¼¼°èÀÇ ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀå
Picosecond Lasers
»óǰÄÚµå : 1788291
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 168 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÇÄÚÃÊ ·¹ÀÌÀú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 3¾ï 9,450¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 2¾ï 7,780¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÇÄÚÃÊ ·¹ÀÌÀú ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 3¾ï 9,450¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ND:YAG´Â CAGR 4.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2¾ï 6,030¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾Ë·º»êµå¶óÀÌÆ® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7,300¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀåÀº 2024³â¿¡ 7,300¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.0%·Î 2030³â±îÁö 6,370¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 5.4%¿Í 5.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀåÀº Ãʰí¼Ó ·¹ÀÌÀú ±â¼úÀÇ ¹ßÀü, »ê¾÷ ÀÀ¿ë ºÐ¾ß È®´ë, Á¤¹Ð ±â¹Ý ÀÇ·á ¹× ¹Ì¿ë Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ÇÇÄÚÃÊ ¿µ¿ª(10e-12ÃÊ)ÀÇ ÆÞ½º ÆøÀ¸·Î ÀÛµ¿Çϸç, ³ª³ëÃÊ ·¹ÀÌÀúº¸´Ù ÈξÀ ºü¸£±â ¶§¹®¿¡ °íÁ¤¹Ð Àç·á °¡°ø, ÃÖ¼ÒÀÇ ¿­ ¼Õ»ó, ¿ì¼öÇÑ ÆÞ½º Á¦¾î°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀåÀÇ °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ¹Ì¿ë ÇǺΰú¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀúÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ÀÌ ·¹ÀÌÀú´Â ÁÖº¯ Á¶Á÷¿¡ ¼Õ»óÀ» ÁÖÁö ¾Ê°í »ö¼Ò¸¦ º¸´Ù È¿°úÀûÀ¸·Î ºÐÇØÇϴ ªÀº ÆÞ½º ½Ã°£À» Á¦°øÇÔÀ¸·Î½á ¹®½Å Á¦°Å, »ö¼Ò Ä§Âø Ä¡·á, ÇǺΠÀçÇ¥¸é¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ±âÁ¸ Q-½ºÀ§Ä¡ ³ª³ëÃÊ ·¹ÀÌÀú¿¡ ºñÇØ ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ȸº¹ ½Ã°£ÀÌ ºü¸£°í ºÎÀÛ¿ë À§ÇèÀÌ ³·À¸¸ç Ä¡·á È¿°ú°¡ ³ô¾Æ °í±Þ ÇǺΰú³ª ¹Ì¿ë Ä¡·á¼¾ÅÍ¿¡¼­ ¼±È£Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå È®´ëÀÇ ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº ¸¶ÀÌÅ©·ÎÀÏ·ºÆ®·Î´Ð½º, Á¤¹Ð Á¦Á¶, ¸¶ÀÌÅ©·Î¸Ó½Ã´×°ú °°Àº ÷´Ü »ê¾÷ ºÐ¾ß¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀúÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. À¯¸®, ¹ÝµµÃ¼, Æú¸®¸Ó µî ¼¶¼¼ÇÑ ¼ÒÀçÀÇ ÃÊÁ¤¹Ð ·¹ÀÌÀú Àý´Ü, µå¸±¸µ, ÅØ½ºÃ³¸µÀÌ »ê¾÷°è¿¡¼­ ¿ä±¸µÇ´Â °¡¿îµ¥, ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °íÇØ»óµµ ±¸Á¶È­, ¹Ú¸· ÆÐÅÍ´×, 3D ¹Ì¼¼ °¡°ø¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­µÈ ÀüÀÚºÎǰ, Ç÷º¼­ºí ȸ·Î, Â÷¼¼´ë µð½ºÇ÷¹ÀÌÀÇ µîÀåÀº °íÁ¤¹Ð Ãʰí¼Ó ·¹ÀÌÀú ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, °úÇÐ ¿¬±¸ ¹× »ý¹° ÀÇÇÐ À̹Ì¡¿¡¼­ ÇÇÄÚÃÊ ÆÞ½º ·¹ÀÌÀú ±â¼úÀÇ ÀÌÁ¡Àº Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ ·¹ÀÌÀú´Â ½Ã°£ºÐÇØ ºÐ±¤¹ý, 2±¤ÀÚ Çö¹Ì°æ, Çü±¤ ¼ö¸í À̹Ì¡(FLIM) µî¿¡ »ç¿ëµÇ¾î ¿¬±¸ÀÚµéÀÌ Ãʰí¼Ó ºÐÀÚ µ¿·ÂÇÐ, »ý¹°ÇÐÀû °úÁ¤, ¾çÀÚ ±¤ÇÐ Çö»óÀ» ¿¬±¸ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÆèÅäÃÊ ¹× ¾ÆÅäÃÊ ·¹ÀÌÀú ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °í¼Ó Æ÷Åä´Ð½º ¿¬±¸ ¹× ºñ¼±Çü ±¤ÇÐ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷ ÀÀ¿ë ºÐ¾ß´Â ÇÇÄÚÃÊ ·¹ÀÌÀú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ¾î¶»°Ô ÁÖµµÇϰí Àִ°¡?

»ê¾÷ ºÎ¹®Àº ÇÇÄÚÃÊ ·¹ÀÌÀú ±â¼úÀ» °¡Àå ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ´Â ºÐ¾ß Áß ÇϳªÀ̸ç, ÀüÀÚ±â±â Á¦Á¶, Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀÇ·á±â±â Á¦Á¶ µî¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ÀÌ ¼ÒÇüÈ­ ¹× °íÁ¤¹Ð ¿£Áö´Ï¾î¸µÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¿ì¼öÇÑ ¿¡Áö ǰÁú°ú ¹«½ÃÇÒ ¼ö ÀÖ´Â ¿­¿µÇâºÎ(HAZ)¸¦ °¡Áø ºñÁ¢ÃË½Ä °í¼Ó °¡°ø ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

°¡Àå ÁÖ¸ñ¹Þ´Â ÀÀ¿ë ºÐ¾ß Áß Çϳª´Â Àμâȸ·Î±âÆÇ(PCB) Á¦Á¶À̸ç, ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °íÇØ»óµµ ºñ¾Æ µå¸±¸µ, ¹Ì¼¼ ÆÐÅÏ Çü¼º, À¯¿¬ÇÑ È¸·Î Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ±â±â, IoT ±â±â µî ¼ÒÇü, °í¹Ðµµ ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó PCB Á¦Á¶¾÷üµéÀº ¼­ºê¸¶ÀÌÅ©·Ð Á¤¹Ðµµ¿Í Àç·á ¼Õ»óÀ» ÁÙÀÌ´Â Ãʰí¼Ó ·¹ÀÌÀú °¡°ø ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °æ·® Àç·á °¡°ø, º¹ÇÕÀç·á Æ®¸®¹Ö, Á¢Âø·Â °­È­¸¦ À§ÇÑ Ç¥¸é ÅØ½ºÃ³¸µ¿¡ »ç¿ëµË´Ï´Ù. Á¦Á¶¾÷üµéÀÌ Åº¼Ò¼¶À¯°­È­Æú¸®¸Ó(CFRP), ƼŸ´½ ÇÕ±Ý, °í¼º´É ¼¼¶ó¹Í°ú °°Àº ÷´Ü ¼ÒÀ縦 ޱ¸ÇÏ´Â °¡¿îµ¥, ±â°èÀû ÀÀ·ÂÀ» °¡ÇÏÁö ¾Ê°í Ç¥¸éÀ» Á¤¹ÐÇÏ°Ô ±ð¾Æ³»°í ±¸Á¶È­ÇÒ ¼ö ÀÖ´Â ÇÇÄÚÃÊ ·¹ÀÌÀú´Â Â÷¼¼´ë ÀÚµ¿Â÷ ¹× Ç×°ø±â Á¦Á¶¿¡ ¸Å¿ì Áß¿äÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ½ºÅ×Àθ®½º ½ºÆ¿, ´ÏƼ³î, »ýºÐÇØ¼º Æú¸®¸Ó µî »ýüÀûÇÕ¼º Àç·áÀÇ Á¤¹Ð Àý´Ü, ¿ëÁ¢, ±¸Á¶È­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ä«Å×ÅÍ Æ©ºê¿Í ½ºÅÙÆ®¿¡¼­ ¼ö¼ú¿ë ÀÓÇöõÆ® ¹× ¹Ì¼¼ À¯Ã¼ Ĩ¿¡ À̸£±â±îÁö, ÀÌ ·¹ÀÌÀú´Â ¿­ ¼Õ»óÀ» ÃÖ¼ÒÈ­Çϸ鼭 °íǰÁú °¡°øÀ» º¸ÀåÇÏ¿© ÀåºñÀÇ ½Å·Ú¼º°ú ȯÀÚÀÇ ¾ÈÀüÀ» Çâ»ó½Ãŵ´Ï´Ù.

ÀÇ·á ¹× ¹Ì¿ë ºÐ¾ß¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀúÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

ÀÇ·á ¹× ¹Ì¿ë ¾÷°è¿¡¼­´Â ÇÇÄÚÃÊ ·¹ÀÌÀú¸¦ °íÁ¤¹Ð Á¶Á÷ Ä¡·á, ÇǺΠȸÃá, ÷´Ü ·¹ÀÌÀú ¼ö¼ú¿¡ äÅÃÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ³ª³ëÃÊ ÆÞ½º ·¹ÀÌÀú¿¡ ºñÇØ ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¿¡³ÊÁö È¿À²ÀÌ ³ô°í, ȸº¹ ½Ã°£ÀÌ Âª°í, Á¤È®µµ°¡ Çâ»óµÇ¾î ÇǺΰú ¹× ¾È°ú ½Ã¼úÀÇ Ç¥ÁØÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¹®½ÅÀÇ »ö¼Ò¸¦ ü³» ¸é¿ªÃ¼°è¿¡ ÀÇÇØ Èí¼öµÇ±â ½¬¿î ¹Ì¼¼ÇÑ ÀÔÀÚ·Î ºÐÇØÇÕ´Ï´Ù. ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ÀÜ·ù À×Å©¿Í ÈäÅ͸¦ ³²±æ ¼ö ÀÖ´Â ³ª³ëÃÊ ·¹ÀÌÀú¿Í ´Þ¸® ´õ ºü¸¥ Á¦°Å ¼Óµµ, ºÎÀÛ¿ë °¨¼Ò, ¿Ï°íÇÑ À×Å© »ö»ó¿¡ ´ëÇÑ ´õ ³ªÀº °á°ú¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ¸ÞµðÄà ½ºÆÄ, ÇǺΰú, ¼ºÇü¿Ü°ú, ¼ºÇü¿Ü°ú µî¿¡¼­ ä¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¿ëµµ´Â »ö¼Ò Ä§Âø Ä¡·á¿Í ÇǺΠÀçÇ¥¸é ó¸®ÀÔ´Ï´Ù. ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¿­ È®»êÀ» ÃÖ¼ÒÈ­ÇÏ´Â ÃÊ´ÜÆÄ ÆÞ½º·Î ¸á¶ó´Ñ Ŭ·¯½ºÅ͸¦ Ÿ°ÙÆÃÇÏ¿© ±â¹Ì, ÁÖ±Ù±ú, ÁÖ±Ù±ú, ÈæÁ¡, ¿©µå¸§ ÈäÅÍ Ä¡·á¿¡ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ºÐ¼ö ÇÇÄÚÃÊ ·¹ÀÌÀú ±â¼úÀº Äݶó°Õ ¸®¸ðµ¨¸µ°ú ¿¤¶ó½ºÆ¾ »ý¼ºÀ» ÀÚ±ØÇÏ¿© ÁÖ¸§ °¨¼Ò, ÈäÅÍ Ä¡·á, Àü¹ÝÀûÀÎ ÇǺΠź·Â¿¡ ÀûÇÕÇÕ´Ï´Ù.

¾È°ú¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °íÁ¤¹Ð °¢¸· ¼ö¼ú ¹× ¹é³»Àå Á¦°Å¿¡ »ç¿ëµÇ¾î ±âÁ¸ ±â¼ú¿¡ ´ëÇÑ ÃÖ¼Òħ½ÀÀû ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÃʸŲöÇÑ °¢¸· Ç÷¦°ú Á¤È®ÇÑ Àý°³Ã¢ Çü¼º ´É·ÂÀ¸·Î ¶ó½Ä, ½º¸¶ÀÏ, ÆèÅä¼¼ÄÁµå ·¹ÀÌÀú º¸Á¶ ¹é³»Àå ¼ö¼ú(FLACS)ÀÇ È¯ÀÚ Ä¡·á °á°ú¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÇÇÄÚÃÊ ·¹ÀÌÀú¸¦ äÅÃÇÏ´Â »õ·Î¿î ºÐ¾ß·Î Ä¡°ú ¹× ¿¬Á¶Á÷¿¡ ´ëÇÑ ÀÀ¿ëÀÌ ¶°¿À¸£°í ÀÖ½À´Ï´Ù. °úµµÇÑ ÃâÇ÷À̳ª ºÒÆíÇÔÀ» À¯¹ßÇÏÁö ¾Ê°í ºñħ½ÀÀûÀ¸·Î ÀÕ¸ö À±°û ¼ºÇü, Ä¡¾Æ ¹Ì¹é, ±¸°­³» º´º¯ Á¦°Å¸¦ ÇÒ ¼ö ÀÖ¾î Ä¡°úÀÇ»ç¿Í ±¸°­¿Ü°ú ÀÇ»çµé »çÀÌ¿¡¼­ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀåÀÇ ¼ºÀåÀº Ãʰí¼Ó ·¹ÀÌÀú ±â¼úÀÇ ¹ßÀü, »ê¾÷¿ë ¹Ì¼¼ °¡°ø ºÐ¾ß¿¡¼­ÀÇ Ã¤Åà Áõ°¡, ¹Ì¿ë ÇǺΰú Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Æ÷Åä´Ð½º ¹× »ý¹° ÀÇÇÐ ºÐ¾ß¿¡¼­ÀÇ ¿¬±¸ ¿ëµµ È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¹ÝµµÃ¼ ¹× ÀüÀÚÁ¦Ç° Á¦Á¶¿¡¼­ Ãʰí¼Ó ·¹ÀÌÀú °¡°øÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¹«¾îÀÇ ¹ýÄ¢ÀÌ Æ®·£Áö½ºÅÍ ¹Ì¼¼È­ÀÇ ÇѰ迡 ºÎµúÈ÷¸é¼­ ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ¼­ºê¸¶ÀÌÅ©·Ð Á¤¹Ðµµ¿Í ³·Àº ¿­Ãæ°Ý, Ãʰí¼Ó Àý»è ¼Óµµ¸¦ ±¸ÇöÇÒ ¼ö ÀÖ´Â °íÁ¤¹Ð ·¹ÀÌÀú °¡°ø ÅøÀ» ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù. ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¿þÀÌÆÛ ´ÙÀ̽Ì, ¹Ú¸· ±¸Á¶È­, ·¹ÀÌÀú ¾î´Ò¸µ, ƯÈ÷ 3D ÁýÀûȸ·Î(3D-IC), MEMS ¼¾¼­, ¾çÀÚ ÄÄÇ»ÆÃ Ĩ Á¦Á¶¿¡ ÇʼöÀûÀÎ ·¹ÀÌÀúÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ÀÇ·á ¹× ¹Ì¿ë ºÐ¾ß¿¡¼­ ÇÇÄÚÃÊ ·¹ÀÌÀúÀÇ »ç¿ë È®´ëÀÔ´Ï´Ù. ÇÇÄÚÃÊ ·¹ÀÌÀú´Â ¹®½Å Á¦°Å, ÇǺΠȸÃá, »ö¼Ò Ä§Âø ±³Á¤ µî ´õ ¾ÈÀüÇϰí, ´õ ºü¸£°í, ´õ È¿°úÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Àü ¼¼°è ¹Ì¿ë ¹× °Ç°­ »ê¾÷ÀÇ ¼ºÀåÀº °¡Ã³ºÐ ¼Òµæ Áõ°¡¿Í ÇÔ²² ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ºÏ¹Ì¿¡¼­ ÇÁ¸®¹Ì¾ö ·¹ÀÌÀú Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÆÄÀ̹ö ·¹ÀÌÀú, ´ÙÀÌ¿Àµå ÆßÇÎ °íü(DPSS) ·¹ÀÌÀú, ÇÏÀ̺긮µå Ãʰí¼Ó ·¹ÀÌÀú ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ºö ǰÁú, ÆÞ½º Á¦¾î, ¿¡³ÊÁö È¿À²ÀÇ °³¼±À¸·Î Áß¼Ò Á¦Á¶¾÷ü, ¿¬±¸ ±â°ü, Àü¹® ÀÇ·á Ŭ¸®´ÐÀÌ ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, »ê¾÷ Á¦Á¶ ºÐ¾ß¿¡¼­ AI ±â¹Ý ·¹ÀÌÀú ½Ã½ºÅÛ ¹× ÀÚµ¿È­ äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½º¸¶Æ®Çϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ ·¹ÀÌÀú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ·¹ÀÌÀú ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ½Ç½Ã°£ °øÁ¤ ÃÖÀûÈ­¸¦ ÅëÇØ Á¤È®µµ, ÀçÇö¼º, ¿î¿µ È¿À²¼ºÀÌ Çâ»óµÇ¾î ÇÇÄÚÃÊ ·¹ÀÌÀú´Â °í󸮷® »ý»ê ¶óÀο¡ ¼±Åõǰí ÀÖ½À´Ï´Ù.

¾çÀÚ ±¤ÇÐ, 5G ÀüÀÚ, ¹ÙÀÌ¿ÀÆ÷Åä´Ð½ºÀÇ »õ·Î¿î ÀÀ¿ë ºÐ¾ß°¡ °è¼Ó ÁøÈ­Çϰí ÀÖ´Â °¡¿îµ¥, ÇÇÄÚÃÊ ·¹ÀÌÀú ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ µ¶º¸ÀûÀÎ Á¤È®¼º, ¼Óµµ, ´Ù¿ëµµ¼ºÀ» Á¦°øÇϸ鼭 Å©°Ô È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù. ÃÖ÷´Ü ÆÞ½º Á¦¾î ±â¼ú, AI ÅëÇÕ ·¹ÀÌÀú ½Ã½ºÅÛ, Â÷¼¼´ë ÀÇ·á¿ë ·¹ÀÌÀú Ç÷§Æû¿¡ ÅõÀÚÇÏ´Â ÁÖ¿ä ±â¾÷µéÀº Ãʰí¼Ó ·¹ÀÌÀú Çõ½ÅÀÇ ¹Ì·¡¸¦ ¼±µµÇÒ ¼ö ÀÖ´Â À¯¸®ÇÑ À§Ä¡¿¡ ¼­°Ô µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

±â¼ú(ND:YAG, ¾Ë·º»êµå¶óÀÌÆ®), ¿ëµµ(¹®½Å Á¦°Å, »ö¼Ò¼º º´º¯, ÇǺΠȸÃá, ±â¹Ì, ±âŸ), ÃÖÁ¾ ¿ëµµ(ÇǺΰú Ŭ¸®´Ð, ¸Þµå½ºÆÄ ¹× ¿¡½ºÅׯ½ ¼¾ÅÍ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Picosecond Lasers Market to Reach US$394.5 Million by 2030

The global market for Picosecond Lasers estimated at US$277.8 Million in the year 2024, is expected to reach US$394.5 Million by 2030, growing at a CAGR of 6.0% over the analysis period 2024-2030. ND:YAG, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$260.3 Million by the end of the analysis period. Growth in the Alexandrite segment is estimated at 8.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$73.0 Million While China is Forecast to Grow at 6.0% CAGR

The Picosecond Lasers market in the U.S. is estimated at US$73.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$63.7 Million by the year 2030 trailing a CAGR of 6.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.4% and 5.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.0% CAGR.

Global Picosecond Laser Market - Key Trends & Drivers Summarized

The picosecond laser market is witnessing rapid growth, driven by advancements in ultrafast laser technology, expanding industrial applications, and increasing demand for precision-based medical and aesthetic treatments. Picosecond lasers operate with pulse durations in the picosecond range (10e-12 seconds), making them significantly faster than nanosecond lasers, allowing for high-precision material processing, minimal thermal damage, and superior pulse control.

One of the most significant trends in the market is the increasing adoption of picosecond lasers in aesthetic dermatology. These lasers have revolutionized tattoo removal, pigmentation treatments, and skin resurfacing by offering shorter pulse durations that break down pigments more effectively without damaging surrounding tissues. Compared to traditional Q-switched nanosecond lasers, picosecond lasers provide faster recovery times, lower risk of side effects, and improved treatment efficacy, making them the preferred choice for high-end dermatology clinics and cosmetic treatment centers.

Another key driver of market expansion is the growing use of picosecond lasers in advanced industrial applications, including microelectronics, precision manufacturing, and micromachining. As industries demand ultra-precise laser cutting, drilling, and texturing of delicate materials such as glass, semiconductors, and polymers, picosecond lasers are becoming essential for high-resolution structuring, thin-film patterning, and 3D microfabrication. The rise of miniaturized electronic components, flexible circuits, and next-generation displays is further fueling the demand for high-precision, ultrafast laser systems.

Additionally, scientific research and biomedical imaging are increasingly benefiting from picosecond pulsed laser technology. These lasers are used in time-resolved spectroscopy, two-photon microscopy, and fluorescence lifetime imaging (FLIM), enabling researchers to study ultrafast molecular dynamics, biological processes, and quantum optics phenomena. With continuous advancements in femtosecond and attosecond laser technologies, picosecond lasers remain a vital tool in high-speed photonics research and non-linear optics.

How Are Industrial Applications Driving the Demand for Picosecond Lasers?

The industrial sector is one of the largest adopters of picosecond laser technology, with applications spanning electronics manufacturing, aerospace, automotive, and medical device fabrication. As manufacturers shift toward miniaturization and high-precision engineering, picosecond lasers provide a non-contact, high-speed machining solution with superior edge quality and negligible heat-affected zones (HAZ).

One of the most notable applications is printed circuit board (PCB) manufacturing, where picosecond lasers enable high-resolution via drilling, fine patterning, and flexible circuit fabrication. The growing demand for compact, high-density electronics in smartphones, wearables, and IoT devices is pushing PCB manufacturers to adopt ultrafast laser processing techniques that deliver sub-micron accuracy and reduced material damage.

In the automotive and aerospace industries, picosecond lasers are being used for lightweight material processing, composite trimming, and surface texturing for adhesion enhancement. As manufacturers explore advanced materials such as carbon fiber-reinforced polymers (CFRPs), titanium alloys, and high-performance ceramics, the ability of picosecond lasers to precisely ablate and structure surfaces without introducing mechanical stress makes them an invaluable tool for next-generation vehicle and aircraft production.

Another rapidly growing sector is medical device manufacturing, where picosecond lasers are enabling precise cutting, welding, and structuring of biocompatible materials such as stainless steel, nitinol, and biodegradable polymers. From catheter tubing and stents to surgical implants and microfluidic chips, these lasers ensure high-quality fabrication with minimal thermal damage, improving device reliability and patient safety.

What Role Do Picosecond Lasers Play in Medical & Aesthetic Applications?

The medical and aesthetic industries have embraced picosecond lasers for high-precision tissue treatment, skin rejuvenation, and advanced laser surgery. Compared to traditional nanosecond pulse lasers, picosecond lasers offer greater energy efficiency, shorter recovery times, and enhanced precision, making them the gold standard for dermatological and ophthalmic procedures.

One of the most popular applications is tattoo removal, where picosecond lasers break down tattoo pigments into finer particles that are more easily absorbed by the body’s immune system. Unlike nanosecond lasers, which can leave residual ink and cause scarring, picosecond lasers achieve faster clearance rates, reduced side effects, and better outcomes for stubborn ink colors. This has led to increased adoption by medical spas, dermatology clinics, and plastic surgery centers.

Another major application is pigmentation treatment and skin resurfacing. Picosecond lasers are highly effective in treating melasma, freckles, sunspots, and acne scars by targeting melanin clusters with ultra-short pulses that minimize thermal diffusion. Additionally, fractional picosecond laser technology stimulates collagen remodeling and elastin production, making it a preferred choice for wrinkle reduction, scar treatment, and overall skin tightening.

In ophthalmology, picosecond lasers are being used for high-precision corneal surgery and cataract removal, offering minimally invasive alternatives to traditional techniques. Their ability to create ultra-smooth corneal flaps and precise incisions has improved patient outcomes in LASIK, SMILE, and femtosecond laser-assisted cataract surgery (FLACS).

Additionally, dental and soft-tissue applications are emerging as new areas for picosecond laser adoption. The ability to perform non-invasive gum contouring, teeth whitening, and oral lesion removal without causing excessive bleeding or discomfort is driving interest among dentists and oral surgeons.

What Are the Key Factors Driving the Growth of the Picosecond Laser Market?

The growth in the picosecond laser market is driven by several factors, including advancements in ultrafast laser technology, increasing adoption in industrial microfabrication, rising demand for aesthetic dermatology treatments, and expanding research applications in photonics and biomedicine.

One of the primary growth drivers is the increasing adoption of ultrafast laser processing in semiconductor and electronics manufacturing. With Moore’s Law pushing the boundaries of transistor miniaturization, semiconductor manufacturers require high-precision laser machining tools capable of sub-micron accuracy, low-thermal impact, and ultrafast ablation rates. Picosecond lasers are becoming essential for wafer dicing, thin-film structuring, and laser annealing, particularly in the production of 3D integrated circuits (3D-ICs), MEMS sensors, and quantum computing chips.

Another key factor is the expanding use of picosecond lasers in the medical and aesthetic sectors. As minimally invasive procedures gain popularity, picosecond lasers offer safer, faster, and more effective solutions for tattoo removal, skin rejuvenation, and pigmentation correction. The growing global beauty and wellness industry, along with increasing disposable incomes, is driving demand for premium laser treatments, particularly in Asia-Pacific and North America.

Technological advancements in fiber lasers, diode-pumped solid-state (DPSS) lasers, and hybrid ultrafast laser systems are further accelerating market growth. Improvements in beam quality, pulse control, and energy efficiency are making picosecond lasers more accessible to small and mid-sized manufacturers, research institutions, and specialized medical clinics.

Additionally, the rising adoption of AI-powered laser systems and automation in industrial manufacturing is boosting demand for smart, adaptive laser solutions. AI-driven laser monitoring, predictive maintenance, and real-time process optimization are enhancing precision, repeatability, and operational efficiency, making picosecond lasers a preferred choice for high-throughput production lines.

As emerging applications in quantum optics, 5G electronics, and biophotonics continue to evolve, the picosecond laser market is poised for significant expansion, offering unparalleled precision, speed, and versatility across diverse industries. Companies that invest in cutting-edge pulse control technology, AI-integrated laser systems, and next-generation medical laser platforms will be well-positioned to lead the future of ultrafast laser innovation.

SCOPE OF STUDY:

The report analyzes the Picosecond Lasers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (ND:YAG, Alexandrite); Application (Tattoo Removal, Pigmented Lesions, Skin Rejuvenation, Melasma, Others); End-Use (Dermatology Clinics, Med spas & Aesthetic Centers, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â