¼¼°èÀÇ Áö·Ú ŽÁö ½Ã½ºÅÛ ½ÃÀå
Mine Detection System
»óǰÄÚµå : 1787168
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 278 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Áö·Ú ŽÁö ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 81¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 58¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Áö·Ú ŽÁö ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 5.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 81¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Â÷·® žÀçÇü Ç÷§ÆûÀº CAGR 4.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 28¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¡¾îº» Ç÷§Æû ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯, Áß±¹Àº CAGR 8.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Áö·Ú ŽÁö ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 16¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.9%¿Í 5.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.7%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Áö·Ú ŽÁö ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Áö·Ú ŽÁö ½Ã½ºÅÛÀ̶õ ¹«¾ùÀ̸ç, ¿Ö ±¹¹æ ¹× ÀεµÁÖÀÇ È°µ¿¿¡ ÇʼöÀûÀΰ¡?

Áö·Ú ŽÁö ½Ã½ºÅÛÀº ±º»ç, ÀεµÁÖÀÇ, ¾Èº¸ Ȱµ¿¿¡¼­ Áö·Ú, ºÒ¹ßź(UXO), ±ÞÁ¶Æø¹ß¹°(IED)ÀÇ À§Ä¡¸¦ ÆÄ¾ÇÇÏ°í ½Äº°ÇÏ´Â µ¥ »ç¿ëµÇ´Â Ư¼öÇÑ ±â¼ú ¹× ÀåºñÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀüÀå Á¤¸®, ´ë¹Ý¶õ Ȱµ¿, ºÐÀï ÈÄ Àç°Ç, ±¹°æ º¸¾È¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¼û°ÜÁø Æø¹ß¹° À§ÇùÀ¸·Î ÀÎÇÑ ºÎ»ó°ú »ç¸ÁÀ» ¹æÁöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ºñ´ëĪÀü, ´ëÅ×·¯ Ȱµ¿, ºÐÀï ÈÄ Áö·ÚÁ¦°Å Ȱµ¿ÀÇ È®»êÀ¸·Î Áö·Ú ŽÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª, ƯÈ÷ ¾ÆÇÁ¸®Ä«, Áßµ¿, µ¿³²¾Æ½Ã¾Æ¿¡¼­´Â °ú°Å ºÐÀïÀ¸·Î ÀÎÇÑ Áö·Ú¿Í ºÒ¹ßźÀÇ ¿À¿°ÀÌ ¿©ÀüÈ÷ ½É°¢ÇÕ´Ï´Ù. ¶ÇÇÑ, ¹ÝÁ¤ºÎ ¼¼·Â ¹× Å×·¯ Á¶Á÷¿¡ ÀÇÇÑ iED »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÷´Ü °¨Áö ±â¼úÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

Áö·Ú ŽÁö ½Ã½ºÅÛÀº ÀεµÀû Áö·ÚÁ¦°Å Ȱµ¿¿¡µµ ÇʼöÀûÀ̸ç, À¯¿£Áö·Ú´ëÃ¥±¹(UNMAS), HALO Æ®·¯½ºÆ®, ±¹Á¦Áö·Ú±ÝÁöÄ·ÆäÀÎ(ICBL) µîÀÇ ´Üü´Â Áö·Ú°¡ ¸Å¼³µÈ Áö¿ªÀ» Á¦°ÅÇÏ°í ¾ÈÀüÇÑ ¹Î°£ÀÎ ÀçÁ¤Âø°ú °æÁ¦°³¹ßÀ» °¡´ÉÇÏ°Ô Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ºñÁ¤ºÎ±â±¸(NGO)´Â Áö·Ú Á¦°Å ÀÛ¾÷ÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ÀÚµ¿È­ ¹× ·Îº¿È­µÈ Áö·Ú °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Áö·Ú °¨Áö ½Ã½ºÅÛÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Áö·Ú °¨Áö »ê¾÷Àº ¼¾¼­ ±â¼ú, ÀΰøÁö´É(AI), ·Îº¿ °øÇÐ, ÀÚÀ² ½Ã½ºÅÛ¿¡¼­ °ý¸ñÇÒ ¸¸ÇÑ ÁøÀüÀ» º¸À̸ç Áö·Ú Á¦°Å ÀÛ¾÷ÀÇ Á¤È®¼º, È¿À²¼º, ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

°¡Àå ¿µÇâ·Â ÀÖ´Â ±â¼ú Çõ½Å Áß Çϳª´Â ÁöÇÏ ±í¼÷ÀÌ ¸Å¼³µÈ Áö·Ú³ª ºÒ¹ßźÀ» °¨ÁöÇÏ´Â ÁöÇÏ ·¹ÀÌ´õ(GPR) ±â¼ú °³¹ßÀÔ´Ï´Ù. GPR°ú ±Ý¼Ó °¨Áö¸¦ °áÇÕÇÑ Ãֽеà¾ó ¼¾¼­ ½Ã½ºÅÛÀº ±Ý¼Ó Æø¹ß¹°°ú ºñ±Ý¼Ó Æø¹ß¹°À» ±¸ºÐÇÏ¿© °¨Áö Á¤È®µµ¸¦ Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ÇÃ¶ó½ºÆ½ Áö·Ú³ª ±Ý¼Ó ÇÔ·®ÀÌ ³·Àº IED°¡ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â Áö¿ª¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù.

AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº Áö·Ú °¨Áö¿¡ ¶Ç ´Ù¸¥ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. AI°¡ žÀçµÈ ½Ã½ºÅÛÀº ¹æ´ëÇÑ ¾çÀÇ ¼¾¼­ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÆÐÅÏÀ» ½Äº°Çϰí, Áö·Ú¿Í ¹«ÇØÇÑ ±Ý¼Ó Á¶°¢À» ±¸º°ÇÏ¿© ¿À°æº¸¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÀÛ¾÷ È¿À²À» ³ôÀ̰í Áö·Ú Á¦°Å ÀÓ¹«¿¡¼­ ÀÎÀû ¿À·ùÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

ÀÚÀ²ÁÖÇà ¹× ·Îº¿Çü Áö·Ú°¨Áö Â÷·® ¶ÇÇÑ ¾÷°è¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. AI ±¸µ¿ ¼¾¼­°¡ žÀçµÈ ¹«ÀÎ Áö»ó Â÷·®(UGV)Àº À§ÇèÁö¿ª¿¡¼­ »ç¶÷ÀÇ ÀÛ¾÷À» À§Çè¿¡ ºü¶ß¸®Áö ¾Ê°í Ȱµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ·Îº¿ Ç÷§ÆûÀº GPR, ¿­È­»ó, ´ÙÁß ½ºÆåÆ®·³ ºÐ¼®À» °áÇÕÇÏ¿© Æø¹ß¼º À§ÇùÀ» °¨ÁöÇÏ°í µ¿½Ã¿¡ ¿î¿µÀÚ¿¡°Ô ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ Àü¼ÛÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ÇÏÀÌÆÛ½ºÆåÆ®·³ À̹ÌÁö¿Í Àڷ°踦 »ç¿ëÇÏ´Â µå·Ð ±â¹Ý °øÁß Áö·Ú °¨Áö´Â Áö»ó±ºÀ» ¹èÄ¡Çϱâ Àü¿¡ ¿À¿°µÈ Áö¿ªÀ» ¸ÅÇÎÇϱâ À§ÇØ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ȹ±âÀûÀÎ ±â¼ú Çõ½ÅÀº ¹ÙÀÌ¿À¼¾¼­ ±â¹ÝÀÇ °¨Áö ½Ã½ºÅÛ °³¹ßÀÔ´Ï´Ù. Ưº°È÷ ÈÆ·ÃµÈ Áã, ²Ü¹ú, À¯ÀüÀÚ º¯Çü ½Ä¹°ÀÌ ³¿»õ Àνİú È­Çй°Áú °¨Áö¸¦ ÅëÇØ Áö·Ú¸¦ °¨ÁöÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ »ý¹°ÇÐÀû °¨Áö ¹æ¹ýÀº ƯÈ÷ ¿Üµý Áö¿ªÀ̳ª Á¢±ÙÀÌ ¾î·Á¿î Áö¿ª¿¡¼­ ±âÁ¸ÀÇ ±â°è½Ä Áö·Ú °¨Áö µµ±¸¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Àúºñ¿ë, °í°¨µµÀÇ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

Áö·Ú°¨Áö±â ½ÃÀåÀÌ Á÷¸éÇÑ ÁÖ¿ä °úÁ¦´Â?

Áö·Ú °¨Áö ±â¼úÀÇ ¹ßÀü¿¡µµ ºÒ±¸Çϰí, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ º¸±Þ°ú È¿°ú¸¦ ¹æÇØÇÏ´Â ¸î °¡Áö ¹®Á¦°¡ ÀÖ½À´Ï´Ù.

ÁÖ¿ä °úÁ¦ Áß Çϳª´Â Áö·Ú Á¦°Å ÇÁ·Î±×·¥¿¡ ´ëÇÑ ³ôÀº ºñ¿ë°ú ÇÑÁ¤µÈ ÀÚ±ÝÀÔ´Ï´Ù. ÷´Ü Áö·Ú °¨Áö ½Ã½ºÅÛ, ƯÈ÷ AI, ·Îº¿ °øÇÐ, GPRÀ» ÅëÇÕÇÑ ½Ã½ºÅÛÀº ¿¬±¸ °³¹ß ¹× ¹èÄ¡¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸¹Àº ÀεµÁÖÀÇ ´Üü¿Í °³¹ßµµ»ó±¹µéÀº ÃÖ÷´Ü Áö·Ú ŽÁö ½Ã½ºÅÛ¸¦ Á¶´ÞÇÒ ¼ö ÀÖ´Â Àç¿øÀÌ ¾ø±â ¶§¹®¿¡ ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀº Àü ¼¼°è Áö·Ú Á¦°Å Ȱµ¿À» È®´ëÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Å« Àå¾Ö¹°Àº Áö·Ú ¸Å¼³ Áö¿ªÀÇ ÁöÇü°ú ȯ°æ Á¶°ÇÀÇ º¹À⼺ÀÔ´Ï´Ù. ´ëºÎºÐÀÇ Áö·Ú´Â ¹Ð¸²À̳ª ¾Ï¹Ý, ¼öÁß¿¡ ¹¯Çô Àֱ⠶§¹®¿¡ ÷´Ü ¼¾¼­¸¦ »ç¿ëÇØµµ °¨Áö°¡ ¾î·Æ½À´Ï´Ù. Åä¾ç ±¸¼º, ¼öºÐ ¼öÁØ, ÀüÀڱ⠰£¼·°ú °°Àº ȯ°æÀû ¿äÀεµ Áö·Ú °¨Áö ½Ã½ºÅÛÀÇ Á¤È®µµ¿¡ ¿µÇâÀ» ¹ÌÄ¡¹Ç·Î, ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ¸ÖƼ¼¾¼­ Á¢±ÙÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¿À°¨Áö ¹× ¿À°ËÃâÀÇ À§ÇèÀº ¿©ÀüÈ÷ ½É°¢ÇÑ ¹®Á¦ÀÔ´Ï´Ù. Ãֽа¨Áö ±â¼úÀº Á¤È®µµ°¡ Çâ»óµÇ¾úÁö¸¸, Æø¹ß¹°°ú ¹«ÇØÇÑ ÆÄÆíÀ» ±¸º°ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ¾î·Æ°í, ƯÈ÷ ±Ý¼Ó ¿À¿°ÀÌ ¸¹Àº ºÐÀï ÈÄ Áö¿ª¿¡¼­´Â ´õ¿í ¾î·Æ½À´Ï´Ù. ¿À°¨Áö´Â ºÒÇÊ¿äÇÑ Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁö°í, ¿À°¨Áö´Â Àη°ú ¹Î°£Àο¡°Ô ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ´ë±Ô¸ð Áö·ÚÁ¦°Å ÀÛ¾÷Àº ¹°·ù ¹× ¿î¿µ»óÀÇ Á¦¾àÀ¸·Î ÀÎÇØ ¾î·Á¿òÀ» °Þ°Ô µË´Ï´Ù. ÀüÀïÀ¸·Î ÆóÇã°¡ µÈ ¿Üµý Áö¿ª¿¡ Áö·Ú °¨Áö ½Ã½ºÅÛÀ» ¹èÄ¡ÇÏ·Á¸é ¾ÈÀüÇϰí È¿°úÀûÀΠȰµ¿À» º¸ÀåÇϱâ À§ÇØ Àü¹®ÀûÀÎ ÈÆ·Ã, ÀÎÇÁ¶ó Áö¿ø ¹× ¾ÈÀü Á¶Ä¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ºÐÀïÁö¿ª¿¡¼­ Áö·ÚÁ¦°Å ¿ä¿øÀº Àû´ë¼¼·Â, ºÒ¹ßź, Àü¼± À̵¿ µîÀÇ À§Çè¿¡ Á÷¸éÇÒ ¼ö ÀÖ¾î Áö·ÚÁ¦°Å ÀÛ¾÷À» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù.

Áö·Ú ŽÁö ½Ã½ºÅÛ ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

Áö·Ú°¨Áö±â ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ±¹¹æ ¿¹»ê Áõ°¡, ´ëÅ×·¯ Ȱµ¿ Áõ°¡, ÀεµÀû Áö·Ú Á¦°Å ÇÁ·Î±×·¥ È®´ë, ¼¾¼­ ¹× ·Îº¿ ±â¼úÀÇ ¹ßÀüÀÔ´Ï´Ù.

°¡Àå Å« ¼ºÀå ¿äÀÎ Áß Çϳª´Â ±¹¹æ ¹× ±¹Åä ¾Èº¸ ºÐ¾ßÀÇ È®´ëÀÔ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ±¹°æ º¸¾È, ´ëÅ×·¯ ÀÛÀü, ±º»ç °øÇÐ ´É·ÂÀ» °­È­Çϱâ À§ÇØ Ã·´Ü Áö·Ú °¨Áö ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ºñ´ëĪ ÀüÀï¿¡¼­ IEDÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±¹¹æ ±â°üÀº ¼û°ÜÁø Æø¹ß¹°ÀÇ À§ÇùÀ¸·ÎºÎÅÍ ±º¿Í ½Ã¹ÎÀ» º¸È£Çϱâ À§ÇØ Â÷¼¼´ë °¨Áö ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÀεµÀû Áö·ÚÁ¦°Å¿Í ÀüÈÄ º¹±¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ½ÃÀå ¼ºÀåÀÇ Å« ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹, À¯·´¿¬ÇÕ(EU), ±¹¹«ºÎ µîÀÇ ±â°üÀº ºÐÀï Áö¿ª¿¡¼­ Áö·Ú Á¦°Å Ȱµ¿¿¡ ÀÚ±ÝÀ» ÇÒ´çÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ºñ¿ë È¿À²ÀûÀ̰í ÈÞ´ë°¡ °£ÆíÇÏ¸ç »ç¿ëÇϱ⠽¬¿î Áö·Ú ŽÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Î°üÇù·Â(PPP)°ú ±¹Á¦Çù·ÂÀ¸·ÎÀÇ Àüȯµµ ÀÚ¿øÀÌ ÇÑÁ¤µÈ ȯ°æ¿¡¼­ ÷´Ü Áö·Ú°¨Áö ±â¼ú °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

AI¸¦ ÅëÇÑ ÀÚµ¿È­, µå·ÐÀ» ÅëÇÑ °¨Áö, ÇÏÀÌÆÛ½ºÆåÆ®·³ À̹ÌÁö ó¸® µîÀÇ ±â¼ú ¹ßÀüÀº »õ·Î¿î ½ÃÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀοøÀÇ ¾ÈÀüÀÌ ÃÖ¿ì¼±½ÃµÇ´Â ±º»ç ¹× ±¹¹æ ºÐ¾ß¿¡¼­´Â ÀÚÀ²-¿ø°Ý Á¶Á¾Çü Áö·Ú ŽÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡º±°í °ß°íÇÑ ¸ÖƼ ¼¾¼­ °¨Áö ½Ã½ºÅÛÀÇ °³¹ß·Î ´Ù¾çÇÑ ÀÛÀü ȯ°æ¿¡¼­ Áö·Ú °¨Áö ¼Ö·ç¼ÇÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

½º¸¶Æ® ±¹¹æ ½Ã½ºÅÛ°ú ³×Æ®¿öÅ© Á᫐ ÀüÀï Àü·«ÀÇ Ã¤Åà Áõ°¡µµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Çö´ë ÀüÀå Àü¼ú¿¡¼­´Â »óȲ Àνİú ÀÇ»ç °áÁ¤À» °­È­Çϱâ À§ÇØ ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º, À§Çù ¸ÅÇÎ, ÅëÇÕ ¼¾¼­ ³×Æ®¿öÅ©°¡ ÇÊ¿äÇÕ´Ï´Ù. ¸í·É ¹× Á¦¾î(C2) ³×Æ®¿öÅ©, Áö¸®°ø°£Á¤º¸½Ã½ºÅÛ(GIS), ¹«ÀÎ ·Îº¿ Ç÷§Æû¿¡ ÅëÇÕ °¡´ÉÇÑ Áö·Ú°¨Áö½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸¶Áö¸·À¸·Î, Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¿ÀŸ¿Í Á¶¾à(Áö·Ú±ÝÁöÇù¾à) µî Áö·ÚÁ¦°Å¿¡ °üÇÑ ±¹Á¦Çù¾àÀÌ Àü ¼¼°èÀÇ Áö·ÚÁ¦°Å ³ë·ÂÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ Á¶¾à¿¡ °¡ÀÔÇÑ ±¹°¡µéÀº ±âÁ¸ Áö·Ú¸¦ Á¦°ÅÇϰí, »õ·Î¿î Áö·Ú ¹èÄ¡¸¦ ¹æÁöÇϸç, Áö·Ú °¨Áö ¹× Á¦°Å ±â¼ú Çõ½ÅÀ» Áö¿øÇÒ °ÍÀ» ¾à¼ÓÇϰí ÀÖ½À´Ï´Ù.

°á·Ð

Áö·Ú°¨Áö±â ½ÃÀåÀº ¼¼°è ¾Èº¸ ¿ì·Á Áõ°¡, °¨Áö ±â¼úÀÇ ¹ßÀü, ÀεµÀû Áö·Ú Á¦°Å Ȱµ¿ Áõ°¡·Î ÀÎÇØ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ³ôÀº ºñ¿ë, ÁöÇüÀÇ º¹À⼺, ¹°·ù Á¦¾à µîÀÇ °úÁ¦´Â ¿©ÀüÇÏÁö¸¸, AI ±â¹Ý, ·Îº¿Çü, ¹ÙÀÌ¿À¼¾¼­Çü µî »õ·Î¿î ¼Ö·ç¼ÇÀÌ µîÀåÇϸ鼭 Áö·ÚÁ¦°Å ÀÛ¾÷ÀÇ È¿°ú¿Í È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ, NGO, ±¹¹æ ±â°üÀÌ ¾ÈÀüÇϰí È¿À²ÀûÀÌ¸ç ºñ¿ë È¿À²ÀûÀÎ Áö·Ú Á¦°Å ±â¼úÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó Â÷¼¼´ë Áö·Ú °¨Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¸î ³â µ¿¾È Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Àü°³ Ç÷§Æû(Â÷·® žÀç Ç÷§Æû, °øÁß Ç÷§Æû, ÇØ»ó Ç÷§Æû, ÇÚµåÇïµå Ç÷§Æû);¿ëµµ(¹æÀ§ ¿ëµµ, ±¹Åä¾Èº¸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Mine Detection System Market to Reach US$8.1 Billion by 2030

The global market for Mine Detection System estimated at US$5.8 Billion in the year 2024, is expected to reach US$8.1 Billion by 2030, growing at a CAGR of 5.7% over the analysis period 2024-2030. Vehicle Mounted Platform, one of the segments analyzed in the report, is expected to record a 4.2% CAGR and reach US$2.8 Billion by the end of the analysis period. Growth in the Airborne Platform segment is estimated at 6.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 8.7% CAGR

The Mine Detection System market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.6 Billion by the year 2030 trailing a CAGR of 8.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 5.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.7% CAGR.

Global Mine Detection System Market - Key Trends & Drivers Summarized

What Are Mine Detection Systems and Why Are They Critical for Defense and Humanitarian Efforts?

Mine detection systems are specialized technologies and equipment used to locate and identify landmines, unexploded ordnance (UXO), and improvised explosive devices (IEDs) in military, humanitarian, and security operations. These systems play a crucial role in battlefield clearance, counterinsurgency efforts, post-conflict rehabilitation, and border security, helping to prevent injuries and fatalities caused by hidden explosive threats.

The global demand for mine detection systems has surged due to the increasing prevalence of asymmetric warfare, counterterrorism operations, and post-conflict demining activities. Many regions, particularly in Africa, the Middle East, and Southeast Asia, remain heavily contaminated with landmines and UXO from past conflicts. Additionally, the rising use of IEDs by insurgent groups and terrorist organizations has further heightened the need for advanced detection technologies.

Mine detection systems are also vital in humanitarian demining efforts, where organizations such as the United Nations Mine Action Service (UNMAS), the HALO Trust, and the International Campaign to Ban Landmines (ICBL) work to clear mine-infested areas to enable safe civilian resettlement and economic development. Governments and non-governmental organizations (NGOs) are increasingly investing in automated and robotic mine detection solutions to improve safety and efficiency in demining operations.

How Are Technological Advancements Transforming Mine Detection Systems?

The mine detection industry has seen significant advancements in sensor technology, artificial intelligence (AI), robotics, and autonomous systems, enhancing the accuracy, efficiency, and safety of demining operations.

One of the most impactful innovations is the development of ground-penetrating radar (GPR) technology, which enables deep subsurface imaging to detect buried mines and UXOs. Modern dual-sensor systems, combining GPR with metal detection, have significantly improved detection accuracy by distinguishing between metallic and non-metallic explosives. These hybrid systems are particularly valuable in areas where plastic mines and low-metal-content IEDs are commonly used.

The integration of AI and machine learning is further revolutionizing mine detection. AI-powered systems can analyze vast amounts of sensor data, identify patterns, and differentiate between landmines and harmless metallic debris, reducing false alarms. This advancement enhances operational efficiency and minimizes the risk of human errors in demining missions.

Autonomous and robotic mine detection vehicles are also transforming the industry. Unmanned ground vehicles (UGVs) equipped with AI-driven sensors can operate in hazardous zones without endangering human personnel. These robotic platforms use a combination of GPR, infrared imaging, and multispectral analysis to detect explosive threats while transmitting real-time data to operators. Similarly, drone-based aerial mine detection using hyperspectral imaging and magnetometry is gaining traction for mapping contaminated areas before deploying ground units.

Another groundbreaking innovation is the development of biosensor-based detection systems, where specially trained rats, bees, and genetically modified plants are used to detect landmines through scent recognition and chemical detection. These biological detection methods offer a low-cost, highly sensitive alternative to traditional mechanical mine detection tools, particularly in remote and difficult-to-access areas.

What Are the Key Challenges Facing the Mine Detection System Market?

Despite the advancements in mine detection technology, several challenges hinder the widespread adoption and effectiveness of these systems.

One of the primary challenges is high costs and limited funding for demining programs. Advanced mine detection systems, particularly those incorporating AI, robotics, and GPR, require significant investment in research, development, and deployment. Many humanitarian organizations and developing nations lack the financial resources to procure state-of-the-art mine detection equipment, making cost-effective solutions essential for expanding global demining efforts.

Another major hurdle is the complexity of terrain and environmental conditions in mine-infested areas. Many landmines are buried in dense vegetation, rocky terrain, or underwater, making detection difficult even with advanced sensors. Environmental factors such as soil composition, moisture levels, and electromagnetic interference can also affect the accuracy of mine detection systems, necessitating multi-sensor approaches to improve reliability.

The risk of false positives and false negatives remains a persistent issue. While modern detection technologies have improved accuracy, distinguishing between explosive devices and harmless debris is still challenging, particularly in post-conflict areas with high levels of metallic contamination. False positives can lead to unnecessary delays and increased costs, while false negatives pose significant risks to personnel and civilians.

Additionally, logistical and operational constraints pose challenges for large-scale demining operations. Deploying mine detection systems in remote, war-torn regions requires specialized training, infrastructure support, and security measures to ensure safe and effective operations. In conflict zones, demining personnel may face risks from hostile forces, unexploded cluster munitions, and shifting frontlines, complicating mine clearance efforts.

What Are the Key Growth Drivers for the Mine Detection System Market?

The growth in the mine detection system market is driven by rising defense budgets, increasing counterterrorism efforts, expanding humanitarian demining programs, and advancements in sensor and robotic technologies.

One of the most significant growth drivers is the expanding defense and homeland security sector. Governments worldwide are investing heavily in advanced mine detection systems to enhance border security, counterinsurgency operations, and military engineering capabilities. The increased use of IEDs in asymmetric warfare has prompted defense agencies to adopt next-generation detection solutions to protect troops and civilian populations from hidden explosive threats.

The growing focus on humanitarian demining and post-war reconstruction is another major factor fueling market growth. Organizations such as the United Nations, the European Union, and the U.S. State Department are allocating funds for demining initiatives in conflict-affected regions, driving demand for cost-effective, portable, and easy-to-use mine detection equipment. The shift toward public-private partnerships (PPPs) and international cooperation is also enabling the deployment of advanced mine detection technologies in resource-limited settings.

Technological advancements in AI-driven automation, drone-based detection, and hyperspectral imaging are creating new market opportunities. The demand for autonomous and remotely operated mine detection systems is increasing, particularly in military and defense applications where personnel safety is a top priority. Additionally, the development of lightweight, ruggedized, and multi-sensor detection systems is expanding the use of mine detection solutions in diverse operational environments.

The rising adoption of smart defense systems and network-centric warfare strategies is also contributing to market growth. Modern battlefield tactics require real-time intelligence, threat mapping, and integrated sensor networks to enhance situational awareness and decision-making. Mine detection systems that can be integrated into command-and-control (C2) networks, geospatial information systems (GIS), and unmanned robotic platforms are expected to see increased adoption.

Finally, government initiatives and international treaties on landmine clearance, such as the Ottawa Treaty (Mine Ban Treaty), are accelerating global demining efforts. Countries signatory to these treaties are committed to removing existing landmines, preventing new mine deployments, and supporting technological innovations in mine detection and clearance.

Conclusion

The mine detection system market is experiencing steady growth due to rising global security concerns, advancements in detection technology, and increasing humanitarian demining efforts. While challenges such as high costs, terrain complexities, and logistical constraints remain, emerging AI-driven, robotic, and biosensor-based solutions are improving the effectiveness and efficiency of mine clearance operations. As governments, NGOs, and defense organizations prioritize safe, efficient, and cost-effective demining technologies, the demand for next-generation mine detection systems is expected to expand significantly in the coming years.

SCOPE OF STUDY:

The report analyzes the Mine Detection System market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Deployment Platform (Vehicle Mounted Platform, Airborne Platform, Marine Based Platform, Handheld Platform); Application (Defense Application, Homeland Security Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â