¼¼°èÀÇ Æ÷Å丶½ºÅ© º¸¼ö ½Ã½ºÅÛ ½ÃÀå
Photomask Repair Systems
»óǰÄÚµå : 1788289
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 180 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Æ÷Å丶½ºÅ© º¸¼ö ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 222¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 122¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Æ÷Å丶½ºÅ© º¸¼ö ½Ã½ºÅÛ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 10.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 222¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ·¹ÀÌÀú ±â¼úÀº CAGR 9.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 140¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áý¼Ó À̿ºö(FIB) ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 13.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 33¾ï ´Þ·¯, Áß±¹Àº CAGR 14.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Æ÷Å丶½ºÅ© º¸¼ö ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 45¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 14.1%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.7%¿Í 9.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Æ÷Å丶½ºÅ© º¸¼ö ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Æ÷Å丶½ºÅ© ¸®Æä¾î ½Ã½ºÅÛ ½ÃÀåÀº ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü, ´õ ÀÛ°í º¹ÀâÇÑ ÁýÀûȸ·Î(IC)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇ·ÎÀÇ Àüȯ µîÀ¸·Î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ ³ëµåÀÇ ¹Ì¼¼È­°¡ ÁøÇàµÇ¾î 7nm ÀÌÇÏ ¹× 5nm °øÁ¤ ±â¼úÀÌ ÁÖ·ù°¡ µÇ¸é¼­ °íÁ¤¹Ð Æ÷Å丶½ºÅ© ¼öÁ¤ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Æ÷Å丶½ºÅ©´Â ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¸®¼Ò±×·¡ÇÇ °øÁ¤¿¡ ÇʼöÀûÀÎ °ÍÀ¸·Î, ¸¶ÀÌÅ©·ÎĨ Á¦Á¶ÀÇ ¼³°èµµ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Æ÷Å丶½ºÅ©ÀÇ ¹Ì¼¼ÇÑ °áÇÔµµ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â »ý»ê ¿À·ù³ª ¼öÀ² ÀúÇÏ, °áÇÔ Ä¨À¸·Î À̾îÁú ¼ö ÀÖÀ¸¹Ç·Î Á¤È®Çϰí È¿À²ÀûÀÎ ÀÚµ¿ ¼ö¸® ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù.

½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä µ¿ÇâÀº ¸¶½ºÅ© ¼³°èÀÇ º¹À⼺, ƯÈ÷ ¸ÖƼÆÐÅÍ´× ±â¼ú, ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇ, ÷´Ü ½ÉÀڿܼ±(DUV) °øÁ¤ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸®¼Ò±×·¡ÇÇÀÇ ÇØ»óµµ¸¦ Çâ»ó½Ã۱â À§ÇØ ±¤ÇÐ ±ÙÁ¢ º¸Á¤(OPC) ¹× À§»ó ½ÃÇÁÆ® ¸¶½ºÅ©(PSM)ÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Æ÷Å丶½ºÅ©ÀÇ °áÇÔ º¹±¸°¡ ´õ¿í ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. Áý¼Ó À̿ºö(FIB), ÀüÀÚºö(e-beam) ¸®Æä¾î¿Í °°Àº ±âÁ¸ ¸®Æä¾î ±â¼úÀº Â÷¼¼´ë ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ³ª³ë ½ºÄÉÀÏ Á¤È®µµ ¿ä±¸¿¡ ´ëÀÀÇϱâ À§ÇØ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ °¢ Á¦Á¶¾÷üµéÀº ¸¶½ºÅ©ÀÇ ¼ö¸® È¿À²°ú 󸮷®À» Çâ»ó½Ã۱â À§ÇØ AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿ °áÇÔ °¨Áö, °íÇØ»óµµ ¿øÀÚ°£·Â Çö¹Ì°æ(AFM) ºÐ¼®, ºñÁ¢ÃË½Ä ¼ö¸® ¹æ¹ý¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Æ÷Å丶½ºÅ©ÀÇ ºñ¿ë »ó½Â°ú ¸¶½ºÅ© ¼ö¸íÀÇ ¿¬ÀåÀÔ´Ï´Ù. °í±Þ EUV ¸¶½ºÅ©ÀÇ Á¦Á¶¿¡´Â º¹ÀâÇÑ ´ÙÃþ ±¸Á¶¿Í Èí¼öü Àç·á°¡ ÇÊ¿äÇϸç, ±âÁ¸ DUV ¸¶½ºÅ©º¸´Ù ÈξÀ ´õ ºñ½Ô´Ï´Ù. ±× °á°ú, ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ¸¶½ºÅ©ÀÇ »ç¿ë ±â°£À» ¿¬ÀåÇϰí, Æó±âÀ²À» ³·Ã߸ç, ºñ¿ë È¿À²¼ºÀ» ÃÖÀûÈ­Çϱâ À§ÇØ Ã·´Ü ¸®Æä¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. EUV Æ÷Å丶½ºÅ© ºí·©Å©ÀÇ °¡°ÝÀº Àå´ç 10¸¸ ´Þ·¯ ÀÌ»óÀ̱⠶§¹®¿¡ °í°¡ÀÇ ±³Ã¼ ºñ¿ëÀ» ÇÇÇÏ°í °áÇÔ ¾ø´Â ¹ÝµµÃ¼ »ý»êÀ» º¸ÀåÇϱâ À§Çؼ­´Â È¿°úÀûÀÎ ¼ö¸® ¼Ö·ç¼ÇÀÌ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ¾î¶»°Ô Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛÀ» À籸¼ºÇϰí Àִ°¡?

Æ÷Å丶½ºÅ© ¼ö¸® ±â¼úÀÇ ÁøÈ­´Â °íÁ¤¹ÐÈ­, ÀÚµ¿È­, ¿øÀÚ ¼öÁØÀÇ °áÇÔ ¼ö¸® ´É·ÂÀÇ Çʿ伺¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ·¹ÀÌÀú ÀýÁ¦, À̿ºö ¹Ð¸µ, °¡½º ¾î½Ã½ºÆ® ¿¡Äª°ú °°Àº ÀüÅëÀûÀÎ ¼ö¸® ¹æ¹ýÀº ¸¶½ºÅ© ±¸Á¶¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 ´õ ³ôÀº Á¤¹Ðµµ¸¦ °¡Áø Â÷¼¼´ë ¼ö¸® ±â¼ú·Î ´ëüµÇ°Å³ª º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ ºÐ¾ß¿¡¼­ °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀü Áß Çϳª´Â ¸ÖƼºö ÀüÀÚÇö¹Ì°æ(MBEM)°ú ¿øÀÚÃþ ÁõÂø(ALD) ±â¹Ý ¸®Æä¾îÀÇ Ã¤ÅÃÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Á¤È®ÇÑ °áÇÔ Á¦°Å¿Í ¿øÀÚ ¼öÁØÀÇ Àç·á ÁõÂøÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¼ö¸® ÈÄ Æ÷Å丶½ºÅ©ÀÇ ±¤ÇÐÀû ¹«°á¼º°ú ±¸Á¶Àû ³»±¸¼ºÀ» À¯ÁöÇÕ´Ï´Ù. ƯÈ÷ ÀüÀÚºö ±â¹Ý ±¹¼Ò ÁõÂø ½Ã½ºÅÛÀº ±âÁ¸ÀÇ ¿¡Äª ±â¹Ý ¹æ¹ýÀ¸·Î´Â Àç·á°¡ °úµµÇÏ°Ô ¼Õ½ÇµÉ ¼ö ÀÖ´Â EUV ¸¶½ºÅ©ÀÇ °áÇÔÀ» ¼öÁ¤Çϱâ À§ÇØ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú Çõ½ÅÀº °áÇÔ °Ë»ç ¹× ¼öÁ¤ ÇÁ·Î¼¼½º¿¡ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀÔ´Ï´Ù. AI ±â¹Ý °áÇÔ ÀÎ½Ä ¾Ë°í¸®ÁòÀ» ÅëÇØ ½Ç½Ã°£ °í¼Ó °áÇÔ ºÐ·ù°¡ °¡´ÉÇÏ¿© ¼öÀÛ¾÷ °³ÀÔÀ» ÁÙÀÌ°í ¼ö¸® Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ½Ã½ºÅÛÀû °áÇÔ°ú ¹«ÀÛÀ§ °áÇÔÀ» ÀÚµ¿À¸·Î ½Äº°Çϰí, ÀûÀÀÇü ¼ö¸® ±â¼úÀ» Àû¿ëÇÏ¿© ¼ö¸® °úÁ¤¿¡¼­ ÀÎÀ§ÀûÀÎ ÆíÂ÷¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ³ëµåÀÇ °íµµÈ­¿¡ µû¶ó ³ôÀº »ý»ê ¼öÀ²À» À¯ÁöÇϱâ À§Çؼ­´Â AI¸¦ ÅëÇÑ ¼ö¸® ¼Ö·ç¼ÇÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ UV À¯µµ ¿øÀÚ Á¶ÀÛ ¹× ·¹ÀÌÀú Áö¿ø °áÇÔ º¹±¸¿Í °°Àº ºñÁ¢ÃË½Ä º¹±¸ ¼Ö·ç¼ÇÀÇ ºÎ»óÀº ½ÃÀåÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº ±â°èÀû ¶Ç´Â À̿¿¡ ÀÇÇÑ ¼Õ»óÀÇ À§ÇèÀ» Á¦°ÅÇϹǷΠEUV ¸®¼Ò±×·¡ÇÇ¿¡ »ç¿ëµÇ´Â °íÁ¤¹Ð Æ÷Å丶½ºÅ©ÀÇ ¼öÁ¤¿¡ °¡Àå ÀûÇÕÇÕ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷ü°¡ 2nm ÀÌÇÏÀÇ Á¦Á¶ ³ëµå¸¦ ÇâÇØ ³ª¾Æ°¡°í ÀÖ´Â °¡¿îµ¥, Â÷¼¼´ë Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛÀº ³ª³ë ½ºÄÉÀÏÀÇ °íÁ¤¹Ð Åø, ÀÚµ¿È­µÈ Çǵå¹é ·çÇÁ, ½Ç½Ã°£ °áÇÔ ¼öÁ¤ ¸ÞÄ¿´ÏÁòÀ» ÅëÇÕÇÏ¿© ¾÷°èÀÇ ¿ä±¸¸¦ ÃæÁ·½ÃÄÑ¾ß ÇÕ´Ï´Ù.

Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛÀÇ ¼ºÀå¿¡ ÀÖÀ¸¸ç, ÃÖÁ¾ ¿ëµµ´Â ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

°í¼º´É ÄÄÇ»ÆÃ(HPC), ÀΰøÁö´É(AI) Ĩ, 5G ÀÎÇÁ¶ó, °¡ÀüÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °íÇØ»óµµ Æ÷Å丶½ºÅ©¿Í ¹«°áÁ¡ ¸®¼Ò±×·¡ÇÇ °øÁ¤ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â ´õ ÀÛ°í, ´õ ºü¸£°í, ´õ Àü·Â È¿À²ÀÌ ³ôÀº ĨÀ» Á¦°øÇØ¾ß Çϸç, À̸¦ À§Çؼ­´Â ÷´Ü Æ÷Å丶½ºÅ© Á¦Á¶ ¹× ¼öÁ¤ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù.

ÁÖÁ¶ ¹× ·ÎÁ÷ Ĩ Á¦Á¶ ºÐ¾ß¿¡¼­´Â TSMC, ÀÎÅÚ, »ï¼º µî ÁÖ¿ä ±â¾÷ÀÌ 5nm ÀÌÇÏ ¹ÝµµÃ¼ Á¦Á¶¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, °íÁ¤¹Ð Æ÷Å丶½ºÅ© ¼öÁ¤ ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °ÔÀÌÆ® ¿Ã ¾î¶ó¿îµå(GAA) Æ®·£Áö½ºÅÍ, 3D ÀûÃþ, ÀÌÁ¾ ÁýÀûÈ­·ÎÀÇ ÀüȯÀº Æ÷Å丶½ºÅ©ÀÇ º¹À⼺À» ´õ¿í Áõ°¡½ÃÄÑ °áÇÔ °ü¸® ¹× ¼ö¸®¸¦ ¹ÝµµÃ¼ °ø±Þ¸ÁÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

DRAM ¹× NAND Ç÷¡½Ã Á¦Á¶¾÷ü¸¦ Æ÷ÇÔÇÑ ¸Þ¸ð¸® »ê¾÷µµ Æ÷Å丶½ºÅ© ¼ö¸® ±â¼ú¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. 3D NAND ¾ÆÅ°ÅØÃ³ÀÇ ºñÆ® ¹Ðµµ¿Í ½ºÄÉÀϸµ À̽´°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶ °øÁ¤ Áß ÆÐÅÏ ¿Ö°î°ú ÇÇóÀÇ ¿­È­¸¦ ¹æÁöÇϱâ À§ÇØ ³ôÀº ¼öÀ²ÀÇ ¸¶½ºÅ© ǰÁú À¯Áö°¡ ÇʼöÀûÀÔ´Ï´Ù. MRAM, ReRAM µî Â÷¼¼´ë ¸Þ¸ð¸® ±â¼úÀÌ µîÀåÇÔ¿¡ µû¶ó Ãʹ̼¼ ÆÐÅϰú °íÁ¾È¾ºñ ±¸Á¶¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °í±Þ ¸¶½ºÅ© ¼öÁ¤ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), AI ±â¹Ý Â÷·®¿ë ÇÁ·Î¼¼¼­ µî °í½Å·Ú¼º ¹ÝµµÃ¼ ĨÀÌ ¿ä±¸µÇ´Â Â÷·®¿ë ¹ÝµµÃ¼ »ê¾÷µµ ¼ºÀå ºÐ¾ß Áß ÇϳªÀÔ´Ï´Ù. Â÷·®¿ë ĨÀº ¾ö°ÝÇÑ Ç°Áú ¹× ¼ö¸í ¿ä°ÇÀ» ÃæÁ·ÇØ¾ß ÇϹǷÎ, °áÇÔ ¾ø´Â Æ÷Å丶½ºÅ©¿Í °íÁ¤¹Ð ¼ö¸® ¼Ö·ç¼ÇÀº ÀϰüµÈ »ý»ê ǰÁú°ú °áÇÔ ÃÖ¼ÒÈ­¸¦ º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü, Æ÷Å丶½ºÅ©ÀÇ º¹À⼺ Áõ°¡, EUV ¸®¼Ò±×·¡ÇÇ ¼ö¿ä Áõ°¡, ºñ¿ë È¿À²ÀûÀÎ °áÇÔ °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺 µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. 5nm ÀÌÇÏ °øÁ¤ ³ëµå·ÎÀÇ ÀüȯÀº °áÇÔ °ËÃâ ¹× ¼öÁ¤ ±â¼úÀÇ ÇѰ踦 ³ÐÈ÷°í, °íÁ¤¹Ð ¼öÁ¤ Åø, AI Áö¿ø ÀÚµ¿È­, ÃʰíÇØ»óµµ À̹Ì¡ ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

¹ÝµµÃ¼ Á¦Á¶¿¡¼­ EUV ¸®¼Ò±×·¡ÇÇÀÇ Ã¤Åà Ȯ´ë´Â ½ÃÀå È®´ëÀÇ Å« Ã˸ÅÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. EUV Æ÷Å丶½ºÅ©´Â º¹ÀâÇÑ ´ÙÃþ ±¸Á¶¿Í À̱¹ÀûÀÎ Èí¼öü¸¦ °¡Áö°í ÀÖÀ¸¹Ç·Î Á¦Á¶ ¹× ÀÚÀç°ü¸® Áß¿¡ °áÇÔÀÌ ¹ß»ýÇϱ⠽±½À´Ï´Ù. EUV »ý»ê ±Ô¸ð°¡ È®´ëµÊ¿¡ µû¶ó ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº EUV ¸¶½ºÅ©ÀÇ °áÇÔÀ» ¿øÀÚ ¼öÁØÀÇ Á¤¹Ðµµ·Î ¼öÁ¤ÇÒ ¼ö Àִ Ư¼ö ¼ö¸® ½Ã½ºÅÛ¿¡ ÅõÀÚÇÏ¿© ¾ÈÁ¤ÀûÀΠĨ ¼º´É°ú ¼öÀ²ÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Æ÷Å丶½ºÅ©¿Í ¸¶½ºÅ© ¼¼Æ®ÀÇ ºñ¿ë »ó½ÂÀÔ´Ï´Ù. EUV Æ÷Å丶½ºÅ©´Â ÇÑ Àå´ç 10¸¸¿ø ÀÌ»óÀ̱⠶§¹®¿¡ Á¦Á¶¾÷ü´Â »ý»ê ºñ¿ëÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ±³Ã¼º¸´Ù ¼ö¸®¸¦ ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ¸¶½ºÅ©ÀÇ ¼ö¸í ÁֱⰡ ±æ¾îÁö°í ÇöÀå ¼ö¸® ´É·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÏ°í ¾÷¹« È¿À²¼ºÀ» ³ôÀÌ´Â ÀÚµ¿È­µÈ ÀζóÀÎ Æ÷Å丶½ºÅ© ¼ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ AI¿Í ¸Ó½Å·¯´×À» °áÇÔ °Ë»ç ¹× ¼ö¸® ¿öÅ©Ç÷ο쿡 ÅëÇÕÇÏ¿© ºü¸¥ °áÇÔ ºÐ·ù, ÀûÀÀÇü ¼ö¸® Àü·«, Á¤¹Ð Àç·á ¼º¸· ±â¼úÀ» È¿À²È­Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀÌ ´õ ³ôÀº ¼öÀ²°ú ¹«°áÁ¡ »ý»êÀ» ¸ñÇ¥·Î ÇÏ´Â °¡¿îµ¥, Áö´ÉÇü Æ÷Å丶½ºÅ© ¼ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¹ÝµµÃ¼ »ê¾÷ÀÌ Â÷¼¼´ë ÄÄÇ»ÆÃ, AI, IoT, ¾çÀÚ ÄÄÇ»ÆÃ ±â¼úÀ» ÇâÇØ ³ª¾Æ°¡´Â °¡¿îµ¥, Æ÷Å丶½ºÅ© ¼ö¸® ½Ã½ºÅÛÀº ¼¼°è ¹ÝµµÃ¼ °ø±Þ¸Á¿¡¼­ Çõ½Å, ºñ¿ë È¿À²¼º, °í¼öÀ² »ý»êÀ» À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(·¹ÀÌÀú ±â¼ú, Áý¼Ó À̿ºö(FIB) ±â¼ú, ³ª³ë¸Ó½Ã´× ±â¼ú)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Photomask Repair Systems Market to Reach US$22.2 Billion by 2030

The global market for Photomask Repair Systems estimated at US$12.2 Billion in the year 2024, is expected to reach US$22.2 Billion by 2030, growing at a CAGR of 10.5% over the analysis period 2024-2030. Laser Technology, one of the segments analyzed in the report, is expected to record a 9.1% CAGR and reach US$14.0 Billion by the end of the analysis period. Growth in the Focused Ion Beam (FIB segment is estimated at 13.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.3 Billion While China is Forecast to Grow at 14.1% CAGR

The Photomask Repair Systems market in the U.S. is estimated at US$3.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.5 Billion by the year 2030 trailing a CAGR of 14.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.7% and 9.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.2% CAGR.

Global Photomask Repair Systems Market - Key Trends & Drivers Summarized

The photomask repair systems market is experiencing significant growth, driven by advancements in semiconductor manufacturing, increasing demand for smaller and more complex integrated circuits (ICs), and the shift toward extreme ultraviolet (EUV) lithography. As semiconductor fabrication nodes continue to shrink, with sub-7nm and 5nm process technologies becoming mainstream, the need for high-precision photomask repair solutions is more critical than ever. Photomasks, which are essential in the lithographic process of semiconductor manufacturing, serve as the blueprint for microchip production. Even the smallest defect on a photomask can lead to costly production errors, yield loss, and defective chips, necessitating precise, efficient, and automated repair systems.

A major trend driving the market is the increasing complexity of mask designs, particularly with the adoption of multi-patterning techniques, extreme ultraviolet (EUV) lithography, and advanced deep ultraviolet (DUV) processes. The growing use of optical proximity correction (OPC) and phase shift masks (PSM) to enhance lithographic resolution has made photomask defect repair more challenging. Traditional repair techniques such as focused ion beam (FIB) and electron beam (e-beam) repair are evolving to handle the nanoscale accuracy requirements of next-generation semiconductor devices. In response, manufacturers are investing in AI-driven automated defect detection, high-resolution atomic force microscopy (AFM) analysis, and non-contact repair methodologies to improve mask repair efficiency and throughput.

Another critical driver is the escalating costs of photomasks and the push for extending mask lifespan. The production of advanced EUV masks requires complex multilayer structures and absorber materials, making them significantly more expensive than traditional DUV masks. As a result, semiconductor manufacturers are increasingly relying on advanced repair systems to extend the usability of masks, reduce scrap rates, and optimize cost efficiency. With EUV photomask blanks costing upwards of $100,000 each, effective repair solutions are essential to avoid costly replacements and ensure defect-free semiconductor production.

How Are Technological Advancements Reshaping Photomask Repair Systems?

The evolution of photomask repair technologies is being driven by the need for higher precision, increased automation, and the ability to repair defects at the atomic level. Traditional repair methods such as laser ablation, ion beam milling, and gas-assisted etching are being replaced or supplemented by next-generation repair techniques that offer higher accuracy and minimal impact on the mask structure.

One of the most notable advancements in this field is the adoption of multi-beam electron microscopy (MBEM) and atomic layer deposition (ALD)-based repair. These methods allow for precise defect removal and atomic-level material deposition, ensuring that the repaired photomasks maintain their optical integrity and structural durability. In particular, e-beam-based localized deposition systems are gaining popularity for correcting EUV mask defects, where conventional etching-based methods may cause excessive material loss.

Another significant innovation is the integration of artificial intelligence (AI) and machine learning (ML) in defect inspection and repair processes. AI-driven defect recognition algorithms enable real-time, high-speed defect classification, reducing manual intervention and improving repair accuracy. These systems can automatically identify systematic and random defects, apply adaptive repair techniques, and minimize human-induced variability in the repair process. As semiconductor nodes become more advanced, AI-assisted repair solutions will become increasingly indispensable for maintaining high production yields.

Additionally, the rise of non-contact repair solutions, such as UV-induced atomic manipulation and laser-assisted defect repair, is transforming the market. These methods eliminate the risk of mechanical or ion-induced damage, making them ideal for repairing high-precision photomasks used in EUV lithography. As semiconductor manufacturers push toward 2nm and below fabrication nodes, next-generation photomask repair systems will need to incorporate nanoscale precision tools, automated feedback loops, and real-time defect correction mechanisms to keep pace with industry demands.

What Role Do End-Use Applications Play in the Growth of Photomask Repair Systems?

The increasing demand for high-performance computing (HPC), artificial intelligence (AI) chips, 5G infrastructure, and consumer electronics is driving the need for high-resolution photomasks and defect-free lithography processes. Semiconductor manufacturers are under pressure to deliver smaller, faster, and more power-efficient chips, which requires advanced photomask production and repair systems.

In the foundry and logic chip manufacturing sector, companies like TSMC, Intel, and Samsung are leading the charge in sub-5nm semiconductor production, necessitating highly precise photomask repair solutions. The shift toward gate-all-around (GAA) transistors, 3D stacking, and heterogeneous integration further increases the complexity of photomasks, making defect management and repair a critical part of the semiconductor supply chain.

The memory industry, including DRAM and NAND flash manufacturers, also heavily relies on photomask repair technology. With increasing bit density and scaling challenges in 3D NAND architecture, maintaining high-yield mask quality is essential to prevent pattern distortion and feature degradation during the fabrication process. As next-generation memory technologies such as MRAM and ReRAM emerge, the need for advanced mask repair solutions that can handle ultra-fine patterns and high-aspect-ratio structures will continue to rise.

Another growing area of application is the automotive semiconductor industry, where power electronics, advanced driver-assistance systems (ADAS), and AI-driven vehicle processors require highly reliable semiconductor chips. Automotive-grade chips must meet strict quality and longevity requirements, making defect-free photomasks and high-precision repair solutions essential for ensuring consistent production quality and defect minimization.

What Are the Key Factors Driving the Growth of the Photomask Repair Systems Market?

The growth in the photomask repair systems market is driven by several factors, including advancements in semiconductor manufacturing, increasing photomask complexity, rising demand for EUV lithography, and the need for cost-efficient defect management solutions. The transition to sub-5nm process nodes is pushing the boundaries of defect detection and repair technologies, necessitating higher precision repair tools, AI-assisted automation, and ultra-high-resolution imaging systems.

The growing adoption of EUV lithography in semiconductor fabrication is a major catalyst for market expansion. EUV photomasks have intricate multilayer structures and exotic absorber materials, making them highly susceptible to defects during manufacturing and handling. As EUV production scales up, semiconductor manufacturers are investing in specialized repair systems capable of correcting EUV mask defects with atomic precision, ensuring consistent chip performance and yield stability.

Another key factor is the rising cost of photomasks and mask sets. With each EUV photomask costing over $100,000, manufacturers are prioritizing repair over replacement to optimize production costs. The increasing mask usage lifecycle and demand for on-site repair capabilities are fueling investments in automated, in-line photomask repair solutions that minimize downtime and enhance operational efficiency.

Furthermore, the integration of AI and machine learning in defect inspection and repair workflows is streamlining high-speed defect classification, adaptive repair strategies, and precision material deposition techniques. As semiconductor manufacturers strive for higher yield rates and defect-free production, the demand for intelligent photomask repair solutions will continue to grow.

As the semiconductor industry advances toward next-generation computing, AI, IoT, and quantum computing technologies, photomask repair systems will play a critical role in sustaining innovation, cost efficiency, and high-yield production in the global semiconductor supply chain.

SCOPE OF STUDY:

The report analyzes the Photomask Repair Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Laser Technology, Focused Ion Beam (FIB) Technology, Nanomachining Technology)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â