¼¼°èÀÇ È­ÇÐÁ¤º¸ÇÐ ½ÃÀå
Chemoinformatics
»óǰÄÚµå : 1785968
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 186 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ È­ÇÐÁ¤º¸ÇÐ ½ÃÀåÀº 2030³â±îÁö 90¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 38¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ È­ÇÐÁ¤º¸ÇÐ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 15.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 90¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ È­Çкм® ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 17.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 39¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Drug Discovery ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 15.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 10¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 20.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ È­ÇÐÁ¤º¸ÇÐ ½ÃÀåÀº 2024³â¿¡ 10¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 20.7%·Î ÃßÀÌÇϸç, 2030³â±îÁö 20¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 11.1%¿Í 13.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ È­ÇÐÁ¤º¸ÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ºÐÀÚ µ¥ÀÌÅÍ´Â ½Å¾à °³¹ßÀÇ ¹Ì·¡¸¦ ¹Ù²Ü ¼ö Àִ°¡?

È­ÇÐÁ¤º¸Çд Á¦¾à ¿¬±¸¸¦ °¡¼ÓÈ­ÇÏ´Â È­ÇÐ µ¥ÀÌÅÍ¿Í °è»ê ÅøÀÇ °¡±³ ¿ªÇÒÀ» Çϸç, Çö´ëÀÇ ½Å¾à°³¹ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ Àο¡ÀÌºí·¯·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ºÐÀÚ µ¥ÀÌÅͼ¼Æ®ÀÇ º¹À⼺, È­ÇÕ¹° ¶óÀ̺귯¸® Áõ°¡, ½Å¾à ½ÃÀå Ãâ½Ã ½Ã°£ ´ÜÃàÀÇ Çʿ伺À¸·Î ÀÎÇØ È­ÇÐÁ¤º¸ÇÐÀº ÀǾàǰ ¿¬±¸°³¹ß¿¡ ÇʼöÀûÀÎ ÅøÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ ±â¼úÀº ±¸Á¶-Ȱ¼º »ó°ü°ü°è ¸ðµ¨¸µ, °¡»ó ½ºÅ©¸®´×, Á¤·®Àû ±¸Á¶-Ȱ¼º »ó°ü°ü°è(QSAR) ºÐ¼®, ºÐÀÚ µµÅ· ½Ã¹Ä·¹ÀÌ¼Ç µî Áß¿äÇÑ ÇÁ·Î¼¼½º¸¦ Áö¿øÇϸç, ÆÄÀÌÇÁ¶óÀÎ Ãʱ⠴ܰ迡¼­ ½ÇÇà °¡´ÉÇÑ ½Å¾à Èĺ¸¹°ÁúÀ» ¹ß±¼ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. È­ÇÐÁ¤º¸ÇÐ¿Í ÇÏÀ̽º·çDz ½ºÅ©¸®´× ¹× ½ÇÇè½Ç ÀÚµ¿È­¿ÍÀÇ ÅëÇÕÀº È÷Æ®-Åõ-¸®µå ÃÖÀûÈ­ Àü·«À» Å©°Ô °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤¹Ð ÀÇÇÐÀÇ °æ°è°¡ °è¼Ó È®ÀåµÇ°í ÀÖ´Â °¡¿îµ¥, ƯÁ¤ ºÐÀÚ Ç¥Àû¿¡ ¸ÂÃá È­ÇÕ¹° ¼³°è¸¦ À§ÇÑ È­ÇÐÁ¤º¸ÇÐÀÇ ´É·ÂÀº ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¾÷°è¿¡¼­´Â ±âÁ¸ÀÇ ½À½Ä ½ÇÇè½Ç¿¡¼­ ½ÃÇàÂø¿À¸¦ °ÅÄ¡´Â ¹æ½Ä¿¡¼­ R&D ºñ¿ë Àý°¨°ú ¿¹Ãø Á¤È®µµ Çâ»óÀ» À§ÇØ ÀνǸ®ÄÜ ¸ðµ¨¸µÀ¸·Î ÀüȯÇÏ´Â Ãß¼¼°¡ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù. Á¦¾à, ³ó¾à, Àç·á°úÇÐ °¢ ºÐ¾ß¿¡¼­ È­ÇÕ¹° Ư¼º ¿¹Ãø, ¸®µå È­ÇÕ¹° ÃÖÀûÈ­, µ¶¼º ºÐ¼®, Ÿ°Ù ¿¹ÃøÀ» À§ÇØ È­ÇÐÁ¤º¸ÇÐ Ç÷§ÆûÀ» ÀÌ¿ëÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ½À´Ï´Ù.

ÀΰøÁö´ÉÀº È­ÇÐÁ¤º¸ÇÐÀÇ Àü¸ÁÀ» ¾î¶»°Ô ¹Ù²Ü °ÍÀΰ¡?

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ È­ÇÐÁ¤º¸ÇаúÀÇ À¶ÇÕÀº ºÐÀÚ µ¥ÀÌÅÍÀÇ ÇØ¼®, ºÐ¼®, Ȱ¿ë ¹æ¹ýÀ» ±Ùº»ÀûÀ¸·Î ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. AI¸¦ žÀçÇÑ È­ÇÐÁ¤º¸ÇÐ Ç÷§ÆûÀº °ú°Å È­ÇÕ¹° µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÏ¿© de novo ºÐÀÚ ¼³°è, ADMET ÇÁ·ÎÆÄÀϸµ, ´Ù¸ñÀû ÃÖÀûÈ­¸¦ Áö¿øÇÏ´Â ¿¹Ãø ¸ðµ¨À» »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ÀÓ»ó Èĺ¸¹°ÁúÀÇ °¨¼ÒÀ²À» ³·Ãß°í È­ÇÕ¹°ÀÇ È¿´ÉÀ» ³ôÀ̰íÀÚ ÇÏ´Â ÀǾàǰ °³¹ßÀڵ鿡°Ô ÇʼöÀûÀÎ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÚ¿¬ ¾ð¾î ó¸®(NLP)´Â È­ÇÐ ¹®Çå°ú ƯÇãÀÇ ¸¶À̴׿¡µµ Ȱ¿ëµÇ¸ç, È­ÇÕ¹° °³¹ßÀ» À§ÇÑ Ç³ºÎÇÏ°í ½Ç¿ëÀûÀÎ µ¥ÀÌÅͼ¼Æ®¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ µö·¯´× ÇÁ·¹ÀÓ¿öÅ©´Â »õ·Î¿î È­ÇÕ¹°ÀÇ ½ºÄ³Æúµù°ú »ýü µî¹æ¼º ġȯÀ» Àü·Ê ¾ø´Â Á¤È®µµ·Î ½Äº°ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. AI·Î °­È­µÈ È­ÇÐÁ¤º¸ÇÐ ÅøÀº È­ÇÐÇÕ¼º °èȹ, ¹ÝÀÀ ¿¹Ãø, ¿ªÇÕ¼º ºÐ¼®¿¡µµ Àû¿ëµÇ¾î ¾ÆÀ̵ð¾î µµÃâºÎÅÍ ÇÕ¼º±îÁö È­ÇÕ¹° ¼ö¸íÁÖ±âÀ» ¿£µåÅõ¿£µå(end-to-end) °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶óÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ƯÈ÷ Áß¼Ò±Ô¸ðÀÇ »ý¸í°øÇÐ ±â¾÷¿¡°Ô AI¸¦ ÅëÇÕÇÑ È­ÇÐÁ¤º¸ÇÐ ¼Ö·ç¼ÇÀÇ È®À强°ú Á¢±Ù¼ºÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Á¦¾à Çõ½Å °æÀïÀÇ °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ±â¾÷Àº È­ÇÐÁ¤º¸ÇÐ, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º, AI¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå µ¥ÀÌÅÍ Ç÷§Æû¿¡ ÁÖ¸ñÇϰí ÀÖÀ¸¸ç, Áö±Ý±îÁö ÀηÂÀ¸·Î ºÐ¼®ÇÒ ¼ö ¾ø¾ú´ø ¼û°ÜÁø ÆÐÅϰú »ó°ü°ü°è¸¦ ¹àÈ÷±â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

±ÔÁ¦ ¿ä±¸¿Í µ¥ÀÌÅÍ Ç¥ÁØÈ­°¡ µðÁöÅÐ Äɹ̽ºÆ®¸®·ÎÀÇ ÀüȯÀ» ÃËÁøÇϴ°¡?

ÀǾàǰÀÇ ¾ÈÀü¼º, µ¥ÀÌÅÍ Åõ¸í¼º, ǰÁú ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ °­È­µÇ´Â °¡¿îµ¥, È­ÇÐÁ¤º¸Çд ´Ü¼øÇÑ Á¶»ç ÅøÀÌ ¾Æ´Ñ ±ÔÁ¦ ´ç±¹ÀÇ ÀÎÅÚ¸®Àü½º ¹× ÀÇ»ç°áÁ¤ÀÇ Áß¿äÇÑ ¿ä¼Ò·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. Á¶Á÷Àº È­ÇÕ¹° °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ ÀçÇö¼º, Àϰü¼º, µ¥ÀÌÅÍ ÃßÀû¼ºÀ» ÀÔÁõÇØ¾ß ÇÕ´Ï´Ù. SMILES(Simplified Molecular Input Line Entry System), InChI, SD ÆÄÀÏ µî Ç¥ÁØÈ­µÈ µ¥ÀÌÅÍ Æ÷¸ËÀ» äÅÃÇÏ¿© Ç÷§Æû °£ »óÈ£¿î¿ë¼º°ú ±ÔÁ¦ ´ç±¹¿¡ ´ëÇÑ ½ÅûÀÌ ¿ëÀÌÇÕ´Ï´Ù. µ¶¼ºÇÐ ¸ðµ¨¸µ ¹× ¿¹Ãø ¾ÈÀü¼º Æò°¡¿¡¼­ È­ÇÐÁ¤º¸ÇÐ ÅøÀÇ »ç¿ëÀº REACH, OECD °¡À̵å¶óÀÎ, ICH ¾ÈÀü¼º Æò°¡ µîÀÇ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡µµ ºÎÇÕÇÕ´Ï´Ù. È­Àåǰ, °Ç°­±â´É½Äǰ, ³ó¾à µî µ¿¹°½ÇÇèÀÌ Á¡Á¡ ´õ Á¦Çѵǰí ÀÖ´Â ºÐ¾ß¿¡¼­ È­ÇÐÁ¤º¸Çи¦ Ȱ¿ëÇϸé in silico¸¦ ÅëÇÑ µ¶¼º ¿¹Ãø ¹× ´ëü ½ÃÇè Àü·«ÀÌ °¡´ÉÇØÁý´Ï´Ù. ¶ÇÇÑ °øµ¿°³¹ß ¹× ¿ÀÇ À̳뺣ÀÌ¼Ç »ýŰèÀÇ ºÎ»óÀ¸·Î ¿¬±¸ ÆÄÆ®³Ê¿Í CRO °£ÀÇ ¾ÈÀüÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ °øÀ¯¸¦ Áö¿øÇÏ´Â Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ±â¹Ý ÄɹÌÀÎÆ÷¸Åƽ½º Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È­ÇÐÁ¤º¸ÇÐ ¹× ÀüÀÚ½ÇÇè³ëÆ®(ELN), ½ÇÇè½Ç Á¤º¸°ü¸®½Ã½ºÅÛ(LIMS), µ¥ÀÌÅÍ ½Ã°¢È­ Åø¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ È­ÇÕ¹° ¼³°èºÎÅÍ ºÐ¼®±îÁö ¿Ïº®ÇÑ ÃßÀû¼ºÀ» º¸ÀåÇϰí, ÄÄÇöóÀ̾𽺠´ëÀÀ ¹× ÇÁ·Î¼¼½º ¹«°á¼ºÀ» °­È­ÇÕ´Ï´Ù.

È­ÇÐÁ¤º¸ÇÐ ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

È­ÇÐÁ¤º¸ÇÐ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, »ê¾÷ °üÇàÀÇ º¯È­, ÃÖÁ¾»ç¿ëÀÚÀÇ ±â´ëÄ¡ º¯È­¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ½Å¾à °³¹ß ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷Àº µ¥ÀÌÅͺ£À̽º R&D ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, È­ÇÐÁ¤º¸ÇÐ Ç÷§ÆûÀº ±× Áß ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. È­ÇÕ¹° ½ºÅ©¸®´× ¶óÀ̺귯¸® ¹× ºÐÀÚ Å¸°Ù ·£µå½ºÄÉÀÌÇÁ°¡ º¹ÀâÇØÁü¿¡ µû¶ó È­ÇÕ¹° ¼±ÅÃ, ¼³°è, ÃÖÀûÈ­¸¦ È¿À²È­ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ °è»ê ÅøÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °úÇÐ ¿¬±¸ ºÐ¾ß¿¡¼­ AI¿Í ¸Ó½Å·¯´×ÀÇ È®»êÀº È­ÇÐÁ¤º¸ÇÐ Ç÷§ÆûÀÇ ¿¹Ãø·Â°ú ÀÚµ¿È­ ±â´ÉÀ» °­È­ÇÏ¿© Â÷¼¼´ë R&D ½ÇÇè½Ç¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ È­ÇÐ ¿¬±¸¿¡¼­ ¿¹Ãø µ¶¼ºÇÐ, ģȯ°æ È­ÇÐ, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ȯ°æ ¿µÇ⠸𵨸µ ¹× ¾ÈÀü¼º ÇÁ·ÎÆÄÀϸµ¿¡ ´ëÇÑ È­ÇÐÁ¤º¸ÇÐ ÅøÀÇ »õ·Î¿î ÀÌ¿ë »ç·Ê°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ºÐ»êÇü, °øµ¿ ¿¬±¸ ȯ°æÀ¸·ÎÀÇ ÀüȯÀº Ŭ¶ó¿ìµå Áö¿ø, »óÈ£ ¿î¿ë °¡´ÉÇÑ È­ÇÐÁ¤º¸ÇÐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀο¡¼­ µ¥ÀÌÅÍ Ç¥ÁØÈ­¿Í ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷Àº ¿£µåÅõ¿£µå È­ÇÕ¹° µ¥ÀÌÅÍ °ü¸®¸¦ À§ÇØ ÅëÇÕµÈ È­ÇÐÁ¤º¸ÇÐ ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. R&D ÆÀÀº ±íÀº ÀλçÀÌÆ®¿Í ¿î¿µÀÇ ¹Îø¼ºÀ» °âºñÇÑ ÅøÀ» ã°í ÀÖÀ¸¸ç, È­ÇÐÁ¤º¸ÇÐ Ç÷§ÆûÀº ºü¸£°Ô ÃֽŠȭÇÐ ¹× Á¦¾à ¿¬±¸ »ýŰèÀÇ ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¾ÖÇø®ÄÉÀ̼Ç(È­Çкм® ¾ÖÇø®ÄÉÀ̼Ç, Drug Discovery ¾ÖÇø®ÄÉÀ̼Ç, ÀǾàǰ ¹ë¸®µ¥ÀÌ¼Ç ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

°ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Chemoinformatics Market to Reach US$9.0 Billion by 2030

The global market for Chemoinformatics estimated at US$3.8 Billion in the year 2024, is expected to reach US$9.0 Billion by 2030, growing at a CAGR of 15.3% over the analysis period 2024-2030. Chemical Analysis Application, one of the segments analyzed in the report, is expected to record a 17.5% CAGR and reach US$3.9 Billion by the end of the analysis period. Growth in the Drug Discovery Application segment is estimated at 15.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.0 Billion While China is Forecast to Grow at 20.7% CAGR

The Chemoinformatics market in the U.S. is estimated at US$1.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.0 Billion by the year 2030 trailing a CAGR of 20.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.1% and 13.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.2% CAGR.

Global Chemoinformatics Market - Key Trends & Drivers Summarized

Can Molecular Data Shape the Future of Drug Discovery?

Chemoinformatics has rapidly emerged as a pivotal enabler in modern drug discovery, acting as a bridge between chemical data and computational tools to accelerate pharmaceutical research. The increasing complexity of molecular datasets, growing volumes of compound libraries, and the need to reduce time-to-market for new drugs have made chemoinformatics an indispensable tool in pharmaceutical R&D. This technology supports key processes such as structure-activity relationship modeling, virtual screening, quantitative structure-activity relationship (QSAR) analysis, and molecular docking simulations, all of which play a vital role in identifying viable drug candidates early in the pipeline. The integration of chemoinformatics with high-throughput screening and laboratory automation is significantly improving hit-to-lead optimization strategies. Furthermore, as the boundaries of precision medicine continue to expand, the ability of chemoinformatics to tailor compound design for specific molecular targets is becoming more relevant than ever. The industry is witnessing a marked shift from traditional wet-lab trial-and-error approaches to in silico modeling, which reduces R&D costs and enhances prediction accuracy. Organizations across pharmaceuticals, agrochemicals, and material sciences are increasingly relying on chemoinformatics platforms for compound property prediction, lead optimization, toxicity analysis, and target prediction, thereby transforming the overall research workflow and decision-making process.

How Is Artificial Intelligence Transforming the Chemoinformatics Landscape?

The fusion of artificial intelligence (AI) and machine learning (ML) with chemoinformatics is fundamentally redefining how molecular data is interpreted, analyzed, and utilized. AI-powered chemoinformatics platforms are capable of learning from historical compound data and generating predictive models that aid in de novo molecular design, ADMET profiling, and multi-objective optimization. These capabilities are becoming essential tools for drug developers aiming to reduce the attrition rate of clinical candidates and enhance compound efficacy. Natural language processing (NLP) is also being used to mine chemical literature and patents, providing richer, more actionable datasets for compound development. In addition, deep learning frameworks are helping identify novel compound scaffolds and bioisosteric replacements with unprecedented accuracy. AI-enhanced chemoinformatics tools are also being adopted in chemical synthesis planning, reaction prediction, and retrosynthesis analysis-enabling end-to-end compound lifecycle management from ideation to synthesis. The growing adoption of cloud-based infrastructure has further amplified the scalability and accessibility of AI-integrated chemoinformatics solutions, especially for small and mid-sized biotech firms. As competition in the pharmaceutical innovation race intensifies, organizations are turning toward hybrid data platforms that combine chemoinformatics, bioinformatics, and AI to uncover hidden patterns and correlations that were previously beyond human analysis.

Are Regulatory Demands and Data Standardization Fueling the Shift to Digital Chemistry?

With growing regulatory scrutiny on drug safety, data transparency, and quality compliance, chemoinformatics is increasingly viewed not just as a research tool but as a critical component of regulatory intelligence and decision-making. Organizations must now demonstrate reproducibility, consistency, and data traceability across compound development pipelines-capabilities that are inherently built into modern chemoinformatics platforms. The adoption of standardized data formats such as SMILES (Simplified Molecular Input Line Entry System), InChI, and SD files facilitates cross-platform interoperability and regulatory submissions. The use of chemoinformatics tools in toxicological modeling and predictive safety assessments also aligns with regulatory frameworks such as REACH, OECD guidelines, and ICH safety evaluations. In sectors such as cosmetics, nutraceuticals, and agrochemicals, where animal testing is increasingly restricted, chemoinformatics enables in silico toxicity prediction and alternative testing strategies. The rise in collaborative drug discovery and open innovation ecosystems is also driving demand for centralized, cloud-compatible chemoinformatics platforms that support secure, real-time data sharing across research partners and CROs. Moreover, the integration of chemoinformatics with electronic lab notebooks (ELNs), laboratory information management systems (LIMS), and data visualization tools ensures full traceability from compound design to assay analysis, thereby reinforcing compliance-readiness and process integrity.

What Forces Are Driving the Rising Adoption of Chemoinformatics Solutions?

The growth in the chemoinformatics market is driven by several factors closely tied to technological advancement, shifting industry practices, and changing end-user expectations. The increasing demand for faster and more cost-efficient drug discovery processes is leading pharmaceutical and biotech companies to invest heavily in data-driven R&D infrastructure, where chemoinformatics platforms serve as a critical pillar. The rising complexity of compound screening libraries and molecular target landscapes necessitates robust computational tools that can streamline compound selection, design, and optimization. The proliferation of AI and machine learning in scientific research is enhancing the predictive power and automation capabilities of chemoinformatics platforms, making them indispensable in next-generation R&D labs. Additionally, the growing emphasis on predictive toxicology, green chemistry, and sustainability in chemical research is creating new use cases for chemoinformatics tools in environmental impact modeling and safety profiling. The shift toward decentralized and collaborative research environments is increasing reliance on cloud-enabled, interoperable chemoinformatics solutions. Furthermore, the rising importance of data standardization and regulatory compliance across drug development pipelines is compelling organizations to adopt integrated chemoinformatics systems for end-to-end compound data management. As R&D teams seek tools that offer both depth of insight and operational agility, chemoinformatics platforms are rapidly becoming the foundation of modern chemical and pharmaceutical research ecosystems.

SCOPE OF STUDY:

The report analyzes the Chemoinformatics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Chemical Analysis Application, Drug Discovery Application, Drug Validation Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â