¼¼°èÀÇ Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå
Electromechanical Energy Storage Systems
»óǰÄÚµå : 1786502
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 285 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 36¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 36¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇöóÀÌÈÙÀº CAGR 5.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. CAES ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 8,510¸¸ ´Þ·¯, Áß±¹Àº CAGR 9.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 6¾ï 8,510¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 9.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 7¾ï 2,660¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.1%¿Í 5.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 4.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÌ ¿¡³ÊÁö ³»¼ºÀ» º¯È­½ÃŰ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Àü±â±â°è ¿¡³ÊÁö ÀúÀå(EMES) ½Ã½ºÅÛÀº Àü·Â¸Á ¾ÈÁ¤È­, Àç»ý¿¡³ÊÁö º¯µ¿¼º °ü¸®, »ê¾÷ Àü¹ÝÀÇ ¿¡³ÊÁö ź·Â¼º È®º¸¿¡ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¾ÐÃà °ø±â, ÇöóÀÌÈÙ, Áß·Â Æ÷ÅټȰú °°Àº ±â°èÀû ÇüÅ·Π¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ÇÊ¿äÇÒ ¶§ Àü±â·Î º¯È¯ÇÏ´Â ½Ã½ºÅÛÀÔ´Ï´Ù. ±âÁ¸ ¹èÅ͸® ÀúÀå°ú ´Þ¸® EMES ¼Ö·ç¼ÇÀº ¼ö¸íÀÌ ±æ°í, ÀÀ´ä ½Ã°£ÀÌ ºü¸£¸ç, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Àû±â ¶§¹®¿¡ ¿¡³ÊÁö Áý¾àÀûÀÎ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ´Â °¡¿îµ¥, dz·Â ¹× ž籤¹ßÀüÀÇ °£Ç漺Àº ¼ÛÀü¸ÁÀÇ ½Å·Ú¼º¿¡ Å« µµÀüÀ» °¡Á®´Ù ÁÙ ¼ö ÀÖ½À´Ï´Ù. Àü±â±â°è½Ä ÃàÀü ±â¼úÀº Àü·Â ¼ö¿ä°¡ ±ÞÁõÇÒ ¶§ Áï°¢ÀûÀ¸·Î ¿¡³ÊÁö¸¦ ¹èÃâÇÏ¿© Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» ³ô¿© ÀÌ °£±ØÀ» ¸Þ¿ì´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ±ØÇÑÀÇ È¯°æ¿¡¼­µµ ¼º´É ÀúÇÏ ¾øÀÌ ÀÛµ¿ÇÒ ¼ö ÀÖ¾î »ê¾÷, ±¹¹æ, ¿ø°ÝÁö ¿¡³ÊÁö ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀÌ»óÀûÀÔ´Ï´Ù. Áö¼Ó°¡´ÉÇÏ°í ¼ö¸íÀÌ ±ä ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â EMESÀÇ ±â¼ú Çõ½ÅÀ» ´õ¿í ÃËÁøÇϰí, Àü±â ±â°è ½Ã½ºÅÛ°ú ¹èÅ͸® ±â¹Ý ¿¡³ÊÁö ÀúÀåÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå ¿¡³ÊÁö ÀúÀå ¸ðµ¨¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àü±â±â°è ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ ÃֽŠÇõ½ÅÀº ¹«¾ùÀΰ¡?

ÃÖ±Ù ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀåÀÇ ¹ßÀüÀº ÃÊÀú ¸¶Âû Àڱ⠺£¾î¸µ°ú ÷´Ü ź¼Ò¼¶À¯ ·ÎÅ͸¦ Ȱ¿ëÇÏ¿© ȸÀü ¼Óµµ¿Í È¿À²À» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ÃֽŠÇöóÀÌÈÙ ½Ã½ºÅÛÀº ÇöÀç °ÅÀÇ Áï°¢ÀûÀ¸·Î Àü·ÂÀ» °ø±ÞÇÒ ¼ö Àֱ⠶§¹®¿¡ ¼ÛÀü¸ÁÀÇ Á֯ļö Á¶Á¤ ¹× ºñ»ó½Ã ¹é¾÷ Àü¿øÀ¸·Î ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÃÊÀüµµ Àڱ⿡³ÊÁö ÀúÀå(SMES)À» ÇöóÀÌÈÙ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© ¿¡³ÊÁö Àü´Þ È¿À²À» ³ôÀÌ°í ¼Õ½ÇÀ» ÁÙÀ̸ç Àüü ½Ã½ºÅÛÀÇ ³»±¸¼ºÀ» ³ô¿´½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« Çõ½ÅÀº ÷´Ü ¾ÐÃà °ø±â ¿¡³ÊÁö ÀúÀå(CAES) ½Ã½ºÅÛ °³¹ßÀÔ´Ï´Ù. CAES´Â ¹ßÀü¿ë ¾ÐÃà °ø±â¸¦ ÀúÀåÇÏ°í ¹æÃâÇϱâ À§ÇØ ÁöÇÏ µ¿±¼À̳ª °í¾Ð ÅÊÅ©¸¦ ÀÌ¿ëÇÕ´Ï´Ù. Àç°¡¿­À» À§ÇØ È­¼®¿¬·á¸¦ ¿¬¼Ò½ÃÄÑ¾ß ÇÏ´Â ±âÁ¸ÀÇ ¾ÐÃà °ø±â ½Ã½ºÅÛ°ú ´Þ¸®, ÃֽŠCAES ¼³°è´Â ¿­¿¡³ÊÁö ȸ¼ö¸¦ ÅëÇÕÇÏ¿© ¿Õº¹ È¿À²À» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ¸¶Âù°¡Áö·Î Áß·ÂÀ» ÀÌ¿ëÇÑ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛµµ ¿¡³ÊÁö°¡ °úÀ× °ø±ÞµÇ´Â ±â°£¿¡´Â ¹«°Å¿î Ã߸¦ µé¾î ¿Ã·È´Ù°¡ ÇÊ¿äÇÒ ¶§ ¹æÃâÇÏ¿© ¹ßÀüÇÔÀ¸·Î½á Àå½Ã°£ ÀúÀåÀÌ °¡´ÉÇÏ´Ù´Â Á¡¿¡¼­ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î Àü±â±â°è½Ä ÃàÀüÁö´Â ºñ¿ë È¿À²¼º, È¿À²¼º, È®À强 Ãø¸é¿¡¼­ ±âÁ¸ ¸®Æ¬À̿ ¹èÅ͸®¿¡ ´ëÇ×ÇÒ ¼ö ÀÖ´Â °æÀï·ÂÀ» °®Ãß°Ô µÇ¾ú½À´Ï´Ù.

½ÃÀå µ¿Çâ°ú ±ÔÁ¦ Á¤Ã¥Àº Àü±â±â°è ¿¡³ÊÁö ÀúÀåÀåÄ¡ÀÇ Ã¤Åÿ¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

Żź¼ÒÈ­, ¿¡³ÊÁö ¾Èº¸, Àü±âÈ­¿¡ ´ëÇÑ Àü ¼¼°èÀÇ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àü±â±â°è ¿¡³ÊÁö ÀúÀåÀº Àü·Â¸Á Çö´ëÈ­¸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº Àç»ý¿¡³ÊÁö·ÎÀÇ ¾ÈÁ¤ÀûÀÎ ÀüȯÀ» º¸ÀåÇϱâ À§ÇØ ¾ö°ÝÇÑ ¿¡³ÊÁö ÀúÀå Àǹ«È­¸¦ ½ÃÇàÇϰí ÀÖÀ¸¸ç, Àå±âÀûÀÎ ½Å·Ú¼ºÀ» Á¦°øÇÏ´Â ºñÈ­ÇÐ ÀúÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ¿¡³ÊÁöºÎÀÇ Long Duration Storage Shot°ú °°Àº ÀÌ´Ï¼ÅÆ¼ºê°¡ 10³â ³»¿¡ ¿¡³ÊÁö ÀúÀå ºñ¿ëÀ» 90% Àý°¨ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, Àü±â ±â°è ±â¼ú¿¡ »õ·Î¿î °¡´É¼ºÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, À¯·´¿¬ÇÕÀÇ ±×¸°µôÀº ±â°è½Ä ¹× ÇÏÀ̺긮µå ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó ÅõÀÚ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

½ÃÀå µ¿ÇâÀº Àü±â±â°è ½Ã½ºÅÛ°ú ¹èÅ͸® ½ºÅ丮Áö¸¦ ÅëÇÕÇÏ¿© ´Ù¾çÇÑ ½Ã°£ ôµµ¿¡¼­ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â ÇÏÀ̺긮µå ½ºÅ丮Áö ±¸¼ºÀÌ ¼±È£µÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, »ê¾÷ ¹× »ó¾÷ ºÎ¹®¿¡¼­´Â Á¦Á¶°øÀå, µ¥ÀÌÅͼ¾ÅÍ, ¸¶ÀÌÅ©·Î±×¸®µå µµÀÔ ½Ã ÇÇÅ© ½Ã°£´ë ¿¡³ÊÁö ºÎÇϸ¦ °ü¸®ÇÏ°í ±×¸®µå ÀÇÁ¸µµ¸¦ ³·Ã߸ç Àü·Â ǰÁúÀ» °³¼±Çϱâ À§ÇØ EMES¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® °ø±Þ¸ÁÀÇ ÇѰè¿Í ȯ°æ Æó±â À§Çè¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ Àü±â±â°è½Ä ½ºÅ丮Áö°¡ Áö¼Ó°¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀ¸·Î ÀνĵǸ鼭 ½ÃÀå µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

Àü±â±â°è ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº °èÅë ¾ÈÁ¤È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, °íÈ¿À² ÀúÀå ±â¼úÀÇ ¹ßÀü, Àå±â ÀúÀåÀ» ÃËÁøÇÏ´Â Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÔ´Ï´Ù. EMES ¼Ö·ç¼ÇÀº ºü¸¥ ÀÀ´ä¼ÓµµÀÇ Àü·ÂÀ» Á¦°øÇϰí, °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ ÀÛµ¿Çϸç, Å« ¿­È­ ¾øÀÌ ±ä ¼ö¸íÀ» ±¸ÇöÇÒ ¼ö ÀÖ¾î Àü·Âȸ»ç, »ê¾÷¿ë ¿¡³ÊÁö »ç¿ëÀÚ, Á¤ºÎ ±â°üÀ¸·ÎºÎÅÍ ÅõÀÚ¸¦ À¯Ä¡Çϰí ÀÖ½À´Ï´Ù.

Àü±â±â°è½Ä ½ºÅ丮Áö´Â Àç»ý¿¡³ÊÁö ÅëÇÕ, ¹«Á¤Àü Àü¿ø°ø±ÞÀåÄ¡(UPS) ½Ã½ºÅÛ, ¿î¼Û Àü±âÈ­, ±º¿ë ¿¡³ÊÁö º¹¿ø·Â ÀÀ¿ë ºÐ¾ß¿¡ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. AI ±â¹Ý ±×¸®µå ÃÖÀûÈ­ µµ±¸¿Í ¿¹Áöº¸Àü ½Ã½ºÅÛÀÇ µîÀåÀº Àü±â±â°è½Ä ½ºÅ丮ÁöÀÇ È¿À²¼º°ú ¼ö¸íÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ÀúÀå °³¹ßÀÚ, °èÅë ¿î¿µÀÚ, ±â¼ú ±â¾÷ °£ÀÇ Àü·«Àû Çù¾÷Àº Çõ½ÅÀ» ÃËÁøÇϰí, ÁøÈ­ÇÏ´Â ¿¡³ÊÁö ȯ°æ¿¡¼­ Àü±â±â°è½Ä ÀúÀå ¼Ö·ç¼ÇÀÌ °æÀï·Â°ú È®À强À» À¯ÁöÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(ÇöóÀÌÈÙ, CAES), ¿ëµµ(Àü·Â ¿¡³ÊÁö ŸÀÓ ½ÃÇÁÆ®, Àü·Â °ø±Þ ´É·Â, ºí·¢ ½ºÅ¸Æ®, Àç»ý¿¡³ÊÁö ¿ë·® Áõ°­, Á֯ļö Á¶Á¤, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electromechanical Energy Storage Systems Market to Reach US$3.6 Billion by 2030

The global market for Electromechanical Energy Storage Systems estimated at US$2.5 Billion in the year 2024, is expected to reach US$3.6 Billion by 2030, growing at a CAGR of 6.1% over the analysis period 2024-2030. Flywheel, one of the segments analyzed in the report, is expected to record a 5.0% CAGR and reach US$2.2 Billion by the end of the analysis period. Growth in the CAES segment is estimated at 8.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$685.1 Million While China is Forecast to Grow at 9.5% CAGR

The Electromechanical Energy Storage Systems market in the U.S. is estimated at US$685.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$726.6 Million by the year 2030 trailing a CAGR of 9.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 5.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

Global Electro-Mechanical Energy Storage Systems Market - Key Trends & Growth Drivers Summarized

Why Are Electro-Mechanical Energy Storage Systems Transforming Energy Resilience?

Electro-mechanical energy storage (EMES) systems are emerging as crucial solutions for stabilizing power grids, managing renewable energy fluctuations, and ensuring energy resilience across industries. These systems store energy in mechanical forms-such as compressed air, flywheels, or gravitational potential-before converting it back into electricity when needed. Unlike conventional battery storage, EMES solutions offer longer lifespans, faster response times, and reduced environmental impact, making them an attractive alternative for energy-intensive applications.

As the global transition to renewable energy accelerates, the intermittency of wind and solar power poses significant challenges to grid reliability. Electro-mechanical storage technologies help bridge this gap by providing instantaneous energy discharge during peak demand periods, enhancing grid stability. Additionally, their ability to function in extreme environments without significant performance degradation makes them ideal for industrial, defense, and remote energy applications. The growing demand for sustainable, long-duration storage solutions is further driving innovation in EMES, encouraging investment in hybrid storage models that integrate electro-mechanical systems with battery-based energy storage.

What Are the Latest Innovations in Electro-Mechanical Energy Storage Technologies?

Recent advancements in flywheel energy storage have significantly improved rotational speeds and efficiency by leveraging ultra-low-friction magnetic bearings and advanced carbon fiber rotors. Modern flywheel systems now offer near-instantaneous power delivery, making them ideal for grid frequency regulation and emergency backup power. Additionally, the integration of superconducting magnetic energy storage (SMES) with flywheel systems is enhancing energy transfer efficiency, reducing losses, and increasing overall system durability.

Another major innovation is the development of advanced compressed air energy storage (CAES) systems, which utilize underground caverns or high-pressure tanks to store and release compressed air for electricity generation. Unlike traditional compressed air systems that require fossil fuel combustion for reheating, newer CAES designs incorporate thermal energy recovery, significantly improving round-trip efficiency. Similarly, gravity-based energy storage systems are gaining attention for their potential to provide long-duration storage by using heavy weights lifted during periods of excess energy supply and released to generate power when needed. These innovations are helping electro-mechanical storage compete with conventional lithium-ion batteries in terms of cost-effectiveness, efficiency, and scalability.

How Are Market Trends and Regulatory Policies Influencing Electro-Mechanical Energy Storage Adoption?

The increasing global focus on decarbonization, energy security, and electrification has positioned electro-mechanical energy storage as a key enabler of grid modernization. Governments and regulatory bodies are implementing stringent energy storage mandates to ensure a stable transition to renewable energy, encouraging the adoption of non-chemical storage solutions that provide long-term reliability. In the United States, initiatives such as the Department of Energy’s Long Duration Storage Shot aim to reduce energy storage costs by 90% within a decade, opening new opportunities for electro-mechanical technologies. Similarly, the European Union’s Green Deal emphasizes sustainable energy infrastructure investments, including mechanical and hybrid storage solutions.

Market trends indicate a growing preference for hybrid storage configurations, where electro-mechanical systems are integrated with battery storage to optimize performance across different timescales. Industrial and commercial sectors are also leveraging EMES to manage peak energy loads, reduce grid dependency, and improve power quality in manufacturing plants, data centers, and microgrid deployments. Additionally, as concerns over battery supply chain limitations and environmental disposal risks grow, electro-mechanical storage is being recognized as a sustainable and cost-effective alternative, accelerating its market adoption.

What Is Driving the Growth of the Electro-Mechanical Energy Storage Systems Market?

The growth in the electro-mechanical energy storage systems market is driven by the increasing need for grid stabilization, advancements in high-efficiency storage technologies, and supportive regulatory frameworks promoting long-duration storage. The ability of EMES solutions to provide fast-response power, operate in harsh conditions, and offer extended lifespans without significant degradation is attracting investments from utilities, industrial energy users, and government agencies.

End-use expansion is another key driver, with electro-mechanical storage being widely deployed in renewable energy integration, uninterruptible power supply (UPS) systems, transportation electrification, and military energy resilience applications. The emergence of AI-driven grid optimization tools and predictive maintenance systems is further enhancing the efficiency and longevity of electro-mechanical storage. Additionally, strategic collaborations between energy storage developers, grid operators, and technology firms are fostering innovation, ensuring that electro-mechanical storage solutions remain competitive and scalable in the evolving energy landscape.

SCOPE OF STUDY:

The report analyzes the Electromechanical Energy Storage Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Flywheel, CAES); Application (Electric Energy Time Shift, Electric Supply Capacity, Black Start, Renewable Capacity Firming, Frequency Regulation, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â