¼¼°èÀÇ Á¤¹Ð °øÇÐ ±â°è ½ÃÀå
Precision Engineering Machines
»óǰÄÚµå : 1788300
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 177 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Á¤¹Ð °øÇÐ ±â°è ½ÃÀåÀº 2030³â±îÁö 204¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 145¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Á¤¹Ð °øÇÐ ±â°è ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 204¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ºñÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 7.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 133¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿Â÷ ¿ëµµ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 3.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 40¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Á¤¹Ð °øÇÐ ±â°è ½ÃÀåÀº 2024³â¿¡ 40¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 42¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 9.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.8%¿Í 5.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Á¤¹Ð °øÇÐ ±â°è ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è´Â Çö´ë Á¦Á¶¾÷À» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è´Â ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀÇ·á, ÀüÀÚ, »ê¾÷ ¿ëµµ¿¡ »ç¿ëµÇ´Â °íÁ¤¹Ð ¹× º¹ÀâÇÑ ºÎǰÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Á¦Á¶ »ê¾÷¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â°è¿¡´Â CNC ¸Ó½Ã´×¼¾ÅÍ, ·¹ÀÌÀú Àý´Ü±â, ¹æÀü°¡°ø±â(EDM), 3Â÷¿ø ÃøÁ¤±â(CMM), ÀûÃþÁ¦Á¶ ½Ã½ºÅÛ µîÀÌ Æ÷ÇԵ˴ϴÙ. »ê¾÷°è°¡ ¼ÒÇüÈ­, ÀÚµ¿È­, È¿À²È­ÀÇ ÇѰ迡 µµÀüÇϸ鼭 ÃÊÁ¤¹Ð ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð ¿£Áö´Ï¾î¸µÀÇ ±â¼ú ¹ßÀüÀº »ý»ê °øÁ¤¿¡ Çõ¸íÀ» °¡Á®¿Í È¿À²¼ºÀ» °³¼±Çϰí Àç·áÀÇ ³¶ºñ¸¦ ÁÙ¿´½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0ÀÇ ºÎ»óÀ¸·Î ½º¸¶Æ® ÆÑÅ丮´Â Á¤¹Ð ±â°è¿Í IoT, AI ±â¹Ý ¿¹Áöº¸Àü, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ÃÖÀûÈ­¸¦ À§ÇÑ µðÁöÅÐ Æ®À©À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, Á¦Á¶¾÷üµéÀº »ý»ê Á¤¹Ðµµ Çâ»ó, ¸®µå ŸÀÓ ´ÜÃà, ¼³ºñ Á¾ÇÕ È¿À²(OEE) °³¼±À» ½ÇÇöÇϰí ÀÖÀ¸¸ç, Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è´Â Çö´ë Á¦Á¶¾÷¿¡ ¾ø¾î¼­´Â ¾È µÉ Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è »ê¾÷ÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå µ¿ÇâÀº?

½ÃÀåÀ» Çü¼ºÇÏ´Â °¡Àå Áß¿äÇÑ µ¿Çâ Áß Çϳª´Â ÀÚµ¿È­ ¹× ·Îº¿ °øÇÐÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. Á¦Á¶¾÷ü´Â ÀÚµ¿ Á¤¹Ð °¡°ø°ú ·Îº¿ ¾Ï, ¸Ó½Å ºñÀü, AI ±¸µ¿ Á¦¾î ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¿© »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í »ç¶÷ÀÇ °³ÀÔÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­·ÎÀÇ ÀüȯÀº ¹ÝµµÃ¼ Á¦Á¶, ÀÇ·á±â±â Á¦Á¶ µî ³ôÀº ÀçÇö¼º°ú ÃÖ¼ÒÇÑÀÇ °áÇÔÀÌ ¿ä±¸µÇ´Â »ê¾÷¿¡¼­ ƯÈ÷ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä µ¿ÇâÀº ´ÙÃà CNC °¡°ø°ú ÇÏÀ̺긮µå Á¦Á¶ÀÇ ¹ßÀüÀÔ´Ï´Ù. 5Ãà ¹× 7Ãà CNC ±â°è´Â ÃÖ¼ÒÇÑÀÇ ¼Â¾÷À¸·Î º¹ÀâÇÑ Çü»óÀ» »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾î »ý»ê ½Ã°£À» ´ÜÃàÇϰí È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀûÃþÁ¦Á¶¿Í ¼­ºêÆ®·¢Æ¼ºê Á¦Á¶ ±â¼úÀ» °áÇÕÇÑ ÇÏÀ̺긮µå Á¦Á¶´Â Àç·áÀÇ ³¶ºñ¸¦ ÁÙÀÌ°í º¹ÀâÇÑ ±Ý¼Ó ºÎǰÀ» Á¦Á¶ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²µµ Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ ȯ°æ ģȭÀûÀÎ Á¦Á¶¸¦ ¿ä±¸ÇÏ´Â ±ÔÁ¦¿¡ µû¶ó ±â¾÷Àº ¿¡³ÊÁö È¿À²ÀûÀÎ °¡°ø ¼Ö·ç¼Ç, ÀçȰ¿ë °¡´ÉÇÑ Àý»èÀ¯, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϴ ÷´Ü À±È° ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÇÕ¼ÒÀç, ƼŸ´½ ÇÕ±Ý µî °æ·®È­ Ãß¼¼ Áõ°¡·Î ÀÎÇØ ÀÌ·¯ÇÑ Ã·´Ü ¼ÒÀ縦 Ãë±ÞÇÒ ¼ö ÀÖ´Â ±â´ÉÀÌ °­È­µÈ Á¤¹Ð±â°è¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è äÅÃÀ» ¼±µµÇÏ´Â Áö¿ªÀº?

¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°èÀÇ Áö¹èÀûÀÎ ½ÃÀåÀ̸ç, Áß±¹, ÀϺ», Çѱ¹ÀÌ »ê¾÷ ÀÚµ¿È­ ¹× °íÁ¤¹Ð Á¦Á¶¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â ·Îº¿°øÇÐ, ½º¸¶Æ® Á¦Á¶, CNC ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, °¡Àü, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ »ç¿ëµÇ´Â °íÁ¤¹Ð ºÎǰÀÇ ¼¼°è °ø±Þ¸Á¿¡¼­ ÁÖ¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì¿Í À¯·´ ¿ª½Ã Ç×°ø¿ìÁÖ, ¹æÀ§, ÀÇ·á »ê¾÷ÀÇ °­·ÂÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹°ú µ¶ÀÏ¿¡´Â ¾ö°ÝÇÑ °øÂ÷¿Í ¿ì¼öÇÑ Ç°ÁúÀ» ¿ä±¸Çϴ ÷´Ü ±â¼ú ¿ëµµ¿¡ ´ëÀÀÇÏ´Â Á¤¹Ð °¡°ø ±â¾÷ÀÇ ÅºÅºÇÑ »ýŰ谡 ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´ Á¦Á¶¾÷üµéÀº Áö¼Ó°¡´ÉÇÑ °¡°ø ±â¼úÀÇ ÃÖÀü¼±¿¡ ¼­¼­ Á¤¹Ð ¿£Áö´Ï¾î¸µÀÇ Åº¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

¶óƾ¾Æ¸Þ¸®Ä«¿Í Áßµ¿ÀÇ ½ÅÈï ½ÃÀå¿¡¼­´Â »ê¾÷È­¿Í ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ® Áõ°¡·Î ÀÎÇØ Á¤¹Ð °¡°ø ´É·Â¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºê¶óÁú, »ç¿ìµð¾Æ¶óºñ¾Æ µîÀÇ ±¹°¡µéÀº Ç×°ø¿ìÁÖ, ¹æÀ§, ÀÚµ¿Â÷ »ê¾÷À» Áö¿øÇϱâ À§ÇØ Ã·´Ü Á¦Á¶ ±â¼úÀ» äÅÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è Á¦Á¶¾÷ü¿¡ »õ·Î¿î ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù.

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ¹ß»ýÇÕ´Ï´Ù.

Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÷´Ü »ê¾÷¿¡¼­ °íÁ¤¹Ð ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ»ê¾÷, ÀÚµ¿Â÷ »ê¾÷, ¹ÝµµÃ¼ »ê¾÷¿¡¼­´Â Á¦Ç°ÀÇ ½Å·Ú¼º, È¿À²¼º, ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ ÃÊÁ¤¹Ð °¡°ø ´É·ÂÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ¹× ÀÇ·á±â±â ºÐ¾ß¿¡¼­ ¼ÒÇüÈ­ Ãß¼¼°¡ Áö¼ÓµÇ´Â °¡¿îµ¥, ¼­ºê¸¶ÀÌÅ©·Ð °øÂ÷¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â Á¤¹Ð ±â°èÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ Á¦Á¶, AI ±â¹Ý ÃÖÀûÈ­, ½Ç½Ã°£ ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. IoT ¼¾¼­¿Í Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ» ÅëÇÕÇÑ ½º¸¶Æ® °¡°ø ¼Ö·ç¼ÇÀº ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô Çϰí, ±â°è °¡µ¿ Áß´Ü ½Ã°£°ú ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¸¦ Ȱ¿ëÇÑ CNC ÇÁ·Î±×·¡¹ÖÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡°ø Á¤¹Ðµµ¿Í È¿À²¼ºÀÌ Çâ»óµÇ¾î Á¦Á¶¾÷ü´Â º¹ÀâÇÑ ºÎǰÀ» º¸´Ù ½±°Ô Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Àü±âÀÚµ¿Â÷(EV)¿Í Àç»ý¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷·ÎÀÇ Àüȯ¿¡ µû¶ó Á¤¹ÐÇÏ°Ô ¼³°èµÈ ¹èÅ͸® ºÎǰ, °æ·® Â÷·® ±¸Á¶, °íÈ¿À² µå¶óÀÌºê Æ®·¹Àο¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â dz·Â Åͺó ºÎǰ, žçÀüÁöÆÇ ÇÁ·¹ÀÓ, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ µî¿¡ Á¤¹Ð °¡°øÀÌ È°¿ëµÇ¾î ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷°è°¡ ÀÚµ¿È­, ǰÁú º¸Áõ, È¿À²È­¿¡ ´ëÇÑ ¿ì¼±¼øÀ§°¡ °è¼Ó ³ô¾ÆÁü¿¡ µû¶ó Á¤¹Ð ¿£Áö´Ï¾î¸µ ±â°è ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ½º¸¶Æ® ÆÑÅ丮, ÇÏÀ̺긮µå Á¦Á¶, Áö¼Ó°¡´ÉÇÑ °¡°ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ´Â °íÁ¤¹Ð Á¦Á¶ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ°í ¼¼°è ½ÃÀå¿¡¼­ Çõ½Å°ú °æÀï·ÂÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

¾ÖÇø®ÄÉÀ̼Ç(ºñÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼Ç, ÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Äõ¸® ÇÏ´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Precision Engineering Machines Market to Reach US$20.4 Billion by 2030

The global market for Precision Engineering Machines estimated at US$14.5 Billion in the year 2024, is expected to reach US$20.4 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2024-2030. Non-Automotive Application, one of the segments analyzed in the report, is expected to record a 7.0% CAGR and reach US$13.3 Billion by the end of the analysis period. Growth in the Automotive Application segment is estimated at 3.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.0 Billion While China is Forecast to Grow at 9.4% CAGR

The Precision Engineering Machines market in the U.S. is estimated at US$4.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.2 Billion by the year 2030 trailing a CAGR of 9.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.8% and 5.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.8% CAGR.

Global Precision Engineering Machines Market - Key Trends & Drivers Summarized

How Are Precision Engineering Machines Shaping Modern Manufacturing?

Precision engineering machines play a crucial role in manufacturing industries by enabling the production of high-accuracy, complex components used in automotive, aerospace, medical, electronics, and industrial applications. These machines include CNC machining centers, laser cutting machines, EDM (Electrical Discharge Machining), coordinate measuring machines (CMMs), and additive manufacturing systems. The demand for ultra-precise components has increased as industries continue to push the boundaries of miniaturization, automation, and efficiency.

Technological advancements in precision engineering are revolutionizing production processes, improving efficiency, and reducing material waste. With the rise of Industry 4.0, smart factories are integrating precision machines with IoT, AI-driven predictive maintenance, and digital twins for real-time monitoring and optimization. As a result, manufacturers are achieving higher production accuracy, reduced lead times, and improved overall equipment effectiveness (OEE), making precision engineering machines indispensable in modern manufacturing.

What Market Trends Are Driving Growth in the Precision Engineering Machines Industry?

One of the most significant trends shaping the market is the increasing adoption of automation and robotics. Manufacturers are integrating automated precision machining with robotic arms, machine vision, and AI-driven control systems to enhance productivity and reduce human intervention. This shift toward automation is especially prominent in industries requiring high repeatability and minimal defects, such as semiconductor manufacturing and medical device production.

Another key trend is the advancement of multi-axis CNC machining and hybrid manufacturing. Five-axis and seven-axis CNC machines are now capable of producing intricate geometries with minimal setups, reducing production time and improving efficiency. Additionally, hybrid manufacturing, which combines additive and subtractive manufacturing techniques, is gaining traction for its ability to create complex metal components with reduced material waste.

Sustainability and energy efficiency are also influencing the precision engineering machines market. As global regulations push for greener manufacturing, companies are investing in energy-efficient machining solutions, recyclable cutting fluids, and advanced lubrication technologies that minimize environmental impact. Moreover, the growing trend of lightweight materials, such as composites and titanium alloys, is driving demand for precision machines with enhanced capabilities to handle these advanced materials.

Which Regions Are Leading in Precision Engineering Machines Adoption?

Asia-Pacific is the dominant market for precision engineering machines, with China, Japan, and South Korea leading the way in industrial automation and high-precision manufacturing. These countries have invested heavily in robotics, smart manufacturing, and CNC technology, making them key players in the global supply chain for high-precision components used in consumer electronics, automotive, and aerospace sectors.

North America and Europe are also major markets, driven by strong demand from the aerospace, defense, and medical industries. The United States and Germany, in particular, have a robust ecosystem of precision machining companies that cater to high-tech applications requiring stringent tolerances and superior quality. European manufacturers are also at the forefront of sustainable machining technologies, focusing on reducing carbon emissions and improving energy efficiency in precision engineering.

Emerging markets in Latin America and the Middle East are experiencing increased investments in precision machining capabilities due to growing industrialization and infrastructure projects. Countries such as Brazil and Saudi Arabia are adopting advanced manufacturing techniques to support their expanding aerospace, defense, and automotive industries, presenting new opportunities for precision engineering machine manufacturers.

The Growth in the Precision Engineering Machines Market Is Driven by Several Factors

One of the primary drivers of the precision engineering machines market is the rising demand for high-precision components in advanced industries. Aerospace, automotive, and semiconductor industries require ultra-precise machining capabilities to ensure product reliability, efficiency, and performance. As miniaturization trends continue, particularly in microelectronics and medical devices, the need for precision machines capable of handling sub-micron tolerances is growing.

Technological advancements in digital manufacturing, AI-driven optimization, and real-time analytics are further propelling market growth. Smart machining solutions that incorporate IoT sensors and cloud computing enable predictive maintenance, reducing machine downtime and operational costs. The increasing adoption of AI-driven CNC programming is also improving machining accuracy and efficiency, allowing manufacturers to produce complex parts with greater ease.

Another key factor fueling market expansion is the rapid growth of electric vehicles (EVs) and renewable energy infrastructure. The transition to EVs has increased the demand for precision-engineered battery components, lightweight vehicle structures, and high-efficiency drivetrains. Similarly, the renewable energy sector is leveraging precision machining for wind turbine components, solar panel frames, and energy storage systems, further boosting market demand.

As industries continue to prioritize automation, quality assurance, and efficiency, the precision engineering machines market is expected to see sustained growth. Investments in smart factories, hybrid manufacturing, and sustainable machining solutions will shape the future of high-precision manufacturing, driving innovation and competitiveness in the global market.

SCOPE OF STUDY:

The report analyzes the Precision Engineering Machines market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Non-Automotive Application, Automotive Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â