¼¼°èÀÇ MCR ±â¹Ý SVC(Static VAR Compensator) ½ÃÀå
MCR Based Static VAR Compensator
»óǰÄÚµå : 1787115
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 191 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ MCR ±â¹Ý SVC ½ÃÀåÀº 2030³â±îÁö 5¾ï 3,650¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 4¾ï 5,680¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â MCR ±â¹Ý SVC ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 2.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5¾ï 3,650¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ À¯Æ¿¸®Æ¼ ¿ëµµ´Â CAGR 2.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2¾ï 1,390¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. öµµ ¿ëµµ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 2,450¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ MCR ±â¹Ý SVC ½ÃÀåÀº 2024³â¿¡ 1¾ï 2,450¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 5.2%·Î 2030³â±îÁö 1¾ï 400¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.0%¿Í 2.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.5%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ MCR ±â¹Ý SVC ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

MCR ±â¹Ý SVC°¡ Àü·Â°èÅë ¾ÈÁ¤È­¿¡ ÁÖ¸ñ¹Þ´Â ÀÌÀ¯´Â?

ÀÚ±â Á¦¾î ¹ÝÀÀ±â(MCR) ±â¹ÝÀÇ SVC(SVC)´Â ƯÈ÷ °èÅëÀÌ º¹ÀâÇØÁö°í Àç»ý ¿¡³ÊÁö°¡ ÅëÇյǴ ½Ã´ë¿¡ Ãֽй«È¿Àü·Â °ü¸® Àü·«¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ºü¸£°Ô º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. Àü·Â¸ÁÀÇ ºÐ»êÈ­°¡ ÁøÇàµÇ°í, ºÎÇϰ¡ º¯µ¿Çϸç, ž籤, dz·Â µî °£ÇæÀûÀÎ ¿¡³ÊÁö¿øÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ Àü¾Ð ¾ÈÁ¤¼º°ú Àü·Â ǰÁúÀ» À¯ÁöÇÏ´Â °ÍÀÌ Àü·Âȸ»ç¿Í °èÅë ¿î¿µÀÚ¿¡°Ô Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. MCR ±â¹Ý SVC´Â µ¿Àû ¹«È¿Àü·Â º¸»óÀ» À§ÇÑ °íµµ·Î Á¦¾î °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© °íÀü¾Ð ¼ÛÀü ½Ã½ºÅÛ¿¡¼­ ½Ç½Ã°£ Àü¾Ð Á¶Á¤ ¹× Àü¾Ð Çø®Ä¿¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ »çÀ̸®½ºÅÍ ±â¹Ý SVC¿Í ´Þ¸® MCR ±â¹Ý ½Ã½ºÅÛÀº ÀÚ±â Æ÷È­ Á¦¾î¸¦ Ȱ¿ëÇÏ¿© º¸´Ù ¿øÈ°ÇÑ Àü¾Ð Áö¿ø°ú °íÁ¶ÆÄ °¨¼Ò¸¦ ÅëÇÑ ½Å·Ú¼º Çâ»óÀ» ½ÇÇöÇÕ´Ï´Ù. ½ºÀ§Äª ¼ÒÀÚ ¼ö°¡ ÀûÀº °ß°íÇÑ ÆÐ½Ãºê ¼³°è·Î Àå±âÀûÀÎ ¾ÈÁ¤¼ºÀ» ³ôÀ̰í À¯Áöº¸¼ö Çʿ伺À» ÁÙÀÔ´Ï´Ù. °¢±¹ÀÌ ¼ÛÀü ÀÎÇÁ¶ó¸¦ Çö´ëÈ­ÇÏ°í ¹«È¿Àü·Â Áö¿ø¿¡ ´ëÇÑ ±×¸®µå ÄÚµå ¿ä°ÇÀ» ÃæÁ·Çϱâ À§ÇØ ³ë·ÂÇϸ鼭 MCR ±â¹Ý SVCÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. öµµ Àü±âÈ­, °í¾ÐÁ÷·ù¼ÛÀü(HVDC) ¸µÅ©, ´ë±Ô¸ð »ê¾÷½Ã¼³ÀÇ ±Þ¼ÓÇÑ Áõ°¡·Î ÀÎÇØ ±× °ü·Ã¼ºÀÌ ´õ¿í ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¼³µéÀº ¸ðµÎ È¥¶õÀ» ÇÇÇÏ°í ¿î¿µ È¿À²¼º ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ °í±Þ ¹«È¿Àü·Â ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.

Àü·Â¸Á Çö´ëÈ­ ¹× Àç»ý¿¡³ÊÁö Æ®·»µå°¡ ¾î¶»°Ô ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí Àִ°¡?

º¸´Ù ½º¸¶Æ®Çϰí ģȯ°æÀûÀÎ ¼ÛÀü¸ÁÀ» ÇâÇÑ ¼¼°èÀÇ ¿òÁ÷ÀÓÀº MCR ±â¹Ý Á¤Àû VAR Ä¿ÆÐ½ÃÅÍ Ã¤Åÿ¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í Àü·Âȸ»ç°¡ Àç»ý¿¡³ÊÁö ¸ñÇ¥¸¦ Áö¿øÇϱâ À§ÇØ Àü·Â¸Á Çö´ëÈ­¿¡ ÅõÀÚÇÏ´Â °¡¿îµ¥, SVC¿Í °°Àº µ¿Àû Àü¾Ð Á¦¾î ±â¼úÀº ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ´Â Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ dz·Â¹ßÀü¼Ò³ª ž籤 ¹ßÀü¼Ò¿¡¼­´Â Àü¾Ð º¯µ¿À̳ª ¿ª·ü º¯µ¿ÀÌ ¹ß»ýÇϴµ¥, ±âÁ¸ÀÇ ¹«È¿Àü·Â ½Ã½ºÅÛÀ¸·Î´Â À̸¦ ¿ÏÈ­ÇÏ±â ¾î·Æ½À´Ï´Ù. MCR ±â¹Ý SVC´Â ºü¸¥ ÀÀ´ä°ú ºÎµå·¯¿î Á¶Á¤ ±â´ÉÀ» °®Ãß°í ÀÖ¾î º¹ÀâÇÑ ½ºÀ§Äª °úµµ Çö»óÀ» ¹ß»ý½ÃŰÁö ¾Ê°í ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ¼ÛÀü¼±ÀÌ Àå°Å¸®¿¡ °ÉÃÄ ÀÖ´Â ½ÅÈï±¹¿¡¼­´Â Àü¾Ð °­ÇÏ¿Í ¹«È¿Àü·Â ¼Õ½ÇÀÌ ½É°¢ÇÑ ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. MCR ±â¹Ý SVC¸¦ µµÀÔÇÔÀ¸·Î½á ƯÈ÷ º¯µ¿ÇÏ´Â ºÎÇÏ Á¶°Ç¿¡¼­ Àü¾Ð ÇÁ·ÎÆÄÀÏÀ» Çã¿ë ¹üÀ§ ³»·Î À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µµ½ÃÈ­ Ãß¼¼¿Í ½º¸¶Æ®½ÃƼÀÇ ºÎ»óÀ¸·Î Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ºÎÇϰ¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ°í ¿¡³ÊÁö ǰÁúÀ» º¸ÀåÇϱâ À§ÇØ È¿À²ÀûÀÎ VAR º¸»óÀ» »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ¾ÆÅ© ¿ë±¤·Î, ½Ã¸àÆ® °øÀå, Á¤À¯°øÀå µî ºÎÇÏ º¯µ¿ÀÌ ½ÉÇÏ°í ºÎÇÏ º¯µ¿ÀÌ ÀæÀº »ê¾÷¿ëµµ¿¡¼­ MCR ±â¹Ý SVC´Â Àü¾ÐÀ» ¾ÈÁ¤È­ÇÏ¿© ÃÖÀûÀÇ ¿ª·üÀ» À¯ÁöÇÔÀ¸·Î½á ¿¡³ÊÁö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÌ ±â¼úÀº ´Ù¸¥ Àü·ÂÀüÀÚ ±â¹Ý ½Ã½ºÅÛ°ú º´·Ä·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãß°í ÀÖ¾î ÇÏÀ̺긮µå º¸»ó ¾ÆÅ°ÅØÃ³ÀÇ ÅëÇÕ ´É·ÂÀ» ´õ¿í °­È­ÇÏ¿© ¹Ì·¡ ÁöÇâÀûÀÎ ±×¸®µå ³×Æ®¿öÅ©¿¡¼­ ±× ¿ªÇÒÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÏÀ̺긮µå ¹× ºñ¿ë ÃÖÀûÈ­µÈ º¸»ó ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ´Â ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

Àü·Â°èÅë °èȹÀÇ È¿À²¼º°ú ºñ¿ë È¿À²¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Àü·Âȸ»ç¿Í »ê¾÷°è´Â ÆÐ½Ãºê ±¸¼º ¿ä¼Ò¿Í °í±Þ Á¦¾î ¸ÞÄ¿´ÏÁòÀ» °áÇÕÇÑ ÇÏÀ̺긮µå º¸»ó Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ¿ÏÀü ´Éµ¿Çü ¼Ö·ç¼Ç°ú ´Þ¸®, MCR ±â¹Ý º¸»ó±â´Â ³ôÀº ¼º´ÉÀ» Á¦°øÇϸ鼭µµ ÀÚº» ¹× ¿î¿µ ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ´Â ¼¼¹Ì ¾×Ƽºê ¾ÆÅ°ÅØÃ³¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ¼³°è´Â ¸ðµâ½Ä È®Àå ¹× °íÁ¤ Ä¿ÆÐ½ÃÅÍ, ¸®¾×ÅÍ, »çÀ̸®½ºÅÍ Á¦¾î ±¸¼º ¿ä¼Ò¿Í ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ¾î Æ¯Á¤ ³×Æ®¿öÅ© ¿ä±¸»çÇ׿¡ ¸Â´Â ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¶óÀÌÇÁ»çÀÌŬ ºñ¿ë ÃÖÀûÈ­·Î ÀüȯµÊ¿¡ µû¶ó ÀÌÇØ°ü°èÀÚµéÀº À¯Áöº¸¼ö°¡ ´ú ÇÊ¿äÇÏ°í ¿î¿µ ¾ÈÁ¤¼ºÀÌ ³ôÀº ±â¼úÀ» ¼±È£Çϰí ÀÖ½À´Ï´Ù. MCR ±â¹Ý ½Ã½ºÅÛÀº ±â°èÀûÀ¸·Î ´Ü¼øÇÏ°í ¿­ ÀÀ·ÂÀÌ ³·±â ¶§¹®¿¡ »çÀ̸®½ºÅ͸¦ ¸¹ÀÌ »ç¿ëÇÏ´Â ´ëüǰ¿¡ ºñÇØ ¼ö¸íÀÌ ±æ°í °íÀå ÁöÁ¡ÀÌ Àû½À´Ï´Ù. Á¶´Þ ÆÀÀÌ °¡Ä¡¸¦ Áß½ÃÇÏ°í ±ÔÁ¦ ±â°üÀÌ ¿¡³ÊÁö È¿À²À» ³ôÀ̱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ÀÚµ¿È­¿Í °æÁ¦¼º »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß´Â ¼Ö·ç¼ÇÀÌ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº MCR ±â¼úÀÌ Å¾ÀçµÈ ÄÁÅ×À̳ÊÈ­µÈ »çÀü ¼³°èµÈ SVC ÆÐŰÁö¸¦ Á¦°øÇÏ¿© ¹èÄ¡¸¦ °£¼ÒÈ­Çϰí ÇÁ·ÎÁ§Æ® ¸®µå ŸÀÓÀ» ´ÜÃàÇÔÀ¸·Î½á ÀÌ¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú SCADA ÅëÇÕÀÇ ¹ßÀüÀ¸·Î Áö¸®ÀûÀ¸·Î ºÐ»êµÈ Àڻ꿡¼­ MCR ±â¹Ý ½Ã½ºÅÛÀÇ ¿î¿µ ¹× À¯Áöº¸¼ö°¡ ¿ëÀÌÇØÁ® ¼±Áø±¹°ú ½ÅÈï±¹ ½ÃÀå ¸ðµÎ¿¡¼­ ±× ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

MCR ±â¹Ý SVC±â ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀº?

MCR ±â¹Ý SVC±â ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±×¸®µå ¿ªÇÐÀÇ º¯È­, »ç¿ëÀÚ ¿ä±¸ »çÇ×ÀÇ ÁøÈ­¿¡ ±â¹ÝÇÑ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. º¯µ¿¼ºÀÌ Å« ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¸é¼­ ±Þ°ÝÇÑ Àü¾Ð º¯È­ ¹× ¹«È¿Àü·Â º¯µ¿À» °ü¸®ÇÒ ¼ö ÀÖ´Â °èÅë ¾ÈÁ¤È­ ±â¼ú¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ¹× ¼ÛÀü ³×Æ®¿öÅ©¿¡¼­ Àü¾Ð ºÒ¾ÈÁ¤¼º ¹× Çø®Ä¿ ¹ß»ý·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, »ç¾÷ÀÚµéÀº MCR ±â¹Ý SVC¿Í °°Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀúÁ¶ÆÄ º¸»ó ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² ¼ÛÀü ÀÎÇÁ¶ó Çö´ëÈ­ ¹× Áö¹æ Àü±âÈ­ È®´ë¿¡ ÁßÁ¡À» µÐ Á¤ºÎ ÁÖµµÀÇ ³ë·ÂÀº ÷´Ü ¹«È¿Àü·Â ½Ã½ºÅÛ µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ´Ù¼Òºñ »ê¾÷ÀÇ ÃÖÁ¾ »ç¿ëÀÚ´Â ¿ª·ü ¹× °íÁ¶ÆÄ ¹èÃâ¿¡ ´ëÇÑ ±ÔÁ¦ Áؼö¸¦ ´Þ¼ºÇÏ´Â µ¿½Ã¿¡ ¿¡³ÊÁö ¿ä±ÝÀ» ÃÖÀûÈ­Çϱâ À§ÇØ MCR ±â¹Ý SVC¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¼º¼÷°ú ½Ã½ºÅÛ ºñ¿ëÀÇ °¨¼Ò·Î ÀÎÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Áß°£ ±Ô¸ðÀÇ º¯Àü¼Ò ¹× µµ½Ã Áö¿ªÀÇ ±×¸®µå ³ëµå¿¡¼­ ´õ¿í ½Ç¿ëÈ­µÇ¾î Àüü ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °øÀå¿¡¼­ Á¶¸³µÇ´Â ¸ðµâ½Ä SVC À¯´ÖÀÇ ÃâÇöÀ¸·Î ¿£Áö´Ï¾î¸µÀÇ º¹À⼺°ú ¼³Ä¡ ±â°£ÀÌ ´ÜÃàµÇ¾î ½Å¼ÓÇÑ ±×¸®µå È®Àå ÇÁ·ÎÁ§Æ®¿¡ ÀûÇÕÇÕ´Ï´Ù. Àü·Âȸ»çµéÀº ÇÏÀ̺긮µå ¹«È¿Àü·Â ¾ÆÅ°ÅØÃ³ÀÇ Àü·«Àû °¡Ä¡¸¦ ÀνÄÇϰí ÀÖÀ¸¸ç, MCR ±â¹Ý ½Ã½ºÅÛÀº ºñ¿ë È¿À²ÀûÀÎ Àü¾Ð ¾ÈÁ¤È­¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¼¼°è ¼ÛÀü¸ÁÀÌ ½º¸¶Æ®Çϰí ź·ÂÀûÀ̸ç Áö¼Ó °¡´ÉÇÑ ÇÁ·¹ÀÓ¿öÅ©·Î ÁøÈ­ÇÏ´Â °¡¿îµ¥, È®Àå °¡´ÉÇÏ°í °ß°íÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ ¹«È¿Àü·Â º¸»ó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ MCR ±â¹Ý SVC±â ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

¿ëµµ(À¯Æ¿¸®Æ¼ ¿ëµµ, öµµ ¿ëµµ, »ê¾÷ ¿ëµµ, ¼®À¯ ¹× °¡½º ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

°ËÁõ ³¡³­ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global MCR Based Static VAR Compensator Market to Reach US$536.5 Million by 2030

The global market for MCR Based Static VAR Compensator estimated at US$456.8 Million in the year 2024, is expected to reach US$536.5 Million by 2030, growing at a CAGR of 2.7% over the analysis period 2024-2030. Utility Application, one of the segments analyzed in the report, is expected to record a 2.9% CAGR and reach US$213.9 Million by the end of the analysis period. Growth in the Railway Application segment is estimated at 2.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$124.5 Million While China is Forecast to Grow at 5.2% CAGR

The MCR Based Static VAR Compensator market in the U.S. is estimated at US$124.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$104.0 Million by the year 2030 trailing a CAGR of 5.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.0% and 2.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.5% CAGR.

Global MCR Based Static VAR Compensator Market - Key Trends & Drivers Summarized

Why Is MCR-Based Static VAR Compensation Gaining Prominence in Power Grid Stabilization?

Magnetically Controlled Reactor (MCR) based Static VAR Compensators (SVCs) are rapidly gaining traction as essential components in modern reactive power management strategies, especially in an era of increasing grid complexity and renewable energy integration. As electricity networks become more decentralized, with fluctuating loads and intermittent energy sources like solar and wind, maintaining voltage stability and power quality has become a major challenge for utilities and grid operators. MCR-based SVCs offer a highly controllable and cost-effective solution for dynamic reactive power compensation, enabling real-time voltage regulation and suppression of voltage flickers in high-voltage transmission systems. Unlike traditional thyristor-based SVCs, MCR-based systems leverage magnetic saturation control, providing smoother voltage support and improved reliability with reduced harmonics. Their robust, passive design with fewer switching elements enhances long-term stability and reduces maintenance needs-critical for deployment in remote substations and industrial zones. As countries modernize their transmission infrastructure and seek to meet grid code requirements for reactive power support, the role of MCR-based SVCs is expanding. Their relevance is further amplified by the rapid growth in rail electrification, high-voltage DC (HVDC) links, and large-scale industrial facilities-all of which require advanced reactive power solutions to avoid disruptions and meet operational efficiency standards.

How Are Grid Modernization and Renewable Energy Trends Accelerating Demand?

The global push toward smarter, greener grids is significantly influencing the adoption of MCR-based Static VAR Compensators. As governments and utilities invest in grid modernization to support renewable energy targets, dynamic voltage control technologies like SVCs are becoming critical enablers of system reliability. Wind and solar farms, in particular, introduce voltage fluctuations and power factor variability that conventional reactive power systems struggle to mitigate. MCR-based SVCs, with their fast response and smooth regulation, are well suited to address these challenges without introducing complex switching transients. In emerging economies, where transmission lines are often extended over long distances, voltage drops and reactive power losses are a persistent problem. The deployment of MCR-based SVCs helps maintain voltage profiles within permissible limits, especially under fluctuating load conditions. Moreover, the trend toward urbanization and the rise of smart cities are increasing the load on power infrastructure, necessitating the use of efficient VAR compensation to minimize losses and ensure energy quality. In industrial applications such as arc furnaces, cement plants, and oil refineries, where load swings are frequent and severe, MCR-based SVCs help in stabilizing voltage and reducing energy costs by maintaining optimal power factor. The technology’s ability to operate in parallel with other power electronics-based systems further enhances its integration capability in hybrid compensation architectures, reinforcing its role in future-ready grid networks.

What Is Driving the Shift Toward Hybrid and Cost-Optimized Compensation Solutions?

The growing emphasis on efficiency and cost-effectiveness in power system planning is encouraging utilities and industries to adopt hybrid compensation strategies that combine passive components with advanced control mechanisms-an area where MCR-based SVCs stand out. Unlike fully active solutions that rely heavily on power electronics, MCR-based compensators offer a semi-active architecture that significantly lowers capital and operational expenditure while delivering high performance. Their design allows for modular expansion and easy integration with fixed capacitors, reactors, and even thyristor-controlled components, enabling customized solutions tailored to specific network requirements. Additionally, the shift toward life-cycle cost optimization is prompting stakeholders to favor technologies with lower maintenance needs and higher operational reliability. MCR-based systems, due to their mechanical simplicity and low thermal stress, offer longer service life and fewer failure points compared to thyristor-intensive alternatives. As procurement teams become more value-conscious and regulatory bodies demand better energy efficiency, solutions that strike a balance between automation and affordability are gaining ground. Manufacturers are responding by offering pre-engineered, containerized SVC packages featuring MCR technology, simplifying deployment and reducing lead times for projects. Furthermore, advancements in real-time monitoring and SCADA integration have made it easier to operate and maintain MCR-based systems across geographically dispersed assets, enhancing their appeal in both developed and developing energy markets.

What Are the Core Drivers Powering the MCR Based Static VAR Compensator Market’s Expansion?

The growth in the MCR based Static VAR Compensator market is driven by several factors rooted in technological advancement, shifting grid dynamics, and evolving user requirements. The increasing integration of variable renewable energy sources is a primary catalyst, creating unprecedented demand for grid-stabilizing technologies capable of managing rapid voltage changes and reactive power fluctuations. The rising incidence of voltage instability and flicker in industrial and transmission networks is pushing operators toward reliable, low-harmonic compensation solutions like MCR-based SVCs. In parallel, government-led initiatives focused on modernizing power transmission infrastructure and expanding rural electrification are accelerating the deployment of advanced reactive power systems. End-users in energy-intensive industries are adopting MCR-based SVCs to achieve regulatory compliance on power factor and harmonic emissions while optimizing their energy bills. Technological maturity and falling system costs are making these systems more viable for medium-scale substations and urban grid nodes, expanding the total addressable market. Additionally, the emergence of modular, factory-assembled SVC units is reducing engineering complexity and installation timelines, aligning well with fast-track grid expansion projects. Utilities are also recognizing the strategic value of hybrid reactive power architectures, where MCR-based systems play a pivotal role in cost-effective voltage stabilization. As global grids evolve toward smart, resilient, and sustainable frameworks, the demand for scalable, robust, and cost-efficient reactive compensation solutions is set to drive sustained growth in the MCR-based Static VAR Compensator market.

SCOPE OF STUDY:

The report analyzes the MCR Based Static VAR Compensator market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Utility Application, Railway Application, Industrial Application, Oil & Gas Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â