¼¼°èÀÇ ¿ìÁÖ ÀÜÇØ¹° Á¦°Å ½ÃÀå
Space Debris Removal
»óǰÄÚµå : 1788350
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 204 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,229,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,687,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿ìÁÖ ÀÜÇØ¹° Á¦°Å ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 1¾ï 5,290¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¿ìÁÖ ÀÜÇØ¹° Á¦°Å ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-20301³â¿¡ 37.4%ÀÇ CAGR·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Á÷Á¢ ÀÜÇØ¹° Á¦°Å´Â CAGR 33.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 9,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °£Á¢Àû ÀÜÇØ¹° Á¦°Å ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 44.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4,020¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 35.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿ìÁÖ ÀÜÇØ¹° Á¦°Å ½ÃÀåÀº 2024³â¿¡ 4,020¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 5,390¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 35.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 33.4%¿Í 32.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 25.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¿ìÁÖ ÀÜÇØ¹° Á¦°Å ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿ìÁÖ¾²·¹±â Á¦°Å°¡ ´õ ÀÌ»ó ¹Ì·¡ÁöÇâÀûÀÎ °³³äÀÌ ¾Æ´Ñ Çö´ëÀÇ ÇʼöǰÀÌµÈ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¿ìÁÖ ÆÄÆí¿¡ ´ëÇÑ ¿ì·Á´Â ±Ëµµ¿¡ ÀÖ´Â À§¼º, ·ÎÄÏ º»Ã¼, ÆÄÆíÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·ÐÀû À§Çè¿¡¼­ ±ä±ÞÇÑ ¿î¿µ»óÀÇ Çö½Ç·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ÇöÀç Áö±¸ Àú±Ëµµ(LEO)¿¡´Â 3¸¸°³ ÀÌ»óÀÇ ÃßÀû °¡´ÉÇÑ ¹°Ã¼¿Í ¼ö½Ê¸¸ °³ÀÇ ÃßÀû ºÒ°¡´ÉÇÑ ÀÛÀº ÆÄÆíÀÌ Èð¾îÁ® ÀÖÀ¸¸ç, Ãæµ¹°ú ÀÓ¹« ½ÇÆÐÀÇ À§ÇèÀº ³î¶ó¿î ¼Óµµ·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±Ëµµ È¥ÀâÀº GPS, ±â»ó¿¹º¸, Åë½Å¿¡ »ç¿ëµÇ´Â ´Éµ¿Çü À§¼º»Ó¸¸ ¾Æ´Ï¶ó ¿ìÁÖ »ç¾÷ÀÇ Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» À§ÇùÇϰí ÀÖ½À´Ï´Ù. SpaceX, OneWeb, Amazon°ú °°Àº »ó¾÷Àû ±â¾÷ÀÌ À§¼º ¸Þ°¡ ÄÁ½ºÅÚ·¹À̼ÇÀ» ºü¸£°Ô ±¸ÃàÇÔ¿¡ µû¶ó È®Àå °¡´ÉÇÑ ¿ìÁÖ ¾²·¹±â Á¦°Å ¼Ö·ç¼ÇÀÇ °³¹ß ¹× ¹èÆ÷°¡ ½Ã±ÞÇÑ »óȲÀÔ´Ï´Ù. Ãæµ¹Àº ¿ì¹ßÀûÀÌµç ´ëÀ§¼º ¹«±â ½ÇÇèÀ¸·Î ÀÎÇÑ °ÍÀÌµç ÆÄÆí ±¸¸§À» »ý¼ºÇϰí Á¾Á¾ Äɽ½·¯ ÁõÈıºÀ̶ó°í ºÒ¸®´Â ¿¬¼âÀûÀÎ ¿µÇâÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½Ã³ª¸®¿À´Â ¿ìÁÖ ±â°ü, ±¹¹æºÎ, »ó¾÷ À§¼º »ç¾÷ÀÚ¿¡°Ô °æÁ¾À» ¿ï·È½À´Ï´Ù. ÇöÀç ¸ðµç »ç¾÷ÀÚ´Â ¿ìÁÖ ¾²·¹±â Á¦°Å°¡ ±Ëµµ ¾ÈÀü, ÀÓ¹« º¸Àå ¹× ¿ìÁÖ °æÁ¦ÀÇ »ýÁ¸ °¡´É¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀ̶ó´Â °ÍÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº À̹°Áú Á¦°Å ÀÓ¹«ÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¿ìÁÖ¾²·¹±â Á¦°Å ºÐ¾ß´Â Á¤ºÎ°¡ Áö¿øÇÏ´Â ¿¬±¸°³¹ß°ú »ó¾÷Àû ±â¼ú °³¹ß·Î ÀÎÇØ ±â¼ú Çõ½ÅÀÇ ¹°°áÀÌ ¹Ð·Á¿À°í ÀÖ½À´Ï´Ù. ÇöÀç, ·Îº¿ÆÈ, ¸ð¸®, ±×¹°¸Á, Å×´õ, Àڱ⠵µÅ· ½Ã½ºÅÛ, ·¹ÀÌÀú ÀýÁ¦ µî ´Ù¾çÇÑ ±â¼úÀÌ ¿¬±¸ ¹× ½ÃÇè Áß¿¡ ÀÖ½À´Ï´Ù. ÀÌ ÅøµéÀº ºñÇùÁ¶ÀûÀÎ ÆÄÆí, Áï Á¶Á¾Çϰųª ȸ¼öÇÒ ¼ö ¾ø´Â ¹°Ã¼¸¦ Æ÷ȹÇϰųª ±Ëµµ¿¡¼­ ¹þ¾î³ª°Ô Çϱâ À§ÇØ °í¾ÈµÇ¾ú½À´Ï´Ù. ½Ã¼Ó 28,000km ÀÌ»óÀÇ ¼Óµµ·Î À̵¿ÇÏ´Â ÆÄÆí¿¡ ¾ÈÀüÇÏ°Ô Á¢±ÙÇÏ¿© Æ÷ȹÇϱâ À§ÇÑ ´Éµ¿Çü ÆÄÆí Á¦°Å(ADR) ÀÓ¹«´Â ±ÙÁ¢ Á¶ÀÛ, ½Ç½Ã°£ ¹°Ã¼ ÃßÀû, ÀÚÀ² ³»ºñ°ÔÀÌ¼Ç µîÀÌ °­Á¶µÇ¸é¼­ ´õ¿í Á¤±³ÇØÁö°í ÀÖ½À´Ï´Ù. ÇÑÆí, ±Ëµµ ¼­ºñ½º Ç÷§ÆûÀº ¼ö¸® ¹× ÀÜÇØ¹° ó¸® ±â´ÉÀ» ¸ðµÎ Á¦°øÇÏ´Â ÀÌÁß ¸ñÀûÀÇ ¿ªÇÒ¿¡ ÀûÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµâ½Ä ±×¸®ÆÛ°¡ ÀåÂøµÈ Àç»ç¿ë °¡´ÉÇÑ ÅÂ±× Â÷·®°ú À§¼º À¯Áöº¸¼ö¿ë µå·ÐÀº GEO ¹× LEO ȯ°æ¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖµµ·Ï °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®Áòµµ ÆÄÆí °¨Áö, ±Ëµµ ¿¹Ãø, Ãæµ¹ ȸÇÇ ÇÁ·ÎÅäÄÝ °³¼±¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó ½ÃÀåÀº ½ÇÇèÀûÀÎ °³³ä Áõ¸í ÀÓ¹«¿¡¼­ ÆÄÀÏ·µ ±Ô¸ð, ±×¸®°í °ð ¿î¿µ ±Ô¸ðÀÇ À̹°Áú Á¦°Å ¼­ºñ½º·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» ÁÖµµÇÏ´Â ÀÌÇØ°ü°èÀÚ¿Í ºñÁî´Ï½º ¸ðµ¨Àº?

¿ìÁÖÀÇ »ó¾÷È­´Â ±Ëµµ»óÀÇ Â÷¼±À» ±ú²ýÇÏ°Ô À¯ÁöÇÏ´Â µ¥ ±âµæ±ÇÀ» °¡Áø ÀÌÇØ°ü°èÀÚµéÀÇ ±¤¹üÀ§ÇÑ »ýŰ迡 ¹ÚÂ÷¸¦ °¡Çß½À´Ï´Ù. NASA, ESA, JAXA, ISRO¸¦ Æ÷ÇÔÇÑ Á¤ºÎ ¿ìÁÖ±â°üÀº ±â¼ú ½ÇÁõ ¹× ¹Î°ü ÆÄÆ®³Ê½Ê¿¡ ÀÚ±ÝÀ» Áö¿øÇÏ¸ç »ê¾÷ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¾Æ½ºÆ®·Î½ºÄÉÀÏ, Ŭ¸®¾î ½ºÆäÀ̽º, ·Î±× ½ºÆäÀ̽º ½Ã½ºÅÛÁî¿Í °°Àº Â÷¼¼´ë ¿ìÁÖ ½ºÅ¸Æ®¾÷µéÀÌ À̹°Áú Á¦°Å¿¡ ƯȭµÈ Ç÷§Æû°ú ¼­ºñ½º¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ Ç×°ø¿ìÁÖ °è¾à¾÷üµéÀº ±Ëµµ Á¤È­¸¦ À§ÇÑ È®Àå °¡´ÉÇϰí Ç¥ÁØÈ­µÈ ¼Ö·ç¼Ç ±¸Ãà¿¡ ÁßÁ¡À» µÐ ÇÕÀÛ ÅõÀÚ ¹× Çù¾÷À» ÅëÇØ ½ÃÀå¿¡ ÁøÀÔÇϰí ÀÖ½À´Ï´Ù. º¸Çè»ç ¹× À§¼º¼±¹Ú ¿î¿ë»çµéµµ °íºÎ°¡°¡Ä¡ ÀÚ»êÀ» º¸È£ÇÏ°í º¸Çè·á¸¦ Àý°¨Çϱâ À§ÇØ µ¥ºê¸® ¸®½ºÅ©¸¦ Àû±ØÀûÀ¸·Î °ü¸®ÇÏ´Â µ¥¼­ °¡Ä¡¸¦ ¹ß°ßÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ºñÁî´Ï½º ¸ðµ¨·Î´Â '¼­ºñ½º·Î¼­ÀÇ ±Ëµµ ÀÌÅ»', ±¸µ¶ ±â¹ÝÀÇ Ãæµ¹ À§Çè °¨¼Ò, ÁÖ¹®Çü ÆÄÆí Á¦°Å µî ¼­ºñ½º ±â¹Ý °è¾àÀÌ ¸ð»öµÇ°í ÀÖ½À´Ï´Ù. ±¹°¡ ¾Èº¸ ¿î¿µÀº ¾ÈÀüÇÏ°í ¿î¿ë °¡´ÉÇÑ ±Ëµµ¿¡ ´ëÇÑ È®½ÇÇÑ Á¢±Ù¿¡ ÀÇÁ¸ÇϹǷΠ±¹¹æ ºÎ¹®µµ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ¶ÇÇÑ »ç¿ë ÈÄ À§¼º Æó±â °èȹ ¹× ÀÜÇØ¹° ¿ÏÈ­ ±ÔÁ¤ Áؼö Àǹ«È­¿Í °°Àº ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©µµ ÀÜÇØ¹° Á¦°Å¸¦ äÅÃÇÒ ¼ö ÀÖ´Â ¹ýÀû Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚµéÀÌ ÇÔ²² ¸ð¿© »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¼¼°è Çù·Â ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¿ìÁÖ¾²·¹±â Á¦°Å ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿ìÁÖ ¾²·¹±â Á¦°Å ½ÃÀåÀÇ ¼ºÀåÀº »ó¾÷Àû ¿ìÁÖ È°µ¿ÀÇ È°¼ºÈ­, ±Ëµµ ±³Åë °ü¸®ÀÇ Çʿ伺, ±¹¹æÀÇ Çʿ伺, ±ÔÁ¦ º¯È­¿¡ »Ñ¸®¸¦ µÐ ¸î °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ±¤´ë¿ª ¹× IoT ¼­ºñ½º¸¦ À§ÇØ ¼öõ °³ÀÇ ¼ÒÇü À§¼ºÀÌ ¹èÄ¡µÈ Áö±¸ Àú±Ëµµ À§¼º ¹ß»çÀÇ ±Þ°ÝÇÑ Áõ°¡°¡ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±Ëµµ Àα¸ Áõ°¡´Â Ãæµ¹ °¡´É¼ºÀ» ³ôÀ̰í, »ç¾÷Àڵ鿡°Ô Àû±ØÀûÀÎ ÆÄÆí Àú°¨ ¼­ºñ½º¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¿äÀÎÀº ±¹Á¦ ¿ìÁÖ Á¤Ã¥, ƯÈ÷ À¯¿£, ITU, °¢±¹ ±ÔÁ¦ ´ç±¹ÀÇ ³ë·ÂÀÌ ÁøÈ­ÇÏ¿© À§¼º ¿î¿µ »ç¾÷ÀÚ¿¡°Ô ±Ëµµ ÀÌÅ» ÀÏÁ¤, ¼ö¸í Á¾·á ÇÁ·ÎÅäÄÝ, 'Ŭ¸° ±Ëµµ' °¡À̵å¶óÀÎÀ» Àǹ«È­Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ Áö¼Ó°¡´É ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ º¥Ã³ ijÇÇÅ»°ú Á¤ºÎÀÇ ÀÚ±Ý Áö¿øÀÌ ±ÞÁõÇϸ鼭 »ó¾÷Àû ÆÄÆí Á¦°Å ´É·ÂÀ» °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿ìÁÖ »óȲ ÀνÄ(SSA) µ¥ÀÌÅÍ¿Í ±Ëµµ Æ®·¡ÇÈ ¸ð´ÏÅ͸µÀÇ °¡¿ë¼ºÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ¿¹ÃøÀû ÆÄÆí °ü¸® ¼­ºñ½ºÀÇ ½ÇÇà °¡´É¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ADRÀ» ±Ëµµ»óÀÇ ¼­ºñ½º Ç÷§Æû°ú ÅëÇÕÇÏ¿© À̹°Áú Á¦°ÅÀÇ °æÁ¦¼ºÀ» Çâ»ó½Ã۰í, ÀÓ¹«ÀÇ ´Ù¸ñÀû¼º°ú È®À强À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. À§¼º ¿î¿µÀÚ, º¸Çè»ç, ¿ìÁÖ ±â°üÀÌ À§Çè ȸÇÇ Åµµ¸¦ °­È­ÇÏ°í ±ÔÁ¦±â°üÀÌ ´õ ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö ±âÁØÀ» ºÎ°úÇÔ¿¡ µû¶ó ¿ìÁÖ ¾²·¹±â Á¦°Å´Â ´Ü¼øÇÑ ±â¼úÀû °úÁ¦°¡ ¾Æ´Ï¶ó ¸ðµç ¿ìÁÖ ÀÚ»êÀÇ ¶óÀÌÇÁ »çÀÌŬ¿¡ ÇʼöÀûÀ̰í Á¤±âÀûÀÎ ¼­ºñ½º·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(Á÷Á¢ ÀÜÇØ¹° Á¦°Å, °£Á¢ ÀÜÇØ¹° Á¦°Å); ±Ëµµ(LEO, MEO, GEO); ÀÜÇØ¹° »çÀÌÁî(1-10mm ÀÜÇØ¹°, 10-100mm ÀÜÇØ¹°, 100mm ÀÌ»ó ÀÜÇØ¹°); ÃÖÁ¾ ¿ëµµ(Á¤ºÎ ÃÖÁ¾ ¿ëµµ, »ó¾÷ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø·Î ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Space Debris Removal Market to Reach US$1.0 Billion by 2030

The global market for Space Debris Removal estimated at US$152.9 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 37.4% over the analysis period 2024-2030. Direct Debris Removal, one of the segments analyzed in the report, is expected to record a 33.4% CAGR and reach US$596.6 Million by the end of the analysis period. Growth in the Indirect Debris Removal segment is estimated at 44.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$40.2 Million While China is Forecast to Grow at 35.6% CAGR

The Space Debris Removal market in the U.S. is estimated at US$40.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$153.9 Million by the year 2030 trailing a CAGR of 35.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 33.4% and 32.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 25.7% CAGR.

Global Space Debris Removal Market - Key Trends & Drivers Summarized

Why Is Space Debris Removal No Longer a Futuristic Concept but a Present-Day Necessity?

The growing concern over space debris has transitioned from a theoretical risk to an urgent operational reality as the number of satellites, rocket bodies, and fragmented particles in orbit continues to rise exponentially. With over 30,000 trackable objects and hundreds of thousands of smaller, untraceable fragments currently cluttering Earth’s low Earth orbit (LEO), the risk of collision and mission failure is increasing at an alarming pace. This orbital congestion threatens not only active satellites used for GPS, weather forecasting, and telecommunications but also the long-term sustainability of space operations. The rapid deployment of satellite mega-constellations by commercial players such as SpaceX, OneWeb, and Amazon has intensified the urgency to develop and deploy scalable space debris removal solutions. Collisions-whether accidental or caused by anti-satellite weapon tests-create debris clouds that can trigger cascading effects, often referred to as the Kessler Syndrome. This scenario has raised alarm across space agencies, defense departments, and commercial satellite operators, all of whom now recognize space debris removal as essential for maintaining orbital safety, mission assurance, and space economy viability.

How Are Technological Innovations Shaping the Future of Debris Removal Missions?

The field of space debris removal is witnessing a wave of innovation, driven by both government-backed R&D and commercial technology development. A wide array of technologies is currently under exploration and testing, including robotic arms, harpoons, nets, tethers, magnetic docking systems, and laser ablation. These tools are being designed to capture or deorbit non-cooperative debris-objects that are not equipped for maneuver or retrieval. Active debris removal (ADR) missions are becoming more sophisticated, with growing emphasis on proximity operations, real-time object tracking, and autonomous navigation to safely approach and capture derelict objects traveling at velocities exceeding 28,000 km/h. Meanwhile, in-orbit servicing platforms are being adapted to dual-purpose roles, offering both repair and debris disposal capabilities. Reusable tug vehicles and satellite servicing drones with modular grippers are under development for deployment in GEO and LEO environments. Artificial intelligence and machine learning algorithms are also being used to improve debris detection, orbit prediction, and collision avoidance protocols. As these technologies mature, the market is evolving from experimental proof-of-concept missions to pilot-scale and soon, operational-scale debris removal services.

Which Stakeholders and Business Models Are Driving the Market Forward?

The commercialization of space has spurred a broader ecosystem of stakeholders who now have a vested interest in keeping orbital lanes clear. Government space agencies, including NASA, ESA, JAXA, and ISRO, are funding technology demonstrators and public-private partnerships to jumpstart industry development. At the same time, a new generation of space startups-such as Astroscale, ClearSpace, and Rogue Space Systems-are pioneering specialized debris removal platforms and services. Traditional aerospace contractors are entering the market through joint ventures and collaborations focused on building scalable, standardized solutions for orbital cleanup. Insurers and satellite fleet operators are also beginning to see value in proactively managing debris risk to protect high-value assets and reduce premiums. In terms of business models, the market is exploring service-based contracts including “de-orbit as a service,” subscription-based collision risk mitigation, and on-demand debris removal. The defense sector is another major driver, as national security operations depend on assured access to safe and operational orbits. Regulatory frameworks, such as mandatory end-of-life disposal plans and debris mitigation compliance clauses, are also creating legal incentives for debris removal adoption. These diverse stakeholders are collectively shaping a market that is becoming commercially viable and globally collaborative.

What Factors Are Driving the Long-term Growth of the Space Debris Removal Market?

The growth in the space debris removal market is driven by several interconnected factors rooted in the rise of commercial space activity, orbital traffic management needs, defense imperatives, and regulatory shifts. A key driver is the exponential increase in satellite launches, particularly in low Earth orbit, where thousands of small satellites are being deployed for broadband and IoT services. This growing orbital population is increasing the likelihood of collisions, prompting operators to seek proactive debris mitigation services. Another factor is the evolution of international space policy-especially efforts by the United Nations, ITU, and national regulators-to mandate deorbiting timelines, end-of-life protocols, and “clean orbit” guidelines for satellite operators. Additionally, the surge in venture capital and governmental funding for space sustainability projects is enabling the development of commercial debris removal capabilities. The increasing availability of space situational awareness (SSA) data and orbital traffic monitoring is also contributing to the viability of predictive debris management services. Furthermore, the integration of ADR with in-orbit servicing platforms is helping improve the economics of debris removal, making missions multi-purpose and scalable. As satellite operators, insurers, and space agencies grow more risk-averse and regulatory bodies enforce stricter compliance standards, space debris removal is becoming not just a technical challenge-but a necessary, recurring service embedded into the lifecycle of every space asset.

SCOPE OF STUDY:

The report analyzes the Space Debris Removal market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technique (Direct Debris Removal, Indirect Debris Removal); Orbit (LEO, MEO, GEO); Debris Size (1 - 10 mm Debris, 10 - 100 mm Debris, Above 100 mm Debris); End-Use (Government End-Use, Commercial End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â