¼¼°èÀÇ Ã¼¿Ü Àü»ç ÅÛÇø´ ½ÃÀå
In-Vitro Transcription Templates
»óǰÄÚµå : 1786759
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 242 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ü¿Ü Àü»ç ÅÛÇø´ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 3¾ï 5,850¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ü¿Ü Àü»ç ÅÛÇø´ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 18.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ DNA ÅÛÇø´Àº CAGR 17.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 9,530¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. RNA ÅÛÇø´ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 17.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9,420¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR17.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼¿Ü Àü»ç ÅÛÇø´ ½ÃÀåÀº 2024³â¿¡ 9,420¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 5,620¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 17.9%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 17.1%¿Í 16.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.0%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

ü¿Ü Àü»ç ÅÛÇø´ - ÁÖ¿ä µ¿Çâ°ú ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

ü¿Ü Àü»ç(IVT) ÅÛÇø´Àº ºÐÀÚ»ý¹°ÇÐ, »ý¸í°øÇÐ ¹× ¹ÙÀÌ¿À ÀǾàǰ ¿¬±¸¿¡ ÇʼöÀûÀÎ µµ±¸·Î, ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ RNA ÇÕ¼ºÀÇ ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î DNA ÇÃ¶ó½º¹Ìµå ¶Ç´Â ¼±Çü DNA ´ÜÆí¿¡¼­ À¯·¡ÇÑ ÀÌ·¯ÇÑ ÅÛÇø´Àº mRNA Ä¡·áÁ¦, ¹é½Å °³¹ß, À¯ÀüÀÚ Ä¡·á, CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁýÀ» À§ÇÑ ÇÕ¼º RNAÀÇ Á¦Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °í¼øµµ ¹× È®Àå °¡´ÉÇÑ RNA ÇÕ¼º, ƯÈ÷ mRNA ±â¹Ý ¹é½Å ¹× Ä¡·áÁ¦ °³¹ß¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó IVT ÅÛÇø´ ±â¼úÀÇ ¹ßÀüÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. RNA ±â¹Ý ÀÇ·á°¡ °è¼Ó È®´ëµÊ¿¡ µû¶ó ÃÖÀûÈ­µÇ°í È¿À²ÀûÀÎ IVT ÅÛÇø´ÀÇ Çʿ伺Àº ÇÕ¼º»ý¹°ÇÐ ¹× Ä¡·áÁ¦ °³¹ßÀÇ »óȲÀ» Å©°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ü¿Ü Àü»ç ÅÛÇø´À» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

IVT ÅÛÇø´ÀÇ ¼³°è ¹× ÇÕ¼º ±â¼ú ¹ßÀüÀ¸·Î ü¿Ü Àü»ç RNAÀÇ È¿À², ¾ÈÁ¤¼º ¹× ¼öÀ²ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â Àü»ç È¿À²À» ³ôÀÌ´Â ÃÖÀûÈ­µÈ ÇÁ·Î¸ðÅÍ ¼­¿­ÀÇ °³¹ßÀÔ´Ï´Ù. T7, SP6, T3 RNA ÁßÇÕÈ¿¼Ò ÇÁ·Î¸ðÅÍ´Â Àý´ÜµÈ RNA³ª ºñÁ¤»óÀûÀÎ RNA¿Í °°Àº ºÒÇÊ¿äÇÑ ºÎ»ê¹°À» ÃÖ¼ÒÈ­Çϸ鼭 RNA ¼öÀ²À» ÃÖ´ëÈ­Çϵµ·Ï ±¤¹üÀ§ÇÏ°Ô ¼³°èµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Æú¸®(A) Å×Àϸµ Àü·«°ú 5'ĸÇÎ ±â¼úÀÇ °³¼±ÀÌ IVT ÅÛÇø´ ¼³°è¿¡ ÅëÇյǾî Ä¡·á ÀÀ¿ëÀ» À§ÇÑ RNA ¾ÈÁ¤¼º°ú ¹ø¿ª È¿À²À» Çâ»ó½ÃÄ×½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú Çõ½ÅÀº PCR ±â¹Ý ¹æ¹ýÀ¸·Î Á¦À۵Ǵ ¼±Çü DNA ÅÛÇø´À¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. Çö󽺹̵å DNA ÅÛÇø´°ú ´Þ¸®, ¼±Çü DNA Á¶°¢Àº ½´ÆÛ ÄÚÀÏÈ­ Çö󽺹̵å Á¤Á¦ÀÇ Çʿ伺À» ¾ø¾Ö°í, °øÁ¤ÀÇ º¹À⼺À» ÁÙÀ̰í, ¹èÄ¡ °£ Àϰü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. °íÃæ½Çµµ DNA ÁßÇÕÈ¿¼Ò¿Í ¸ôµå ¿£Áö´Ï¾î¸µ Àü·«À» »ç¿ëÇÏ¿© IVT ¸ôµåÀÇ Ç°Áú°ú È®À强À» ´õ¿í Çâ»ó½ÃÄÑ ´ë±Ô¸ð RNA »ý»ê¿¡ ´õ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, CleanCap(TM) ¹× Cap1 ±¸Á¶¿Í °°Àº È¿¼ÒÀû ĸÇÎ ¹æ¹ýÀÇ ÅëÇÕÀ¸·Î ÇÕ¼º RNAÀÇ ±â´ÉÀû ¾ÈÁ¤¼ºÀÌ Å©°Ô Çâ»óµÇ¾úÀ¸¸ç, ÀÌ´Â mRNA ±â¹Ý ¹é½Å ¹× Ä¡·áÁ¦¿¡ ¸Å¿ì Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù.

IVT ÅÛÇø´ÀÇ ÁøÈ­¸¦ ÃËÁøÇÏ´Â ½ÃÀå µ¿ÇâÀº?

mRNA¸¦ ±â¹ÝÀ¸·Î ÇÑ Äڷγª19 ¹é½ÅÀº IVT¿¡¼­ »ý»êµÈ RNA°¡ ½Å¼ÓÇÑ ÀǾàǰ °³¹ß¿¡ Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖÀ½À» ÀÔÁõÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼º°øÀº RNA ±â¹Ý ÀǾàǰ ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î À̾îÁ³°í, Á¦¾àȸ»ç¿Í »ý¸í°øÇÐ ±â¾÷µéÀº ¾Ï ¸é¿ª¿ä¹ý, ´Ü¹éÁú ´ëü¿ä¹ý, ¸ÂÃãÇü ¹é½ÅÀ» À§ÇÑ IVT ÅÛÇø´ ¿ª·®À» È®ÀåÇϰí ÀÖ½À´Ï´Ù. °¨¿°¼º ¹é½Å, ÀÚ°¡¸é¿ªÁúȯ, Èñ±Í À¯ÀüÁúȯ¿¡¼­ mRNA ±â¹Ý ±â¼ú äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó IVT ÅÛÇø´ ÃÖÀûÈ­¿¡ ´ëÇÑ ±â¼ú Çõ½ÅÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â IVT ÅÛÇø´ÀÌ °¡À̵å RNA(gRNA) ÇÕ¼º¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý¿¡ ´ëÇÑ °ü½É Áõ°¡ÀÔ´Ï´Ù. CRISPR-Cas9 ¹× °ü·Ã ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó °í¼øµµ, Á¤¹ÐÇÏ°Ô ¼³°èµÈ RNA Àü»çü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â À¯Àüü ÆíÁý ¿ëµµ¿¡¼­ ³ôÀº Ãæ½Çµµ¸¦ º¸ÀåÇϱâ À§ÇÑ ÅÛÇø´ Á¤Á¦ Àü·«, ¿À·ù ¾ø´Â ÇÕ¼º ¹æ¹ý, È®Àå °¡´ÉÇÑ »ý»ê °øÁ¤ÀÇ ¹ßÀüÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÇÕ¼º»ý¹°ÇÐ ¹× RNA ±â¹Ý Áø´Ü¹ýÀÇ È®´ë°¡ IVT ÅÛÇø´ ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ßÀº RNA ¼¾¼­, RNA ¾ÛŸ¸Ó, ¹ÙÀÌ¿À¼¾½Ì ±â¼ú Á¦Á¶¿¡ IVT ÅÛÇø´À» Ȱ¿ëÇÏ¿© Â÷¼¼´ë ºÐÀÚÁø´Ü ÀǾàǰÀ» °³¹ßÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ƯÈ÷ °¨¿°¼º Áúȯ Áø´Ü¿¡¼­ ÇöÀå °Ë»ç(POCT) ¹× ½Å¼Ó ÇÙ»ê °ËÃâ°ú °ü·ÃÀÌ ÀÖÀ¸¸ç, IVT¿¡¼­ »ý¼ºµÈ RNA ÇÁ·Îºê´Â ºÐ¼®ÀÇ ¹Î°¨µµ¿Í ƯÀ̼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

IVT ÅÛÇø´ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ü¿Ü Àü»ç ÅÛÇø´ ½ÃÀåÀÇ ¼ºÀåÀº RNA ±â¹Ý Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÅÛÇø´ ÇÕ¼º ±â¼úÀÇ ¹ßÀü, »ý¸í°øÇÐ ¹× ºÐÀÚ ÀÇÇÐ ºÐ¾ßÀÇ ÀÀ¿ë ºÐ¾ß È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀº mRNA ±â¹Ý ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ ±Þ¼ÓÇÑ È®ÀåÀÔ´Ï´Ù. mRNA ¹é½ÅÀÇ ¼º°øÀ¸·Î ´Ù¾çÇÑ Áúº´¿¡ ´ëÇÑ »õ·Î¿î RNA ±â¹Ý Ä¡·á¹ýÀ» °³¹ßÇϰíÀÚ ÇÏ´Â Á¦¾à»ç ¹× ¿¬±¸±â°üÀÇ ÅõÀÚ°¡ ±ÞÁõÇϸ鼭 ÃÖÀûÈ­µÈ IVT ÅÛÇø´¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý ¹× ¼¼Æ÷ Ä¡·á ÀÀ¿ë ºÐ¾ß¿¡¼­ IVT ÅÛÇø´ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¹ßÀü¿¡ µû¶ó °íǰÁú IVT »ý¼º °¡À̵å RNA ¹× ÅÛÇø´ ±¸µ¿Çü RNA ºÐÀÚ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, À¯ÀüÀÚ Ä¡·á, Àç»ýÀÇ·á, Á¤¹ÐÀÇ·á ºÐ¾ßÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í RNA ±â¹Ý Áø´Ü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó È®Àå °¡´ÉÇÏ°í »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÑ IVT ÅÛÇø´ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷µéÀÌ ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ» À¯ÁöÇϸ鼭 RNA »ý»ê °øÁ¤À» °£¼ÒÈ­Çϱâ À§ÇØ È¿¼Ò ÇÕ¼º ¹× °í¼øµµ RNA »ý»êÀ¸·Î ÀüȯÇÏ´Â °Íµµ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. RNA Ä¡·áÁ¦¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó, ±â¾÷µéÀº Á¦Á¶ °ü¸® ¹× ǰÁú °ü¸® ±âÁØ(GMP) Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ¿À·ù ¾ø´Â Àü»ç ½Ã½ºÅÛ, ¿À¿° ¾ø´Â È¿¼ÒÀû Á¢±Ù¹ý µî ÷´Ü ÅÛÇø´ ÇÕ¼º ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÐ°è ¿¬±¸±â°ü, »ý¸í°øÇÐ ±â¾÷, °³¹ß ¹× Á¦Á¶¼öʱâ°ü(CDMO)ÀÇ Çù·ÂÀ¸·Î IVT ÅÛÇø´ÀÇ ±â¼ú Çõ½ÅÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, RNA ±â¹Ý Ä¡·áÁ¦ÀÇ ´ë±Ô¸ð »ý»ê ¹× »ó¿ëÈ­°¡ °¡´ÉÇØÁ³½À´Ï´Ù.

RNA ±â¹Ý ÀǾàǰÀÌ ÇコÄɾ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ´Â °¡¿îµ¥, °íÈ¿À², È®À强, Á¤¹ÐÇÏ°Ô ¼³°èµÈ ü¿Ü Àü»ç ÅÛÇø´¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÇ¾î ÇÕ¼º»ý¹°ÇÐ, À¯ÀüÀÚ ÀÇÇÐ, ¹ÙÀÌ¿À ÀǾàǰ °³¹ßÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(DNA ÅÛÇø´, RNA ÅÛÇø´, ÅÛÇø´ ¹× Àü»ç ŰƮ, ±âŸ Á¦Ç° À¯Çü);Áúȯ(»ýȰ½À°üº´, À¯Àü¼º Áúȯ, ±âŸ Áúȯ);Ä¡·á(¹é½Å, Ä¡·á);¿¬±¸ ´Ü°è(Ž»ö, ÀÓ»ó);ÃÖÁ¾»ç¿ëÀÚ(Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú±â°ü ¹× ¿¬±¸±â°ü, ¼öŹ ¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Vitro Transcription Templates Market to Reach US$1.0 Billion by 2030

The global market for In-Vitro Transcription Templates estimated at US$358.5 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 18.9% over the analysis period 2024-2030. DNA templates, one of the segments analyzed in the report, is expected to record a 17.3% CAGR and reach US$395.3 Million by the end of the analysis period. Growth in the RNA templates segment is estimated at 17.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$94.2 Million While China is Forecast to Grow at 17.9% CAGR

The In-Vitro Transcription Templates market in the U.S. is estimated at US$94.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$156.2 Million by the year 2030 trailing a CAGR of 17.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.1% and 16.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.0% CAGR.

In-Vitro Transcription Templates - Key Trends & Market Drivers Summarized

In-vitro transcription (IVT) templates have become an essential tool in molecular biology, biotechnology, and biopharmaceutical research, serving as the foundation for RNA synthesis in various applications. These templates, typically derived from DNA plasmids or linear DNA fragments, enable the production of synthetic RNA for mRNA therapeutics, vaccine development, gene therapy, and CRISPR-based genome editing. The increasing demand for high-purity and scalable RNA synthesis, particularly in the development of mRNA-based vaccines and therapies, has significantly boosted advancements in IVT template technology. As RNA-based medicine continues to expand, the need for optimized and efficient IVT templates is reshaping the landscape of synthetic biology and therapeutic development.

How Are Technological Innovations Enhancing In-Vitro Transcription Templates?

Technological advancements in IVT template design and synthesis have significantly improved the efficiency, stability, and yield of in-vitro transcribed RNA. One of the most notable innovations is the development of optimized promoter sequences that enhance transcription efficiency. The T7, SP6, and T3 RNA polymerase promoters have been extensively engineered to maximize RNA yield while minimizing unwanted byproducts such as truncated or aberrant RNA species. Additionally, modifications in poly(A) tailing strategies and 5' capping technologies have been integrated into IVT template designs to improve RNA stability and translational efficiency for therapeutic applications.

Another key innovation is the shift toward linear DNA templates generated through PCR-based methods. Unlike plasmid DNA templates, linear DNA fragments eliminate the need for supercoiled plasmid purification, reducing process complexity and improving batch-to-batch consistency. The use of high-fidelity DNA polymerases and template engineering strategies has further enhanced the quality and scalability of IVT templates, making them more suitable for large-scale RNA production. Furthermore, the integration of enzymatic capping methods such as CleanCap™ and Cap1 structures has significantly improved the functional stability of synthetic RNA, which is crucial for mRNA-based vaccines and therapeutics.

What Market Trends Are Driving the Evolution of IVT Templates?

The rise of mRNA therapeutics and vaccines has been the most transformative trend in the IVT template market, with mRNA-based COVID-19 vaccines demonstrating the vast potential of IVT-generated RNA for rapid drug development. This success has spurred significant investment in RNA-based drug pipelines, with pharmaceutical companies and biotech firms expanding their IVT template capabilities for cancer immunotherapies, protein replacement therapies, and personalized vaccines. The increasing adoption of mRNA-based technologies in infectious disease vaccines, autoimmune disorders, and rare genetic conditions is driving innovation in IVT template optimization.

Another critical trend is the growing interest in CRISPR-based gene editing, where IVT templates serve as a key component in the synthesis of guide RNAs (gRNAs). As CRISPR-Cas9 and related technologies continue to evolve, the demand for highly pure and precisely engineered RNA transcripts is increasing. This has led to advancements in template purification strategies, error-free synthesis methods, and scalable production processes to ensure high fidelity in genome editing applications.

Additionally, the expansion of synthetic biology and RNA-based diagnostics is shaping the IVT template market. Researchers are leveraging IVT templates for the production of RNA sensors, RNA aptamers, and biosensing technologies, enabling the development of next-generation molecular diagnostics. This trend is particularly relevant for point-of-care testing (POCT) and rapid nucleic acid detection in infectious disease diagnostics, where IVT-generated RNA probes enhance assay sensitivity and specificity.

What Is Driving the Growth of the IVT Template Market?

The growth in the in-vitro transcription template market is driven by several factors, including the increasing demand for RNA-based therapies, advancements in template synthesis technologies, and expanding applications in biotechnology and molecular medicine. A major growth driver is the rapid expansion of mRNA-based drug development pipelines. The success of mRNA vaccines has prompted a surge in investment from pharmaceutical companies and research institutions seeking to develop novel RNA-based treatments for a wide range of diseases, thereby increasing the need for optimized IVT templates.

Another significant factor fueling market growth is the rising adoption of IVT templates in CRISPR-based gene editing and cell therapy applications. As gene-editing technologies advance, the demand for high-quality IVT-generated guide RNAs and template-driven RNA molecules is accelerating, supporting breakthroughs in gene therapy, regenerative medicine, and precision medicine. Additionally, the increasing focus on personalized medicine and RNA-based diagnostics is driving the need for scalable and customizable IVT template solutions.

The shift toward enzymatic synthesis and high-purity RNA production is also a crucial driver, as pharmaceutical and biotech companies seek to streamline RNA manufacturing processes while maintaining stringent quality standards. With the growing regulatory emphasis on RNA therapeutics, companies are investing in advanced template synthesis techniques, including error-free transcription systems and contamination-free enzymatic approaches, to ensure compliance with Good Manufacturing Practice (GMP) standards. Furthermore, the collaborations between academic research institutions, biotech firms, and contract development and manufacturing organizations (CDMOs) are accelerating IVT template innovation, enabling large-scale production and commercialization of RNA-based therapeutics.

As RNA-based medicine continues to revolutionize healthcare, the demand for highly efficient, scalable, and precisely engineered in-vitro transcription templates is expected to grow, shaping the future of synthetic biology, genetic medicine, and biopharmaceutical development.

SCOPE OF STUDY:

The report analyzes the In-Vitro Transcription Templates market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (DNA templates, RNA templates, Templates & transcription kits, Other product types); Disease (Lifestyle disease, Genetic disease, Other diseases); Treatment (Vaccine, Therapeutic); Research Stage (Exploratory, Clinical); End-Use (Pharma & Biotech Companies, Academic & Research institutes, Contract research organizations)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â