´Â ¿¡³ÊÁö ÀÔ·Â º¯µ¿, ºÎÇÏ ±ÕÇü ¹× ¹Î°¨ÇÑ ÀüÀÚ Àåºñ º¸È£¿¡ ´ëóÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Àü Àüµ¿ À§¼º, °í󸮷® Åë½Å ½Ã½ºÅÛ, ¼ÒÇü Ç÷§ÆûÀ¸·ÎÀÇ Àüȯ¿¡ µû¶ó °æ·®È­, ¼ÒÇüÈ­»Ó¸¸ ¾Æ´Ï¶ó ¹æ»ç¼±, Áø°ø, ¿­ÀÇ ±ØÇÑ È¯°æ¿¡¼­µµ ³ôÀº È¿À²À» ¹ßÈÖÇÏ´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ µµÀÔÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÃֽŠÀΰøÀ§¼º¿¡¼­´Â ÀÚÀ²ÀûÀÎ ³»°áÇÔ¼º°ú ½Ç½Ã°£ ¿¡³ÊÁö ºÐ¹èÀÇ Á߿伺ÀÌ Å©°Ô Áõ°¡ÇÏ¿© Àü·Â º¯È¯ ¸ðµâ, ·¹±Ö·¹ÀÌÅÍ ¹× ¹èÀü À¯´Ö¿¡ »õ·Î¿î ¼º´É ¿ä±¸»çÇ×ÀÌ ºÎ°úµÇ°í ÀÖ½À´Ï´Ù. ¿ìÁÖ¼±ÀÌ Áö±¸¿¡¼­ Á¡Á¡ ´õ ¸Ö¸® ¶³¾îÁ® ´õ ¿À·£ ½Ã°£ µ¿¾È ¿î¿µµÊ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ°í ½º¸¶Æ®ÇÑ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â ´Ü¼øÈ÷ ½Ã½ºÅÛÀ» Áö¿øÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ÀÓ¹«¸¦ ½ÇÇöÇÏ´Â ±â¹Ý ÀÎÇÁ¶ó ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Àç·á Çõ½Å°ú ½Ã½ºÅÛ ÅëÇÕÀº ¾î¶»°Ô Â÷¼¼´ë ¿ìÁÖ Àü·Â ÀüÀÚÁ¦Ç°À» Çü¼ºÇϰí Àִ°¡?

¿ìÁÖ¿ë ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ºÎǰÀÇ ¼³°è¿Í ¼º´ÉÀº ÷´Ü ¹ÝµµÃ¼ ¼ÒÀç¿Í ¸ðµâ½Ä ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ÀÇ Ã¤ÅÃÀ¸·Î Å©°Ô ¹ßÀüÇß½À´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å¿Í ÁúÈ­°¥·ýÀº ½ºÀ§Äª ¼Õ½ÇÀ» Å©°Ô ÁÙÀ̸鼭 ´õ ³ôÀº Àü¾Ð, ¿Âµµ ¹× Á֯ļö¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±âÁ¸ ½Ç¸®ÄÜ ºÎǰÀÇ ´ë¾ÈÀ¸·Î Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤´ë¿ª °¸ Àç·á´Â º¸´Ù ÄÄÆÑÆ®ÇÏ°í ¿­È¿À²ÀûÀÎ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¿ìÁÖ ÀÓ¹«¿¡¼­ Å©±â, ¹«°Ô ¹× Àü·Â ¿ä±¸ »çÇ×À» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ Ä¨ ½ºÄÉÀÏ ÁýÀûÈ­, ±â¹Ð ¹ÐºÀ, ¹æ»ç¼± Â÷Æó¿Í °°Àº ÷´Ü Æ÷Àå ±â¼úÀº ºÎǰÀÌ °¡È¤ÇÑ ¿ìÁÖ È¯°æÀ» °ßµô ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. Çϵå¿þ¾î»Ó¸¸ ¾Æ´Ï¶ó µðÁöÅÐ Á¦¾î ½Ã½ºÅÛ ¹× ÅÚ·¹¸ÞÆ®¸® ÀÎÅÍÆäÀ̽ºÀÇ ÅëÇÕÀ» ÅëÇØ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ÀûÀÀ¼ºÀÌ Çâ»óµÇ¾î ¿ªµ¿ÀûÀÎ ÀÓ¹« Á¶°Ç°ú ¼­ºê½Ã½ºÅÛÀÇ ¿ä±¸»çÇ׿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Áö´ÉÇü °íÀå °¨Áö ¹× °Ý¸®, ÀÚ°¡ Áø´Ü ¹× ¿¹ÃøÀû »óÅ ¸ð´ÏÅ͸µÀº ÇöÀç Àü·Â °ü¸® ÀåÄ¡¿¡ ³»ÀåµÈ Áß¿äÇÑ ±â´ÉÀ̸ç, ¹Ì¼ÇÀÇ º¹¿ø·Â¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÈ¿À² DC-DC ÄÁ¹öÅÍ, ¹èÀü ÀåÄ¡ ¹× ºÎÇÏÁ¡ ·¹±Ö·¹ÀÌÅÍÀÇ °³¹ß·Î ¿©·¯ Àü¾Ð ¿µ¿ª¿¡¼­ ¿øÈ°ÇÑ ¿¡³ÊÁö È帧ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ¼± ¾ÆÅ°ÅØÃ³ÀÇ ¼ÒÇÁÆ®¿þ¾îÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â ¹Ì¼Ç Å©¸®Æ¼Äà ±â´É¿¡ ±â¹ÝÇÑ À籸¼º, ÀÌÁßÈ­ ½ºÀ§Äª ¹× Àü·Â ¿ì¼±¼øÀ§¸¦ Áö¿øÇϵµ·Ï ¼³°èµÇ¾î ¿ìÁÖ Ç÷§Æû ³»¿¡¼­ Àü·«Àû °¡Ä¡¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ö¿ä´Â ¾îµð¿¡¼­ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ¾î¶² ¿ëµµÀÌ º¯È­¸¦ ÁÖµµÇϰí Àִ°¡?

¿ìÁÖÀÇ »ó¾÷È­, °æÀïÈ­, ±â¼úÀû ¾ß½É¿¡ µû¶ó ¿ìÁÖ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå ¼ö¿ä´Â ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Áö±¸ ±Ëµµ Àú±Ëµµ¿¡¼­ ¼¼°è ±¤´ë¿ª, Áö±¸°üÃø ¹× IoT ¼­ºñ½º¸¦ À§ÇÑ ´ë±Ô¸ð À§¼º º°ÀÚ¸® ¹èÄ¡·Î ÀÎÇØ ¼ÒÇü À§¼º ¹× CubeSatsÀÇ °í¹Ðµµ Àü·Â ½Ã½ºÅÛÀ» °ü¸®ÇÒ ¼ö ÀÖ´Â ÄÄÆÑÆ®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç È®Àå °¡´ÉÇÑ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À§¼ºÀÌ ´ëÇü ÆäÀ̷ε带 žÀçÇϰí Àå±â°£ ¿î¿µµÇ´Â °íÁ¤Çü Ç÷§ÆûÀÇ °æ¿ì, Àü¿ø ½Ã½ºÅÛÀº Áß´Ü ¾ø´Â ¼­ºñ½º¿Í Àå±âÀûÀÎ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÃÊ °íÈ¿À² ¹× ÀÌÁßÈ­¸¦ Á¦°øÇØ¾ß ÇÕ´Ï´Ù. È­¼º Ž»ç¼±, ¼ÒÇ༺ Ž»ç¼±, ´Þ Âø·ú¼± µî ½É¿ìÁÖ Å½»ç ÀÓ¹«¿¡¼­´Â ¹æ»ç¼±¿¡ °­ÇÏ°í ³»°áÇÔ¼ºÀÌ ¿ì¼öÇÑ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º°¡ ÇÊ¿äÇϸç, Áö±¸·ÎºÎÅÍÀÇ ÀÔ·ÂÀ» ÃÖ¼ÒÈ­ÇÏ¿© ÀÚÀ²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. °¨½Ã, ¹Ì»çÀÏ Á¶±â°æº¸, º¸¾È Åë½ÅÀ» Æ÷ÇÔÇÑ »õ·Î¿î ¹æ¾î ¿ëµµ´Â ¾Ïȣȭ¿Í ½Ã½ºÅÛ ¼öÁØÀÇ º¹¿ø·ÂÀ» ÅëÇÕÇÑ »çÀ̹ö º¸¾È ¹× ÀúÁö¿¬ Àü·Â ½Ã½ºÅÛÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ¿¡¼­ÀÇ Á¦Á¶, À§¼º ¼­ºñ½º, ¿ìÁÖ Á¤°ÅÀå°ú °°Àº ±Ëµµ ÀÎÇÁ¶ó¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹èÀü ¹× ¿¡³ÊÁö ÀúÀå¿¡ »õ·Î¿î º¹ÀâÇÑ °èÃþÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ¸¹Àº ÀÓ¹«¿¡¼­ ±âÁ¸ÀÇ È­ÇÐ ¿£ÁøÀ» ºü¸£°Ô ´ëüÇϰí ÀÖ´Â Àü±â ÃßÁø ½Ã½ºÅÛµµ °íÀü¾Ð ¹× °íÈ¿À² ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÖÁ¾ ¿ëµµÀÇ ´Ù¾ç¼ºÀ¸·Î ÀÎÇØ ½ÃÀåÀº °íµµ·Î ¸ÂÃãÈ­µÈ ·¹°Å½Ã ±¸¼º ¿ä¼Ò¿¡¼­ Á¤ºÎ ¹× »ó¾÷Àû ÀÓ¹«¸¦ À§ÇÑ º¸´Ù Ç¥ÁØÈ­µÈ ´ë·® »ý»ê ¸ðµ¨·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¿ìÁÖ Àü·Â ÀüÀÚ ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¿ìÁÖ Àü·Â ÀüÀÚ ½ÃÀåÀÇ ¼ºÀåÀº ¹Ì¼Ç ¼ö¿äÀÇ ÁøÈ­, À§¼º ¼³°èÀÇ Àüȯ, ºÎǰ Çõ½Å, ¿ìÁÖ °æÁ¦ÀÇ ±¤¹üÀ§ÇÑ º¯È­¿Í Á÷Á¢ÀûÀ¸·Î ¿¬°üµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿øµ¿·Â Áß Çϳª´Â ¾Æ³¯·Î±×ÀÇ ¼öµ¿ÀûÀÎ ½Ã½ºÅÛ¿¡¼­ ½Ç½Ã°£ Àü·Â Á¦¾î, ÀÚÀ²ÀûÀÎ °íÀå °ü¸®, ¿¡³ÊÁö È¿À² Çâ»óÀ» ÇÊ¿ä·Î ÇÏ´Â µðÁöÅÐ Áö´ÉÇü Ç÷§ÆûÀ¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ƯÈ÷ Áö±¸°üÃø ¹× Åë½ÅÀ» ¸ñÀûÀ¸·Î ÇÏ´Â ¼ÒÇü À§¼º ¹× CubeSatÀÇ º¸±ÞÀº ½Å·Ú¼º°ú ¿­ ¼º´É¿¡ ŸÇùÇÏÁö ¾Ê´Â ¼ÒÇü, °æ·® Àü·Â ¼Ö·ç¼ÇÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü±â ÃßÁø, žç Àü±â ¿ìÁÖ¼±, ¸ðµâ½Ä ¿ìÁÖ °ÅÁÖ ½Ã¼³ÀÇ ºÎ»óÀ¸·Î °íÀü¾Ð ½ºÀ§Äª, Àü·ù °ü¸®, °í±Þ ¹æ¿­ ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿ÍÀÌµå ¹êµå°¸ ¹ÝµµÃ¼ÀÇ ±â¼ú ¹ßÀüÀº ´õ ³ôÀº Àü·Â ¹Ðµµ¿Í ´õ ³ôÀº ¹æ»ç¼± ³»¼ºÀ» °¡´ÉÇÏ°Ô Çϰí, ½Ã½ºÅÛ Â÷ÆóÀÇ ºñ¿ë°ú º¹À⼺À» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² Á¤ºÎ Àڱݿ¡ ÀÇÇÑ ¿ìÁÖ°³¹ß °èȹ Áõ°¡¿Í À§¼º ±â¹Ý ¼­ºñ½º¿¡ ´ëÇÑ ¹Î°£ ÅõÀÚ Áõ°¡´Â ¿ìÁÖ±Þ ÀüÀڽýºÅÛÀÇ Àå±â Á¶´Þ °è¾àÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû º¯È­¿Í ±¹¹æ Çö´ëÈ­µµ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ±¹°¡ ¾Èº¸¿¡ ÃÊÁ¡À» ¸ÂÃá ÀÓ¹«´Â ¾ÈÀüÇϰí ÀÌÁßÈ­µÈ Àü¿ø ¾ÆÅ°ÅØÃ³¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î À§¼ºÀÇ ÀçȰ¿ë, ÀÓ¹« ±â°£ ¿¬Àå, ±Ëµµ ¼­ºñ½º µî ¿ìÁÖ¿¡¼­ÀÇ Áö¼Ó°¡´É¼º ÃßÁøÀÌ Áõ°¡ÇÔ¿¡ µû¶ó À籸¼º ¹× ¾÷±×·¹À̵尡 °¡´ÉÇÑ Àü·Â ½Ã½ºÅÛÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¸¦ ´Ü¼øÇÑ ¼­ºê½Ã½ºÅÛÀÌ ¾Æ´Ñ Â÷¼¼´ë ¿ìÁÖŽ»ç, Åë½Å, ÀÎÇÁ¶ó °³¹ßÀÇ Àü·«Àû ±â¹ÝÀ¸·Î¼­ ÀÚ¸®¸Å±èÇϰíÀÚ ÇÕ´Ï´Ù.

ºÎ¹®

µð¹ÙÀ̽º À¯Çü(ÆÄ¿ö µð½ºÅ©¸®Æ®, ÆÄ¿ö ¸ðµâ, ÆÄ¿ö IC), ¾ÖÇø®ÄÉÀ̼Ç(ÀΰøÀ§¼º ¾ÖÇø®ÄÉÀ̼Ç, ¿ìÁÖ¼±¡¤·ÎÄÏ ¾ÖÇø®ÄÉÀ̼Ç, ¿ìÁÖ Á¤°ÅÀå ¾ÖÇø®ÄÉÀ̼Ç, ·Î¹ö ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Space Power Electronics Market to Reach US$932.7 Million by 2030

The global market for Space Power Electronics estimated at US$347.3 Million in the year 2024, is expected to reach US$932.7 Million by 2030, growing at a CAGR of 17.9% over the analysis period 2024-2030. Power Discrete, one of the segments analyzed in the report, is expected to record a 19.3% CAGR and reach US$654.9 Million by the end of the analysis period. Growth in the Power Module segment is estimated at 14.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$91.3 Million While China is Forecast to Grow at 16.8% CAGR

The Space Power Electronics market in the U.S. is estimated at US$91.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$143.1 Million by the year 2030 trailing a CAGR of 16.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.7% and 15.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.0% CAGR.

Global Space Power Electronics Market - Key Trends & Drivers Summarized

Why Is Power Electronics Emerging as the Backbone of Space Systems?

As spacecraft systems become more complex, autonomous, and interconnected, the demand for efficient and robust power management has placed space power electronics at the heart of mission design and reliability. Power electronics are responsible for regulating, conditioning, and converting electrical power within satellites, space probes, rovers, and orbital infrastructure. They ensure the stable distribution of energy from onboard power sources like solar panels or batteries to mission-critical subsystems including propulsion, communication, thermal regulation, navigation, and payload operations. In both low Earth orbit and deep-space missions, precise power control is essential to handle fluctuations in energy input, load balancing, and the protection of sensitive electronics. The shift toward all-electric satellites, high-throughput communication systems, and miniaturized platforms has made it imperative to deploy power electronics that are not only lightweight and compact but also highly efficient under radiation, vacuum, and thermal extremes. In modern satellites, the importance of autonomous fault tolerance and real-time energy allocation has grown considerably, placing new performance demands on power conversion modules, regulators, and distribution units. As spacecraft continue to operate further from Earth and for longer durations, dependable and smart power electronics have become mission enablers, not just supporting systems but acting as foundational infrastructure.

How Are Material Innovation and System Integration Shaping the Next Generation of Space Power Electronics?

The design and performance of power electronic components for space applications have evolved significantly with the adoption of advanced semiconductor materials and modular system architecture. Silicon carbide and gallium nitride have become increasingly prominent as alternatives to conventional silicon components due to their ability to operate at higher voltages, temperatures, and frequencies while significantly reducing switching losses. These wide bandgap materials enable more compact and thermally efficient designs, which are crucial for reducing size, weight, and power requirements in space missions. Moreover, advanced packaging techniques such as chip-scale integration, hermetic sealing, and radiation shielding are helping components withstand extreme space conditions. Beyond hardware, the integration of digital control systems and telemetry interfaces has improved the adaptability of power electronics, allowing them to respond to dynamic mission conditions and subsystem demands. Intelligent fault detection and isolation, self-diagnostics, and predictive health monitoring are now key features embedded into power management units, contributing to mission resilience. In addition, developments in high-efficiency DC-DC converters, power distribution units, and point-of-load regulators are allowing seamless energy flow across multiple voltage domains. With increasingly software-defined spacecraft architectures, power electronics are also being designed to support reconfiguration, redundancy switching, and power prioritization based on mission-critical functions, enhancing their strategic value within space platforms.

Where Is Market Demand Accelerating, and Which Applications Are Leading the Shift?

Market demand for space power electronics is surging across a wide range of applications as space becomes more commercialized, competitive, and technically ambitious. In low Earth orbit, the deployment of large satellite constellations for global broadband, Earth observation, and IoT services is driving demand for compact, reliable, and scalable power electronics capable of managing high-density power systems in small satellites and CubeSats. In geostationary platforms, where satellites carry large payloads and operate over long durations, power systems must offer ultra-high efficiency and redundancy to ensure uninterrupted service and long-term reliability. Deep-space exploration missions such as Mars rovers, asteroid probes, and lunar landers demand radiation-hardened, fault-tolerant power electronics that can operate autonomously with minimal input from Earth. Emerging defense applications including surveillance, missile early warning, and secure communications are prioritizing cyber-secure, low-latency power systems with embedded encryption and system-level resilience. Furthermore, the growing interest in orbital infrastructure such as in-space manufacturing, satellite servicing, and space stations is introducing a new layer of complexity in power distribution and energy storage. Electric propulsion systems, which are rapidly replacing traditional chemical engines in many missions, are another key driver for high-voltage and high-efficiency power electronics. This diversity of end-use applications is expanding the market from highly customized legacy components to more standardized, high-volume production models that serve both government and commercial missions.

What Is Powering the Long-term Growth of the Space Power Electronics Market?

The growth in the space power electronics market is driven by several factors directly related to evolving mission demands, satellite design transformation, component innovation, and broader shifts in the space economy. One of the most critical drivers is the transition from analog, passive systems to digital, intelligent platforms that require real-time power control, autonomous fault management, and enhanced energy efficiency. The proliferation of small satellites and CubeSats, especially for Earth observation and communications, is pushing for miniaturized, lightweight power solutions that do not compromise on reliability or thermal performance. The rise of electric propulsion, solar-electric spacecraft, and modular space habitats is creating demand for high-voltage switching, current management, and advanced thermal dissipation capabilities. Technological advancements in wide bandgap semiconductors are enabling higher power density and greater radiation tolerance, lowering the cost and complexity of system shielding. In parallel, the increasing number of government-funded space exploration initiatives and private investments in satellite-based services are fostering long-term procurement contracts for space-grade electronic systems. Geopolitical shifts and defense modernization are also influencing growth, with national security-focused missions emphasizing secure, redundant power architectures. Finally, the growing push toward sustainability in space, including satellite recycling, extended mission durations, and orbital servicing, is reinforcing the importance of reconfigurable and upgradable power systems. These converging trends are positioning power electronics not just as a subsystem, but as a strategic foundation for the next generation of space exploration, communication, and infrastructure development.

SCOPE OF STUDY:

The report analyzes the Space Power Electronics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Device Type (Power Discrete, Power Module, Power IC); Application (Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application, Rovers Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â