¼¼°èÀÇ ÀÓº£µðµåÇü ÀΰøÁö´É ½ÃÀå
Embedded Artificial Intelligence
»óǰÄÚµå : 1788274
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 191 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÓº£µðµåÇü ÀΰøÁö´É ½ÃÀåÀº 2030³â±îÁö 229¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 108¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÀÓº£µðµåÇü ÀΰøÁö´É ½ÃÀåÀº 2024-2030³â¿¡ CAGR 13.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 229¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹®ÀÇ ÇϳªÀÎ Çϵå¿þ¾î´Â CAGR 12.2%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 133¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 14.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 28¾ï ´Þ·¯, Áß±¹Àº CAGR 12.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÀÓº£µðµåÇü ÀΰøÁö´É ½ÃÀåÀº 2024³â¿¡ 28¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 36¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 12.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 12.1%¿Í 11.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÓº£µðµåÇü ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÓº£µðµå ÀΰøÁö´ÉÀ̶õ ¹«¾ùÀ̸ç, ¿Ö ½º¸¶Æ® ±â¼ú¿¡ º¯È­¸¦ ÃÊ·¡Çϴ°¡?

ÀÓº£µðµå ÀΰøÁö´É(Embedded AI)Àº AI ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´× ±â´ÉÀ» ¿§Áö µð¹ÙÀ̽º¿¡ ÅëÇÕÇÏ¿© Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ÀÚÀ²ÀûÀ¸·Î µ¥ÀÌÅÍ Ã³¸®, ÀÇ»ç°áÁ¤, ÀÛ¾÷ ¼öÇàÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ½º¸¶Æ®Æù, IoT ¼¾¼­, ÀÚÀ²ÁÖÇàÂ÷, ÀÇ·á±â±â, »ê¾÷¿ë ·Îº¿ µîÀÇ µð¹ÙÀ̽º°¡ Áö´ÉÀûÀ̰í È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â Çö´ë ½º¸¶Æ® ½Ã½ºÅÛÀÇ ÇÙ½ÉÀÔ´Ï´Ù. Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ¼­¹ö¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ AI ½Ã½ºÅÛ°ú ´Þ¸® ÀÓº£µðµå AI´Â ·ÎÄÿ¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇϹǷΠ´ë±â ½Ã°£ÀÌ ´ÜÃàµÇ°í, º¸¾ÈÀÌ °­È­µÇ¸ç, ¿î¿µ È¿À²¼ºÀÌ Çâ»óµË´Ï´Ù. AI ±â¹Ý ¿ëµµÀÇ ½Ç½Ã°£ ÀÇ»ç°áÁ¤, ÀúÀü·Â, º¸¾È °­È­¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼­ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ÀÓº£µðµå AI µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. AI ¸ðµ¨ÀÇ ¼ÒÇüÈ­ ¹× °è»ê È¿À²¼ºÀÌ Çâ»óµÊ¿¡ µû¶ó ¿§Áö ÄÄÇ»ÆÃ ÀåÄ¡·ÎÀÇ ÅëÇÕÀÌ Á¡Á¡ ´õ Çö½ÇÈ­µÇ°í ÀÖÀ¸¸ç, ½º¸¶Æ® ¸ð´ÏÅ͸µ, ÀÚÀ²ÁÖÇà ³»ºñ°ÔÀ̼Ç, ¿¹Áöº¸Àü, °³ÀÎÈ­µÈ ÇコÄÉ¾î µîÀÇ ¿ëµµÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀüÀº ÀÓº£µðµå AIÀÇ ´É·ÂÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

Çϵå¿þ¾î °¡¼Ó, ½Å°æÃ³¸®ÀåÄ¡(NPU), ¿§Áö AI ÇÁ·¹ÀÓ¿öÅ©ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÓº£µðµå AI ½Ã½ºÅÛÀÇ È¿À²¼º°ú ±â´ÉÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. NVIDIA Jetson, Google Edge TPU, Qualcomm Snapdragon AI Engine µî ¿§Áö ÄÄÇ»ÆÃÀ» À§ÇØ Æ¯º°È÷ ¼³°èµÈ AI Ĩ¼ÂÀº ÃÖ¼ÒÇÑÀÇ Àü·Â ¼Òºñ·Î AI ¿öÅ©·Îµå¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â µð¹ÙÀ̽ºÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çù¾÷ ÇнÀÀÇ ¹ßÀüÀ¸·Î AI ¸ðµ¨À» ¿§Áö µð¹ÙÀ̽º¿¡¼­ Á÷Á¢ ÇнÀÇÒ ¼ö ÀÖ°Ô µÇ¾î µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã°¡ º¸ÀåµÇ°í, Ŭ¶ó¿ìµå ½ºÅ丮Áö¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁ³½À´Ï´Ù. ¶ÇÇÑ TinyML(ÃʼÒÇü ¸Ó½Å·¯´×)ÀÇ °³¹ß·Î ¹èÅ͸® ±¸µ¿ IoT ±â±â¿¡¼­ ÃÊÀúÀü·Â AI ¿ëµµÀÌ °¡´ÉÇØÁ® ¿ø°ÝÁö³ª ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼­ AIÀÇ È°¿ë ¹üÀ§°¡ È®´ëµÇ¾ú½À´Ï´Ù. AI ±â¹Ý ÀÚ¿¬ ¾ð¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, ¿¹Ãø ºÐ¼®À» ÀÓº£µðµå ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© ÀÚÀ²Àû ÀÇ»ç°áÁ¤, º¸¾È °­È­, ÀûÀÀÇü ÇнÀ ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á »ê¾÷°è¿¡ ¶Ç ´Ù¸¥ º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. ¶ÇÇÑ TensorFlow Lite, OpenVINO, PyTorch Mobile°ú °°Àº AI ÇÁ·¹ÀÓ¿öÅ©´Â ÀÓº£µðµå ȯ°æ¿¡¼­ ¸Ó½Å·¯´× ¸ðµ¨ ¹èÆ÷¸¦ °£¼ÒÈ­ÇÏ¿© °³¹ßÀÚ¿Í ±â¾÷ÀÌ AI ÅëÇÕÀ» º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÀÓº£µðµå AI µµÀÔÀ» ÁÖµµÇÏ´Â »ê¾÷Àº?

ÀÓº£µðµå AI´Â ÇコÄɾî, ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­, °¡Àü, º¸¾È ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â AI°¡ žÀçµÈ ÀÓº£µðµå ½Ã½ºÅÛÀÌ ¿þ¾î·¯ºí ±â±â¿¡ Àû¿ëµÇ¾î ½Ç½Ã°£ °Ç°­ ¸ð´ÏÅ͸µ, Áúº´ Á¶±â ¹ß°ß, °³ÀÎ ¸ÂÃãÇü Ä¡·á Ãßõ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), ÀÚÀ²ÁÖÇàÂ÷, ¿¹Áöº¸Àü ¼Ö·ç¼Ç¿¡ AI¸¦ žÀçÇÏ¿© ¿î¼ÛÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­ »ê¾÷µµ AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸Àü, ·Îº¿°øÇÐ, ǰÁú°ü¸® ½Ã½ºÅÛÀÇ ÇýÅÃÀ» ¹Þ¾Æ »ý»ê¼º Çâ»ó°ú °¡µ¿Áß´Ü ½Ã°£ ´ÜÃàÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨ ±â±â, AI žÀç Ä«¸Þ¶ó, °¡»ó ºñ¼­ µî °¡ÀüÁ¦Ç°Àº ÀÓº£µðµå AI¸¦ ÅëÇÕÇÏ¿© »ç¿ëÀÚ °æÇè°ú ÀÚµ¿È­¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¸¾È ¹× °¨½Ã ¿ëµµ´Â ¾ó±¼ ÀνÄ, Çൿ ºÐ¼®, ÀÌ»ó ¡ÈÄ °¨Áö¿¡ AI¸¦ Ȱ¿ëÇÏ¿© º¸´Ù Áö´ÉÀûÀÌ°í ´Éµ¿ÀûÀÎ À§Çù ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿Í Áö´ÉÇü ÀÎÇÁ¶óÀÇ ºÎ»óÀ¸·Î ±³Åë °ü¸®, ȯ°æ ¸ð´ÏÅ͸µ, ¿¡³ÊÁö ÃÖÀûÈ­ µî AI ±â¹Ý ÀÓº£µðµå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÀÓº£µðµå ÀΰøÁö´É ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº?

ÀÓº£µðµå AI ½ÃÀåÀÇ ¼ºÀåÀº ¿§Áö ÄÄÇ»ÆÃ ¼ö¿ä Áõ°¡, AI Ĩ¼ÂÀÇ ¹ßÀü, IoT ¿ëµµÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¿ä±¸ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® µð¹ÙÀ̽º¿Í IoT »ýŰèÀÇ È®ÀåÀ¸·Î AI°¡ žÀçµÈ ÀÓº£µðµå ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ¸é¼­ ¿§Áö¿¡¼­ÀÇ Áö´ÉÇü ÀÚµ¿È­ ¹× ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Ŭ¶ó¿ìµå ±â¹Ý ½ºÅ丮Áö¿Í ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·¾ÆÁö°í, µð¹ÙÀ̽º¿¡¼­ AI 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾çÀÚÈ­ ¹× ÇÁ·ç´×°ú °°Àº AI ¸ðµ¨ ¾ÐÃà ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸®¼Ò½º¿¡ Á¦¾àÀÌ ÀÖ´Â µð¹ÙÀ̽º¿¡ º¹ÀâÇÑ AI ¸ðµ¨À» ½±°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÓº£µðµå AIÀÇ È®À强°ú È¿À²¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â ÀÚÀ²ÁÖÇàÂ÷ ¹× Ä¿³ØÆ¼µåÄ«·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ°í, AI¸¦ Ȱ¿ëÇÑ ÀÓº£µðµå ½Ã½ºÅÛÀÌ ³»ºñ°ÔÀ̼Ç, Ãæµ¹¹æÁö, ¿îÀüÀÚ ¸ð´ÏÅ͸µ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ½ÃÀåÀº ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI Çõ½Å°ú ¿§Áö ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¸¦ ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀº »õ·Î¿î ¼ºÀå ±âȸ¸¦ âÃâÇϰí AI Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î °³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ AI ±â¹Ý ÀÚµ¿È­ ¹× ½º¸¶Æ® ±â¼úÀ» Áö¼ÓÀûÀ¸·Î äÅÃÇÔ¿¡ µû¶ó ÀÓº£µðµå AI ½ÃÀåÀº Áö´ÉÇü ÄÄÇ»ÆÃÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦°ø(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), µ¥ÀÌÅÍ À¯Çü(¼¾¼­ µ¥ÀÌÅÍ, ¿µ»ó¡¤¿µ»ó µ¥ÀÌÅÍ, ¼öÄ¡ µ¥ÀÌÅÍ, Ä«Å×°í¸® µ¥ÀÌÅÍ, ±âŸ), ¾÷Á¾(ÇコÄɾî, BFSI, IT & ITES, ¼Ò¸Å, ¹Ìµð¾î & ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÀÚµ¿Â÷, Åë½Å, Á¦Á¶, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Embedded Artificial Intelligence Market to Reach US$22.9 Billion by 2030

The global market for Embedded Artificial Intelligence estimated at US$10.8 Billion in the year 2024, is expected to reach US$22.9 Billion by 2030, growing at a CAGR of 13.3% over the analysis period 2024-2030. Hardware, one of the segments analyzed in the report, is expected to record a 12.2% CAGR and reach US$13.3 Billion by the end of the analysis period. Growth in the Software segment is estimated at 14.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.8 Billion While China is Forecast to Grow at 12.6% CAGR

The Embedded Artificial Intelligence market in the U.S. is estimated at US$2.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.6 Billion by the year 2030 trailing a CAGR of 12.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.1% and 11.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.9% CAGR.

Global Embedded Artificial Intelligence Market - Key Trends & Drivers Summarized

What Is Embedded Artificial Intelligence, and Why Is It Transforming Smart Technology?

Embedded Artificial Intelligence (Embedded AI) refers to the integration of AI algorithms and machine learning capabilities into edge devices, enabling them to process data, make decisions, and execute tasks autonomously without relying on cloud computing. This technology is at the core of modern smart systems, allowing devices such as smartphones, IoT sensors, autonomous vehicles, medical equipment, and industrial robots to operate with intelligence and efficiency. Unlike traditional AI systems that rely on centralized cloud servers, Embedded AI processes data locally, reducing latency, enhancing security, and improving operational efficiency. The increasing demand for real-time decision-making, lower power consumption, and enhanced security in AI-driven applications has accelerated the adoption of Embedded AI across various industries. As AI models become more compact and computationally efficient, their integration into edge computing devices has become increasingly viable, fostering growth in applications such as smart surveillance, autonomous navigation, predictive maintenance, and personalized healthcare.

How Are Technological Advancements Enhancing Embedded AI Capabilities?

The rapid advancement of hardware acceleration, neural processing units (NPUs), and edge AI frameworks has significantly improved the efficiency and functionality of Embedded AI systems. AI chipsets specifically designed for edge computing, such as NVIDIA Jetson, Google Edge TPU, and Qualcomm Snapdragon AI Engine, have enhanced the ability of devices to process AI workloads with minimal power consumption. Advancements in federated learning have also allowed AI models to be trained directly on edge devices, ensuring data privacy and reducing dependency on cloud storage. Additionally, the development of TinyML (tiny machine learning) has enabled ultra-low-power AI applications in battery-operated IoT devices, expanding the scope of AI in remote and resource-constrained environments. The integration of AI-driven natural language processing (NLP), computer vision, and predictive analytics into embedded systems has further revolutionized industries by enabling autonomous decision-making, enhanced security, and adaptive learning capabilities. Moreover, AI frameworks such as TensorFlow Lite, OpenVINO, and PyTorch Mobile have simplified the deployment of machine learning models in embedded environments, making AI integration more accessible to developers and businesses.

Which Industries Are Leading the Adoption of Embedded AI?

The adoption of Embedded AI is rapidly increasing across industries such as healthcare, automotive, industrial automation, consumer electronics, and security surveillance. In healthcare, AI-powered embedded systems are being used in wearable devices for real-time health monitoring, early disease detection, and personalized treatment recommendations. The automotive industry has embraced Embedded AI in advanced driver-assistance systems (ADAS), autonomous vehicles, and predictive maintenance solutions, improving safety and efficiency in transportation. Industrial automation has also benefited from AI-driven predictive maintenance, robotics, and quality control systems that enhance productivity and reduce operational downtime. Consumer electronics, including smart home devices, AI-powered cameras, and virtual assistants, are integrating Embedded AI to enhance user experience and automation. Additionally, security and surveillance applications have leveraged Embedded AI for facial recognition, behavior analysis, and anomaly detection, enabling more intelligent and proactive threat monitoring. The rise of smart cities and intelligent infrastructure has further fueled demand for AI-powered embedded solutions in traffic management, environmental monitoring, and energy optimization.

What Is Driving the Growth of the Embedded Artificial Intelligence Market?

The growth in the Embedded AI market is driven by several factors, including the increasing demand for edge computing, advancements in AI chipsets, and the rising need for real-time data processing in IoT applications. The expansion of smart devices and the IoT ecosystem has accelerated the adoption of AI-powered embedded systems, enabling intelligent automation and decision-making at the edge. The growing emphasis on data security and privacy has also fueled the demand for on-device AI processing, reducing reliance on cloud-based storage and computation. Additionally, advancements in AI model compression techniques, such as quantization and pruning, have facilitated the deployment of complex AI models on resource-constrained devices, making Embedded AI more scalable and efficient. The automotive industry's shift toward autonomous and connected vehicles has further strengthened the market, as AI-driven embedded systems play a crucial role in navigation, collision avoidance, and driver monitoring. Furthermore, government initiatives promoting AI innovation and edge computing infrastructure have created new growth opportunities, fostering investments in AI hardware and software development. As industries continue to adopt AI-driven automation and smart technologies, the Embedded AI market is expected to witness significant expansion, shaping the future of intelligent computing.

SCOPE OF STUDY:

The report analyzes the Embedded Artificial Intelligence market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Hardware, Software, Services); Data Type (Sensor Data, Image & Video Data, Numeric Data, Categorical Data, Others); Vertical (Healthcare, BFSI, IT & ITES, Retail, Media & Entertainment, Automotive, Telecom, Manufacturing, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â