¼¼°èÀÇ È­ÇÐÀû ¼ö¼Ò »ý¼º ½ÃÀå
Chemical Hydrogen Generation
»óǰÄÚµå : 1785965
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 270 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ È­ÇÐÀû ¼ö¼Ò »ý¼º ½ÃÀåÀº 2030³â±îÁö 1,215¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 912¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ È­ÇÐÀû ¼ö¼Ò »ý¼º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 4.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 1,215¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Captive Delivery´Â CAGR 5.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 748¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ÓõƮ µô¸®¹ö¸® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 3.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 249¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ È­ÇÐÀû ¼ö¼Ò »ý¼º ½ÃÀåÀº 2024³â¿¡ 249¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 242¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 7.9%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.3%¿Í 4.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ È­ÇÐÀû ¼ö¼Ò »ý¼º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

È­ÇÐÀû ¼ö¼Ò »ý»êÀÌ ½ÃÀå¿¡¼­ ÁÖ¸ñ¹Þ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Żź¼ÒÈ­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ È­ÇÐÀû ¼ö¼Ò »ý»êÀº ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ ÃÖÀü¼±¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è »ê¾÷°è¿Í Á¤ºÎ°¡ ¿Â½Ç°¡½º ¹èÃâ·® °¨ÃàÀ» ÃßÁøÇϰí ÀÖ´Â °¡¿îµ¥, ¼ö¼Ò´Â ¿¬·áÀüÁöºÎÅÍ »ê¾÷ °øÁ¤¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿¡³ÊÁö ¿î¹Ýü·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡´Â dz·Â, ž籤, ¼ö·Â µî Àç»ý¿¡³ÊÁö¿¡ ÀÇÁ¸ÇÏ´Â ±×¸° ¼ö¼Ò »ý»êÀ¸·ÎÀÇ Àüȯ¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. È­ÇÐ »ê¾÷Àº ¼ö¼Ò »ý¼º ±â¼úÀ» Ȱ¿ëÇÏ¿© »ê¾÷ ¿î¿µÀ» ÃÖÀûÈ­ÇÏ°í ¼®À¯È­ÇÐ, ¾Ï¸ð´Ï¾Æ Á¦Á¶, ¸Þź¿Ã ÇÕ¼ºÀ» À§ÇÑ Àúź¼Ò ¿ø·á¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò¸¦ µ¿·Â¿øÀ¸·Î ÇÏ´Â ¸ðºô¸®Æ¼, ƯÈ÷ ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)ÀÇ ÃâÇöÀ¸·Î È®Àå °¡´ÉÇÑ ¼ö¼Ò »ý¼º ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼¼°è ¿¡³ÊÁö ȯ°æÀÌ º¯È­ÇÏ´Â °¡¿îµ¥, Àü±âºÐÇØ ¹× ±âŸ È­ÇÐÀû ¼ö¼Ò »ý»ê ±â¼úÀÇ ¹ßÀüÀº ¼ö¼Ò¸¦ º¸´Ù Ä£¼÷ÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¿¡³ÊÁö·Î ´ëÁßÈ­½Ã۰í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ¾î¶»°Ô ¼ö¼Ò »ý¼ºÀ» Çü¼ºÇϰí Àִ°¡?

È­ÇÐÀû ¼ö¼Ò »ý»ê¿¡ ÀÖÀ¸¸ç, °ý¸ñÇÒ ¸¸ÇÑ ±â¼ú ¹ßÀüÀº ¼ö¼ÒÀÇ Á¦Á¶, ÀúÀå ¹× ¿î¼Û¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ¾ç¼ºÀÚ±³È¯¸·(PEM) Àü±âºÐÇØ, °íü»êÈ­¹° ÀüÇØÁ¶(SOEC), ¾ËÄ®¸® Àü±âºÐÇØÀÇ °³¹ß·Î ¼ö¼Ò »ý»êÀÇ È¿À²°ú °¡°ÝÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀº ±×¸° ¼ö¼Ò »ý»êÀÇ ½ºÄÉÀϾ÷¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ±âÁ¸ÀÇ È­¼®¿¬·á ±â¹Ý ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. Àü±âºÐÇØ ¿Ü¿¡µµ ¸Þź ¿­ºÐÇØ, ¹ÙÀÌ¿À¸Å½º °¡½ºÈ­, ±¤Àü±âÈ­ÇÐ ¼öÀüÇØ´Â Ŭ¸° ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ¹æ¹ýÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò ÀúÀåÀÇ ¹ßÀüÀ¸·Î°íü ¼ö¼Ò ij¸®¾î, ¾×ü À¯±â¼ö¼Ò ij¸®¾î(LOHC), ±ØÀú¿Â ÀúÀå ¼Ö·ç¼ÇÀ̼ö¼Ò ¿î¼Û°ú °ü·ÃµÈ ¹°·ù ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ±âÁ¸ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ¼ö¼ÒÀÇ ÅëÇÕÀ» °£¼ÒÈ­Çϰí, »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ¼ö¼ÒÀÇ º¸±ÞÀ» µ½°í ÀÖ½À´Ï´Ù.

¼ö¼Ò »ý»ê¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â »ê¾÷Àº ¹«¾ùÀΰ¡?

È­ÇÐÀû ¼ö¼Ò »ý»ê ½ÃÀåÀº ¿¡³ÊÁö, ¸ðºô¸®Æ¼, »ê¾÷ ºÐ¾ß¿¡¼­ ¼ö¼ÒÀÇ Áß¿äÇÑ ¿ªÇÒ¿¡ ÈûÀÔ¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Å« ¼ö¿ä¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ƯÈ÷ ´ëÇü Æ®·°, ¼±¹Ú, Ç×°ø ºÐ¾ß¿¡¼­ È­¼®¿¬·á¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¼ö¼Ò¿¬·áÀüÁö ±â¼úÀ» ¿î¼Û ºÎ¹®ÀÌ ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿£ÁøÀÇ È®À强°ú È¿À²¼ºÀº ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦¸¦ ÁؼöÇÏ·Á´Â »ê¾÷°è¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸ðºô¸®Æ¼ ¿Ü¿¡µµ ¹ßÀü ºÐ¾ß¿¡¼­´Â Àç»ý¿¡³ÊÁö ÀúÀåÀ» °­È­Çϰí Àü·Â °ø±ÞÀ» ¾ÈÁ¤È­Çϱâ À§ÇØ ±âÁ¸ ¿¡³ÊÁö ±×¸®µå¿¡ ¼ö¼Ò¸¦ ÅëÇÕÇÏ´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¼ö¼Ò Åͺó°ú ¿¬·áÀüÁö´Â °£ÇæÀûÀÎ Àç»ý¿¡³ÊÁö¸¦ º¸¿ÏÇϱâ À§ÇØ µµÀÔµÇ¾î º¸´Ù ¾ÈÁ¤ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ Àü·Â ÀÎÇÁ¶ó¸¦ º¸ÀåÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ¼®À¯È­ÇÐ ¹× Á¤Á¦ »ê¾÷Àº ¼ö¼ÒÈ­ ºÐÇØ ¹× ŻȲ °øÁ¤¿¡¼­ ¼ö¼Ò¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ´Â »ê¾÷ È­Çп¡¼­ ¼ö¼ÒÀÇ ÇʼöÀûÀÎ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

È­ÇÐÀû ¼ö¼Ò »ý»ê ½ÃÀåÀÇ ¼ºÀåÀº Á¤ºÎ Á¤Ã¥, »ê¾÷ ¼ö¿ä, ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.ÀÖ½À´Ï´Ù. ¼¼°è Żź¼ÒÈ­ ¸ñÇ¥¿Í³ÝÁ¦·Î¿¡ ´ëÇÑ ¾à¼ÓÀº »ê¾÷°è°¡ ûÁ¤¿¡³ÊÁöÀÇ ´ë¾ÈÀ¸·Î ¼ö¼Ò¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ¼ö¼Ò »ý»ê, ÀúÀå, À¯Åë ÀÎÇÁ¶ó °³¹ßÀ» °¡¼ÓÈ­Çϱâ À§ÇØ º¸Á¶±Ý, ¼¼Á¦ ÇýÅÃ, ¿¬±¸ ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý¿¡³ÊÁö °¡°ÝÀÇ Ç϶ôÀ¸·Î ±×¸°¼ö¼ÒÀÇ °¡°Ý °æÀï·ÂÀÌ ³ô¾ÆÁö¸é¼­ Áö¼Ó°¡´ÉÇÑ ´ëü ¿¡³ÊÁö¸¦ ã´Â »ê¾÷°è¿¡ °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò ±â¹Ý ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ°í Àç»ý¿¡³ÊÁöÀÇ º¸±Þ·üÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ã»Á¤ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£¿Í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀº ¼ö¼Ò ±â¹Ý ÇÁ·Î¼¼½º·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò »ý»ê Çãºê¿¡ ´ëÇÑ ÅõÀÚ¿Í ±¹Á¦ ¼ö¼Ò ¹«¿ª ÆÄÆ®³Ê½ÊÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó È­ÇÐÀû ¼ö¼Ò »ý»ê ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

°ø±Þ ÇüÅÂ(ĸƼºê µô¸®¹ö¸®, ¸ÓõƮ µô¸®¹ö¸®), ÇÁ·Î¼¼½º À¯Çü(½ºÆÀ ¸®Æ÷¸Ó ÇÁ·Î¼¼½º, ÀüÇØ ÇÁ·Î¼¼½º, ±âŸ ÇÁ·Î¼¼½º À¯Çü)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Chemical Hydrogen Generation Market to Reach US$121.5 Billion by 2030

The global market for Chemical Hydrogen Generation estimated at US$91.2 Billion in the year 2024, is expected to reach US$121.5 Billion by 2030, growing at a CAGR of 4.9% over the analysis period 2024-2030. Captive Delivery, one of the segments analyzed in the report, is expected to record a 5.8% CAGR and reach US$74.8 Billion by the end of the analysis period. Growth in the Merchant Delivery segment is estimated at 3.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$24.9 Billion While China is Forecast to Grow at 7.9% CAGR

The Chemical Hydrogen Generation market in the U.S. is estimated at US$24.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$24.2 Billion by the year 2030 trailing a CAGR of 7.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.3% and 4.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.1% CAGR.

Global Chemical Hydrogen Generation Market - Key Trends & Drivers Summarized

Why is Chemical Hydrogen Generation Gaining Market Prominence?

The rising demand for clean energy and the increasing focus on decarbonization have placed chemical hydrogen generation at the forefront of the global energy transition. As industries and governments worldwide push for lower greenhouse gas emissions, hydrogen is emerging as a key energy carrier, with applications spanning from fuel cells to industrial processes. This growing demand is further propelled by the shift toward green hydrogen production, which relies on renewable energy sources such as wind, solar, and hydropower. The chemical industry is leveraging hydrogen generation technologies to optimize industrial operations and create low-carbon feedstocks for petrochemicals, ammonia production, and methanol synthesis. Additionally, the emergence of hydrogen-powered mobility, particularly in fuel cell electric vehicles (FCEVs), is driving interest in scalable hydrogen generation solutions. With the global energy landscape evolving, advancements in electrolysis and other chemical hydrogen generation techniques are making hydrogen more accessible and cost-efficient for widespread adoption.

How Are Technological Innovations Shaping Hydrogen Generation?

Significant technological advancements in chemical hydrogen generation are revolutionizing its production, storage, and transportation. The development of proton exchange membrane (PEM) electrolysis, solid oxide electrolysis cells (SOECs), and alkaline electrolysis has significantly enhanced the efficiency and affordability of hydrogen production. These cutting-edge technologies are playing a vital role in scaling up green hydrogen production, making it a commercially viable alternative to traditional fossil fuel-based hydrogen generation. Beyond electrolysis, methane pyrolysis, biomass gasification, and photoelectrochemical water splitting are gaining traction as sustainable methods for producing clean hydrogen. Furthermore, hydrogen storage advancements in solid-state hydrogen carriers, liquid organic hydrogen carriers (LOHCs), and cryogenic storage solutions are addressing the logistical challenges associated with hydrogen transportation. These innovations are streamlining the integration of hydrogen into existing energy infrastructures and supporting its widespread commercialization across industries.

Which Industries Are Fueling the Demand for Hydrogen Generation?

The Chemical Hydrogen Generation market is witnessing significant demand across diverse industries, driven by its critical role in energy, mobility, and industrial applications. The transportation sector is rapidly adopting hydrogen fuel cell technology, particularly in heavy-duty trucking, marine vessels, and aviation, as an alternative to fossil fuels. The scalability and efficiency of hydrogen-powered engines are making them an attractive choice for industries looking to reduce carbon footprints and comply with stringent emissions regulations. In addition to mobility, the power generation sector is increasingly integrating hydrogen into existing energy grids to enhance renewable energy storage and stabilize electricity supply. Hydrogen-powered turbines and fuel cells are being deployed to supplement intermittent renewable energy sources, ensuring a more reliable and sustainable power infrastructure. Similarly, the petrochemical and refining industries are utilizing hydrogen in hydrocracking and desulfurization processes, highlighting its indispensable role in industrial chemistry.

What Factors Are Driving Market Growth?

The growth in the Chemical Hydrogen Generation market is driven by several factors, including government policies, industrial demand, and technological progress. Global decarbonization goals and net-zero commitments are compelling industries to invest in hydrogen as a clean energy alternative. Governments worldwide are rolling out subsidies, tax incentives, and research funding to accelerate hydrogen production, storage, and distribution infrastructure development. Additionally, the rising cost competitiveness of green hydrogen due to declining renewable energy prices is making it an economically viable solution for industries seeking sustainable alternatives. The increasing adoption of hydrogen-based energy storage systems is also enhancing grid stability and enabling higher penetration of renewable energy sources. Furthermore, consumer preferences for cleaner energy solutions and corporate sustainability initiatives are prompting industries to transition towards hydrogen-based processes. As investments in hydrogen production hubs and international hydrogen trade partnerships continue to rise, the Chemical Hydrogen Generation market is poised for substantial expansion in the years ahead.

SCOPE OF STUDY:

The report analyzes the Chemical Hydrogen Generation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Delivery Mode (Captive Delivery, Merchant Delivery); Process Type (Steam Reformer Process, Electrolysis Process, Other Process Types)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â