리서치사:Market Glass, Inc. (Formerly Global Industry Analysts, Inc.)
발행일:2025년 08월
페이지 정보:영문 149 Pages
라이선스 & 가격 (부가세 별도)
한글목차
세계의 스페이스 파워 일렉트로닉스 시장은 2030년까지 9억 3,270만 달러에 달할 전망
2024년에 3억 4,730만 달러로 추정되는 세계의 스페이스 파워 일렉트로닉스 시장은 2024-2030년의 분석 기간에 CAGR 17.9%로 성장하며, 2030년에는 9억 3,270만 달러에 달할 것으로 예측됩니다. 이 리포트에서 분석한 부문의 하나인 파워 디스크리트는 CAGR 19.3%를 기록하며, 분석 기간 종료시에는 6억 5,490만 달러에 달할 것으로 예측됩니다. 파워 모듈 분야의 성장률은 분석 기간에 CAGR 14.7%로 추정됩니다.
미국 시장은 9,130만 달러로 추정, 중국은 CAGR 16.8%로 성장 예측
미국의 스페이스 파워 일렉트로닉스 시장은 2024년에 9,130만 달러로 추정됩니다. 세계 2위의 경제대국인 중국은 분석 기간인 2024-2030년의 CAGR을 16.8%로, 2030년까지 1억 4,310만 달러의 시장 규모에 달할 것으로 예측됩니다. 기타 주목할 만한 지역별 시장으로는 일본과 캐나다가 있으며, 분석 기간 중 CAGR은 각각 16.7%와 15.3%로 예측됩니다. 유럽에서는 독일이 CAGR 약 13.0%로 성장할 것으로 예측됩니다.
세계의 스페이스 파워 일렉트로닉스 시장 - 주요 동향과 촉진요인 정리
파워 일렉트로닉스가 우주 시스템의 핵심으로 부상한 이유는 무엇인가?
우주선 시스템의 복잡성, 자율성 및 상호 연결성이 증가함에 따라 효율적이고 강력한 전원 관리가 요구되고 있으며, 우주 전력 전자는 미션 설계 및 신뢰성의 핵심을 담당하고 있습니다. 파워 일렉트로닉스는 인공위성, 우주탐사선, 로버, 궤도상의 인프라 내에서 전력을 조정, 조절, 변환하는 역할을 담당하고 있습니다. 파워 일렉트로닉스는 태양전지판이나 배터리와 같은 탑재된 전원에서 추진, 통신, 열 조절, 항법, 페이로드 작동을 포함한 미션 크리티컬한 서브시스템에 안정적인 에너지 분배를 보장합니다. 지구 궤도 저궤도 및 심우주 임무 모두에서 정확한 전력 제어는 에너지 입력 변동, 부하 균형 및 민감한 전자 장비 보호에 대처하는 데 필수적입니다. 전 전동 위성, 고처리량 통신 시스템, 소형 플랫폼으로의 전환에 따라 경량화, 소형화뿐만 아니라 방사선, 진공, 열의 극한 환경에서도 높은 효율을 발휘하는 파워 일렉트로닉스의 도입이 필수적입니다. 최신 인공위성에서는 자율적인 내결함성과 실시간 에너지 분배의 중요성이 크게 증가하여 전력 변환 모듈, 레귤레이터 및 배전 유닛에 새로운 성능 요구사항이 부과되고 있습니다. 우주선이 지구에서 점점 더 멀리 떨어져 더 오랜 시간 동안 운영됨에 따라 신뢰할 수 있고 스마트한 파워 일렉트로닉스는 단순히 시스템을 지원하는 것뿐만 아니라 임무를 실현하는 기반 인프라 역할을 하고 있습니다.
재료 혁신과 시스템 통합은 어떻게 차세대 우주 전력 전자제품을 형성하고 있는가?
우주용 파워 일렉트로닉스 부품의 설계와 성능은 첨단 반도체 소재와 모듈식 시스템 아키텍처의 채택으로 크게 발전했습니다. 실리콘 카바이드와 질화갈륨은 스위칭 손실을 크게 줄이면서 더 높은 전압, 온도 및 주파수에서 작동할 수 있으므로 기존 실리콘 부품의 대안으로 점점 더 많은 관심을 받고 있습니다. 이러한 광대역 갭 재료는 보다 컴팩트하고 열효율적인 설계를 가능하게 하여 우주 임무에서 크기, 무게 및 전력 요구 사항을 줄이는 데 필수적입니다. 또한 칩 스케일 집적화, 기밀 밀봉, 방사선 차폐와 같은 첨단 포장 기술은 부품이 가혹한 우주 환경을 견딜 수 있도록 도와줍니다. 하드웨어뿐만 아니라 디지털 제어 시스템 및 텔레메트리 인터페이스의 통합을 통해 파워 일렉트로닉스의 적응성이 향상되어 역동적인 임무 조건과 서브시스템의 요구사항에 대응할 수 있게 되었습니다. 지능형 고장 감지 및 격리, 자가 진단 및 예측적 상태 모니터링은 현재 전력 관리 장치에 내장된 중요한 기능이며, 미션의 복원력에 기여하고 있습니다. 또한 고효율 DC-DC 컨버터, 배전 장치 및 부하점 레귤레이터의 개발로 여러 전압 영역에서 원활한 에너지 흐름이 가능해졌습니다. 또한 우주선 아키텍처의 소프트웨어화가 진행됨에 따라 파워 일렉트로닉스는 미션 크리티컬 기능에 기반한 재구성, 이중화 스위칭 및 전력 우선순위를 지원하도록 설계되어 우주 플랫폼 내에서 전략적 가치를 높이고 있습니다.
시장 수요는 어디에서 가속화되고 있으며, 어떤 용도이 변화를 주도하고 있는가?
우주의 상업화, 경쟁화, 기술적 야심에 따라 우주 파워 일렉트로닉스 시장 수요는 다양한 용도에서 급증하고 있습니다. 지구 궤도 저궤도에서 세계 광대역, 지구관측 및 IoT 서비스를 위한 대규모 위성 별자리 배치로 인해 소형 위성 및 CubeSats의 고밀도 전력 시스템을 관리할 수 있는 컴팩트하고 신뢰할 수 있으며 확장 가능한 파워 일렉트로닉스에 대한 수요가 증가하고 있습니다. 위성이 대형 페이로드를 탑재하고 장기간 운영되는 고정형 플랫폼의 경우, 전원 시스템은 중단 없는 서비스와 장기적인 신뢰성을 보장하기 위해 초 고효율 및 이중화를 제공해야 합니다. 화성 탐사선, 소행성 탐사선, 달 착륙선 등 심우주 탐사 임무에서는 방사선에 강하고 내결함성이 우수한 파워 일렉트로닉스가 필요하며, 지구로부터의 입력을 최소화하여 자율적으로 작동할 수 있어야 합니다. 감시, 미사일 조기경보, 보안 통신을 포함한 새로운 방어 용도는 암호화와 시스템 수준의 복원력을 통합한 사이버 보안 및 저지연 전력 시스템을 우선순위에 두고 있습니다. 또한 우주에서의 제조, 위성 서비스, 우주 정거장과 같은 궤도 인프라에 대한 관심이 증가함에 따라 배전 및 에너지 저장에 새로운 복잡한 계층이 도입되고 있습니다. 많은 임무에서 기존의 화학 엔진을 빠르게 대체하고 있는 전기 추진 시스템도 고전압 및 고효율 파워 일렉트로닉스의 중요한 원동력이 되고 있습니다. 이러한 최종 용도의 다양성으로 인해 시장은 고도로 맞춤화된 레거시 구성 요소에서 정부 및 상업적 임무를 위한 보다 표준화된 대량 생산 모델로 확대되고 있습니다.
우주 전력 전자 시장의 장기적인 성장 동력은 무엇인가?
우주 전력 전자 시장의 성장은 미션 수요의 진화, 위성 설계의 전환, 부품 혁신, 우주 경제의 광범위한 변화와 직접적으로 연관된 여러 요인에 의해 주도되고 있습니다. 가장 중요한 원동력 중 하나는 아날로그의 수동적인 시스템에서 실시간 전력 제어, 자율적인 고장 관리, 에너지 효율 향상을 필요로 하는 디지털 지능형 플랫폼으로의 전환입니다. 특히 지구관측 및 통신을 목적으로 하는 소형 위성 및 CubeSat의 보급은 신뢰성과 열 성능에 타협하지 않는 소형, 경량 전력 솔루션을 촉진하고 있습니다. 전기 추진, 태양 전기 우주선, 모듈식 우주 거주 시설의 부상으로 고전압 스위칭, 전류 관리, 고급 방열 기능에 대한 수요가 증가하고 있습니다. 와이드 밴드갭 반도체의 기술 발전은 더 높은 전력 밀도와 더 높은 방사선 내성을 가능하게 하고, 시스템 차폐의 비용과 복잡성을 감소시키고 있습니다. 이와 함께 정부 자금에 의한 우주개발 계획 증가와 위성 기반 서비스에 대한 민간 투자 증가는 우주급 전자시스템의 장기 조달 계약을 촉진하고 있습니다. 지정학적 변화와 국방 현대화도 성장에 영향을 미치고 있으며, 국가 안보에 초점을 맞춘 임무는 안전하고 이중화된 전원 아키텍처에 중점을 두고 있습니다. 마지막으로 위성의 재활용, 임무 기간 연장, 궤도 서비스 등 우주에서의 지속가능성 추진이 증가함에 따라 재구성 및 업그레이드가 가능한 전력 시스템의 중요성이 커지고 있습니다. 이러한 추세는 파워 일렉트로닉스를 단순한 서브시스템이 아닌 차세대 우주탐사, 통신, 인프라 개발의 전략적 기반으로서 자리매김하고자 합니다.
부문
디바이스 유형(파워 디스크리트, 파워 모듈, 파워 IC), 애플리케이션(인공위성 애플리케이션, 우주선·로켓 애플리케이션, 우주 정거장 애플리케이션, 로버 애플리케이션)
조사 대상 기업의 예
Airbus Defence and Space
Analog Devices Inc.
BAE Systems plc
Cobham Limited
Efficient Power Conversion Corporation(EPC)
HEICO Corporation
Honeywell International Inc.
Infineon Technologies AG
Microchip Technology Inc.
Mitsubishi Electric Corporation
ON Semiconductor(onsemi)
Packet Digital LLC
Renesas Electronics Corporation
RUAG Group
Safran S.A.
STMicroelectronics N.V.
Teledyne Technologies Incorporated
Texas Instruments Incorporated
Toshiba Corporation
TT Electronics plc
AI 통합
Global Industry Analysts는 유효한 전문가 컨텐츠와 AI 툴에 의해 시장 정보와 경쟁 정보를 변혁하고 있습니다.
Global Industry Analysts는 LLM나 업계 고유 SLM를 조회하는 일반적인 규범에 따르는 대신에, 비디오 기록, 블로그, 검색 엔진 조사, 방대한 양 기업, 제품/서비스, 시장 데이터 등, 전 세계 전문가로부터 수집한 컨텐츠 리포지토리를 구축했습니다.
관세 영향 계수
Global Industry Analysts는 본사 소재지, 제조거점, 수출입(완제품 및 OEM)을 기준으로 기업의 경쟁력 변화를 예측했습니다. 이러한 복잡하고 다면적인 시장 역학은 수입원가(COGS) 증가, 수익성 하락, 공급망 재편 등 미시적, 거시적 시장 역학 중에서도 특히 경쟁사들에게 영향을 미칠 것으로 예측됩니다.
목차
제1장 조사 방법
제2장 개요
시장 개요
주요 기업
시장 동향과 촉진요인
세계 시장 전망
제3장 시장 분석
미국
캐나다
일본
중국
유럽
프랑스
독일
이탈리아
영국
기타 유럽
아시아태평양
기타 지역
제4장 경쟁
KSA
영문 목차
영문목차
Global Space Power Electronics Market to Reach US$932.7 Million by 2030
The global market for Space Power Electronics estimated at US$347.3 Million in the year 2024, is expected to reach US$932.7 Million by 2030, growing at a CAGR of 17.9% over the analysis period 2024-2030. Power Discrete, one of the segments analyzed in the report, is expected to record a 19.3% CAGR and reach US$654.9 Million by the end of the analysis period. Growth in the Power Module segment is estimated at 14.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$91.3 Million While China is Forecast to Grow at 16.8% CAGR
The Space Power Electronics market in the U.S. is estimated at US$91.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$143.1 Million by the year 2030 trailing a CAGR of 16.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.7% and 15.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.0% CAGR.
Global Space Power Electronics Market - Key Trends & Drivers Summarized
Why Is Power Electronics Emerging as the Backbone of Space Systems?
As spacecraft systems become more complex, autonomous, and interconnected, the demand for efficient and robust power management has placed space power electronics at the heart of mission design and reliability. Power electronics are responsible for regulating, conditioning, and converting electrical power within satellites, space probes, rovers, and orbital infrastructure. They ensure the stable distribution of energy from onboard power sources like solar panels or batteries to mission-critical subsystems including propulsion, communication, thermal regulation, navigation, and payload operations. In both low Earth orbit and deep-space missions, precise power control is essential to handle fluctuations in energy input, load balancing, and the protection of sensitive electronics. The shift toward all-electric satellites, high-throughput communication systems, and miniaturized platforms has made it imperative to deploy power electronics that are not only lightweight and compact but also highly efficient under radiation, vacuum, and thermal extremes. In modern satellites, the importance of autonomous fault tolerance and real-time energy allocation has grown considerably, placing new performance demands on power conversion modules, regulators, and distribution units. As spacecraft continue to operate further from Earth and for longer durations, dependable and smart power electronics have become mission enablers, not just supporting systems but acting as foundational infrastructure.
How Are Material Innovation and System Integration Shaping the Next Generation of Space Power Electronics?
The design and performance of power electronic components for space applications have evolved significantly with the adoption of advanced semiconductor materials and modular system architecture. Silicon carbide and gallium nitride have become increasingly prominent as alternatives to conventional silicon components due to their ability to operate at higher voltages, temperatures, and frequencies while significantly reducing switching losses. These wide bandgap materials enable more compact and thermally efficient designs, which are crucial for reducing size, weight, and power requirements in space missions. Moreover, advanced packaging techniques such as chip-scale integration, hermetic sealing, and radiation shielding are helping components withstand extreme space conditions. Beyond hardware, the integration of digital control systems and telemetry interfaces has improved the adaptability of power electronics, allowing them to respond to dynamic mission conditions and subsystem demands. Intelligent fault detection and isolation, self-diagnostics, and predictive health monitoring are now key features embedded into power management units, contributing to mission resilience. In addition, developments in high-efficiency DC-DC converters, power distribution units, and point-of-load regulators are allowing seamless energy flow across multiple voltage domains. With increasingly software-defined spacecraft architectures, power electronics are also being designed to support reconfiguration, redundancy switching, and power prioritization based on mission-critical functions, enhancing their strategic value within space platforms.
Where Is Market Demand Accelerating, and Which Applications Are Leading the Shift?
Market demand for space power electronics is surging across a wide range of applications as space becomes more commercialized, competitive, and technically ambitious. In low Earth orbit, the deployment of large satellite constellations for global broadband, Earth observation, and IoT services is driving demand for compact, reliable, and scalable power electronics capable of managing high-density power systems in small satellites and CubeSats. In geostationary platforms, where satellites carry large payloads and operate over long durations, power systems must offer ultra-high efficiency and redundancy to ensure uninterrupted service and long-term reliability. Deep-space exploration missions such as Mars rovers, asteroid probes, and lunar landers demand radiation-hardened, fault-tolerant power electronics that can operate autonomously with minimal input from Earth. Emerging defense applications including surveillance, missile early warning, and secure communications are prioritizing cyber-secure, low-latency power systems with embedded encryption and system-level resilience. Furthermore, the growing interest in orbital infrastructure such as in-space manufacturing, satellite servicing, and space stations is introducing a new layer of complexity in power distribution and energy storage. Electric propulsion systems, which are rapidly replacing traditional chemical engines in many missions, are another key driver for high-voltage and high-efficiency power electronics. This diversity of end-use applications is expanding the market from highly customized legacy components to more standardized, high-volume production models that serve both government and commercial missions.
What Is Powering the Long-term Growth of the Space Power Electronics Market?
The growth in the space power electronics market is driven by several factors directly related to evolving mission demands, satellite design transformation, component innovation, and broader shifts in the space economy. One of the most critical drivers is the transition from analog, passive systems to digital, intelligent platforms that require real-time power control, autonomous fault management, and enhanced energy efficiency. The proliferation of small satellites and CubeSats, especially for Earth observation and communications, is pushing for miniaturized, lightweight power solutions that do not compromise on reliability or thermal performance. The rise of electric propulsion, solar-electric spacecraft, and modular space habitats is creating demand for high-voltage switching, current management, and advanced thermal dissipation capabilities. Technological advancements in wide bandgap semiconductors are enabling higher power density and greater radiation tolerance, lowering the cost and complexity of system shielding. In parallel, the increasing number of government-funded space exploration initiatives and private investments in satellite-based services are fostering long-term procurement contracts for space-grade electronic systems. Geopolitical shifts and defense modernization are also influencing growth, with national security-focused missions emphasizing secure, redundant power architectures. Finally, the growing push toward sustainability in space, including satellite recycling, extended mission durations, and orbital servicing, is reinforcing the importance of reconfigurable and upgradable power systems. These converging trends are positioning power electronics not just as a subsystem, but as a strategic foundation for the next generation of space exploration, communication, and infrastructure development.
SCOPE OF STUDY:
The report analyzes the Space Power Electronics market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Device Type (Power Discrete, Power Module, Power IC); Application (Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application, Rovers Application)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 47 Featured) -
Airbus Defence and Space
Analog Devices Inc.
BAE Systems plc
Cobham Limited
Efficient Power Conversion Corporation (EPC)
HEICO Corporation
Honeywell International Inc.
Infineon Technologies AG
Microchip Technology Inc.
Mitsubishi Electric Corporation
ON Semiconductor (onsemi)
Packet Digital LLC
Renesas Electronics Corporation
RUAG Group
Safran S.A.
STMicroelectronics N.V.
Teledyne Technologies Incorporated
Texas Instruments Incorporated
Toshiba Corporation
TT Electronics plc
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
TABLE OF CONTENTS
I. METHODOLOGY
II. EXECUTIVE SUMMARY
1. MARKET OVERVIEW
Influencer Market Insights
Tariff Impact on Global Supply Chain Patterns
Space Power Electronics - Global Key Competitors Percentage Market Share in 2025 (E)
Competitive Market Presence - Strong/Active/Niche/Trivial for Players Worldwide in 2025 (E)
2. FOCUS ON SELECT PLAYERS
3. MARKET TRENDS & DRIVERS
Surging Satellite Deployment Rates Throw the Spotlight on High-reliability Power Electronics for Space Applications
Shift Toward All-electric Propulsion Systems Spurs Demand for Efficient Power Conditioning and Distribution Modules
Here's How the Growth of SmallSats and CubeSats Expands the Addressable Market for Miniaturized Space Power Electronics
Proliferation of LEO Mega-constellations Strengthens the Business Case for Low-cost, Radiation-hardened Power Components
Rising Energy Demands of Payloads and On-board AI Systems Propel Innovation in Thermal and Power Management Solutions
Here's the Story: Next-gen Scientific and Exploration Missions Drive Adoption of Ultra-efficient Power Conversion Architectures
Emergence of Modular and Scalable Bus Designs Generates Opportunities for Standardized Power Electronics Platforms
Advancements in Wide Bandgap Semiconductors Sustain Growth in GaN and SiC-based Power Electronic Devices for Space
Increased Focus on SWaP-C Optimization Drives Design of Lightweight, High-density Power Supply Units
Demand for Real-time Telemetry and Remote Diagnostics Drives Integration of Intelligent Power Monitoring Systems
Extreme Temperature Variability and Radiation Exposure Pose Enduring Design Challenges for Space-grade Power Electronics
4. GLOBAL MARKET PERSPECTIVE
TABLE 1: World Space Power Electronics Market Analysis of Annual Sales in US$ Thousand for Years 2015 through 2030
TABLE 2: World Recent Past, Current & Future Analysis for Space Power Electronics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 3: World 6-Year Perspective for Space Power Electronics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2025 & 2030
TABLE 4: World Recent Past, Current & Future Analysis for Power Discrete by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 5: World 6-Year Perspective for Power Discrete by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 6: World Recent Past, Current & Future Analysis for Power Module by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 7: World 6-Year Perspective for Power Module by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 8: World Recent Past, Current & Future Analysis for Power IC by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 9: World 6-Year Perspective for Power IC by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 10: World Recent Past, Current & Future Analysis for Satellites Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 11: World 6-Year Perspective for Satellites Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 12: World Recent Past, Current & Future Analysis for Spacecraft & Launch Vehicles Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 13: World 6-Year Perspective for Spacecraft & Launch Vehicles Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 14: World Recent Past, Current & Future Analysis for Space Stations Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 15: World 6-Year Perspective for Space Stations Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
TABLE 16: World Recent Past, Current & Future Analysis for Rovers Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 17: World 6-Year Perspective for Rovers Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
III. MARKET ANALYSIS
UNITED STATES
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United States for 2025 (E)
TABLE 18: USA Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 19: USA 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 20: USA Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 21: USA 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
CANADA
TABLE 22: Canada Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 23: Canada 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 24: Canada Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 25: Canada 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
JAPAN
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2025 (E)
TABLE 26: Japan Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 27: Japan 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 28: Japan Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 29: Japan 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
CHINA
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2025 (E)
TABLE 30: China Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 31: China 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 32: China Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 33: China 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
EUROPE
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2025 (E)
TABLE 34: Europe Recent Past, Current & Future Analysis for Space Power Electronics by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
TABLE 35: Europe 6-Year Perspective for Space Power Electronics by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2025 & 2030
TABLE 36: Europe Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 37: Europe 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 38: Europe Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 39: Europe 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
FRANCE
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2025 (E)
TABLE 40: France Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 41: France 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 42: France Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 43: France 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
GERMANY
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2025 (E)
TABLE 44: Germany Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 45: Germany 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 46: Germany Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 47: Germany 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
ITALY
TABLE 48: Italy Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 49: Italy 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 50: Italy Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 51: Italy 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
UNITED KINGDOM
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdom for 2025 (E)
TABLE 52: UK Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 53: UK 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 54: UK Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 55: UK 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
REST OF EUROPE
TABLE 56: Rest of Europe Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 57: Rest of Europe 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 58: Rest of Europe Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 59: Rest of Europe 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
ASIA-PACIFIC
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Asia-Pacific for 2025 (E)
TABLE 60: Asia-Pacific Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 61: Asia-Pacific 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 62: Asia-Pacific Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 63: Asia-Pacific 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
REST OF WORLD
TABLE 64: Rest of World Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 65: Rest of World 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
TABLE 66: Rest of World Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
TABLE 67: Rest of World 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030