¼¼°èÀÇ ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀå
Automotive Knock Sensors
»óǰÄÚµå : 1785793
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 273 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀåÀº 2030³â±îÁö 8¾ï 8,780¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 7¾ï 5,450¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 8¾ï 8,780¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 2.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ÐÀü ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­´Â º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀ̸ç, CAGR 3.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 2,740¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯µµÇü ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 1.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 550¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 2¾ï 550¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 5.4%·Î 2030³â±îÁö 1¾ï 7,340¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.0%¿Í 2.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.5%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

³ëÅ© ¼¾¼­°¡ Çö´ë ¿£Áø ¼º´É¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­´Â ³»¿¬±â°ü ¿£Áø¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î, ÀϹÝÀûÀ¸·Î '³ëÅ·' ¶Ç´Â 'ÇΰŸµ'À̶ó°í ºÒ¸®´Â ºñÁ¤»óÀûÀÎ ¿¬¼Ò¸¦ °¨ÁöÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ³ëÅ·Àº ¿¬·á¿Í °ø±âÀÇ È¥ÇÕ¹°ÀÌ Á¶±â¿¡ Á¡È­µÇ¾î ¹ß»ýÇϸç, ¿£ÁøÀÇ ºñÈ¿À²°ú ÀáÀçÀû ¼Õ»óÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ëÅ· ¼¾¼­´Â ÀÌ·¯ÇÑ Áøµ¿À» ¸ð´ÏÅ͸µÇÏ¿© ¿£Áø Á¦¾î ÀåÄ¡(ECU)¿¡ ½Ç½Ã°£À¸·Î ½ÅÈ£¸¦ º¸³»°í, ECU°¡ Á¡È­ ½Ã±â¿Í È¥Çձ⸦ Á¶Á¤ÇÏ¿© ³ëÅ· ¹ß»ýÀ» ¹æÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¬ºñ Çâ»ó, ¹è±â°¡½º ¹èÃâ·® °¨¼Ò, ¿£Áø ¼º´ÉÀÇ °³¼±ÀÌ ÃßÁøµÇ´Â °¡¿îµ¥, ³ëÅ© ¼¾¼­´Â Çö´ë ÀÚµ¿Â÷¿¡ ¾ø¾î¼­´Â ¾È µÉ ÇʼöǰÀÌ µÇ¾ú½À´Ï´Ù. ³ëÅ· ¼¾¼­´Â ¿£ÁøÀÇ ¿øÈ°ÇÑ ÀÛµ¿À» º¸ÀåÇÏ°í ±â°èÀû ¼Õ»óÀ» ¹æÁöÇϸç Ãâ·Â °ø±ÞÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. ¿£ÁøÀÇ °í¼º´ÉÈ­, ƯÈ÷ Åͺ¸Â÷Àú ¹× ´Ù¿î»çÀÌ¡ ¼³°è°¡ ÁøÇàµÊ¿¡ µû¶ó ½Å·Ú¼º°ú Á¤¹Ðµµ°¡ ³ôÀº ³ëÅ© ¼¾¼­ÀÇ Á߿伺ÀÌ ºñ¾àÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå µ¿ÇâÀº ¾î¶»°Ô ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ¼ö¿ä¸¦ °ßÀÎÇϰí Àִ°¡?

¼¼°è ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀåÀº ¿£Áø ¼³°è µ¿Çâ, ±ÔÁ¦ Àǹ«È­, ¼ÒºñÀÚ ¼±È£µµ µîÀ¸·Î ÀÎÇØ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â Åͺ¸Â÷Àú ¿£Áø°ú ´Ù¿î»çÀÌ¡ ¿£ÁøÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¿Í ¿¬ºñ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ´õ ÀÛ°í È¿À²ÀûÀÎ ¿£ÁøÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿£ÁøÀº ¾ÐÃàºñ°¡ ³ô¾Æ ³ëÅ·ÀÌ ¹ß»ýÇϱ⠽¬¿ì¸ç, ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ ³ëÅ· ¼¾¼­°¡ ÇʼöÀûÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °­È­µÈ ¹è±â°¡½º ±ÔÁ¦·ÎÀÇ ÀüȯÀº ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ³ëÅ© ¼¾¼­´Â ¿¬¼Ò °øÁ¤À» ÃÖÀûÈ­ÇÏ¿© Áú¼Ò»êÈ­¹°(NOx)°ú ÀÌ»êȭź¼Ò(CO2) ¹èÃâ ±ÔÁ¦Ä¡¸¦ ÁؼöÇϵµ·Ï ÇÕ´Ï´Ù. ÀÌ´Â ÀÚµ¿Â÷ÀÇ È¯°æ ¿µÇâÀ» ÁÙÀ̰í ûÁ¤ ±â¼úÀ» ÃËÁøÇϱâ À§ÇÑ Àü ¼¼°èÀûÀÎ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù.

ÇÏÀ̺긮µå Â÷·®°ú Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Â÷·®(HEV ¹× PHEV)ÀÇ ¼ºÀåµµ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ ÀÚµ¿Â÷¿¡´Â Àü±â ÆÄ¿öÆ®·¹ÀÎÀÌ ³»ÀåµÇ¾î ÀÖÁö¸¸, Ç׼ӰŸ® ¿¬Àå ¹× º¸Á¶ µ¿·ÂÀº ¿©ÀüÈ÷ ³»¿¬±â°ü¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ³ëÅ© ¼¾¼­´Â ´Ù¾çÇÑ ºÎÇÏ Á¶°Ç¿¡¼­ ÀÌ·¯ÇÑ ¿£ÁøÀÇ È¿À²¼º°ú ³»±¸¼ºÀ» À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÷´Ü Â÷·® Áø´Ü ¹× ¿¹Áöº¸Àü Æ®·»µå´Â ³ëÅ© ¼¾¼­¿¡ »õ·Î¿î ±âȸ¸¦ °¡Á®´ÙÁÖ¾ú½À´Ï´Ù. Çö´ëÀÇ Â÷·®Àº °í¼º´É ¿£Áø °ü¸® ½Ã½ºÅÛÀ» °®Ãß°í ÀÖÀ¸¸ç, ³ëÅ© ¼¾¼­ÀÇ µ¥ÀÌÅÍ¿¡ ÀÇÁ¸ÇÏ¿© ¼º´ÉÀ» ¸ð´ÏÅ͸µÇϰí ÀáÀçÀûÀÎ ¹®Á¦¸¦ ½Äº°ÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ½Ç½Ã°£ Á¶Á¤, ¿ø°Ý Áø´Ü, Â÷·® ÀüüÀÇ ½Å·Ú¼º Çâ»ó¿¡ µµ¿òÀÌ µË´Ï´Ù. Ä¿³ØÆ¼µåÄ«¿Í ½º¸¶Æ®Ä«¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÷´Ü ³ëÅ© ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¼¾¼­µéÀº ECU ¹× IoT Ç÷§Æû°ú ÅëÇÕµÇ¾î ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® ¹× ¿£Áø ¼º´É °ü¸®¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Çõ½ÅÀÌ ³ëÅ© ¼¾¼­ÀÇ ¹ßÀü¿¡ ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

Çõ½ÅÀº ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ÀÇ Á¤È®¼º, ³»±¸¼º, ±â´É¼ºÀ» ³ôÀÌ´Â ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¡Àå Å« ¹ßÀü Áß Çϳª´Â ¾ÐÀü ¹× ÇÇ¿¡Á¶ ÀúÇ× ¼¾¼­ ±â¼úÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ¼¾¼­´Â °í°¨µµ ¹× °íÁ¤¹Ðµµ¸¦ ½ÇÇöÇÏ¿© ±î´Ù·Î¿î »ç¿ë Á¶°Ç¿¡¼­µµ Á¤È®ÇÑ ³ëÅ© ½ÅÈ£¸¦ °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °í¼º´É ¿£Áø°ú Åͺ¸Â÷Àú ¿£Áø¿¡ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­µµ ³ëÅ© ¼¾¼­ ¼³°è¿¡ Å« º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. ´õ ÀÛ°í ÄÄÆÑÆ®ÇÑ ¼¾¼­´Â ¹«°Ô¿Í °ø°£ ¿ä±¸ »çÇ×À» ÁÙ¿© °ø°£ Á¦¾àÀÌ Å« ÃֽŠ¿£Áø ¼³°è¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ ¼ÒÇü ¼¾¼­´Â °í¼º´ÉÀ» À¯ÁöÇϸ鼭 ÅëÇÕÀÇ À¯¿¬¼ºÀ» ³ô¿´½À´Ï´Ù. Àç·áÀÇ ¹ßÀüÀ¸·Î ³ëÅ© ¼¾¼­ÀÇ ³»±¸¼º°ú ½Å·Ú¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ³»¿­¼º ¼ÒÀç¿Í °í±Þ ÄÚÆÃÀ¸·Î ±ØÇÑÀÇ ¿Âµµ¿Í Áøµ¿ ȯ°æ¿¡¼­µµ È¿°úÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Åͺ¸ °ú±ÞÀ̳ª ´Ù¿î»çÀÌ¡À¸·Î ÀÎÇØ °í¿Â¿¡¼­ ¿îÀüµÇ´Â ¿£Áø¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

½º¸¶Æ® ¼¾¼­ ±â¼úÀº ³ëÅ© ¼¾¼­ÀÇ ±â´É¿¡ Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. Ãֽм¾¼­¿¡´Â ¿Âº¸µå ½ÅÈ£ 󸮰¡ ³»ÀåµÇ¾î ÀÖ¾î ³ëÀÌÁ ÇÊÅ͸µÇÏ°í º¸´Ù Á¤È®ÇÑ µ¥ÀÌÅ͸¦ ECU·Î Àü¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ECUÀÇ ºÎ´ãÀ» ÁÙÀÌ°í ¿£Áø Á¦¾î ½Ã½ºÅÛÀÇ È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. IoT ¹× Ä¿³ØÆ¼µå Â÷·® Ç÷§Æû°úÀÇ ÅëÇÕÀ¸·Î ³ëÅ© ¼¾¼­ÀÇ ¿ªÇÒµµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿£Áø ¼º´É¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á ¿¹Áöº¸Àü ¹× ¿ø°Ý Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¼¾¼­ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¬°á¼ºÀ» ÅëÇØ Â÷·®Àº ÃÖÀûÀÇ »óŸ¦ À¯ÁöÇÏ°í ¿¹±âÄ¡ ¾ÊÀº ¿£Áø °íÀåÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî¿ä?

ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº ¿£Áø ±â¼ú ¹ßÀü, ±ÔÁ¦ ¿ä°Ç, ¼ÒºñÀÚ ±â´ëÄ¡¸¦ ¹Ý¿µÇÏ´Â ¿©·¯ °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â Åͺ¸Â÷Àú, ´Ù¿î»çÀÌ¡, ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎ µî ÷´Ü ¿£Áø ¼³°èÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿£ÁøÀº ´õ ³ôÀº ¾Ð·Â°ú ¿Âµµ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â ³ëÅ© °¨Áö°¡ ¼º´É°ú ³»±¸¼ºÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¹èÃâ°¡½º ±ÔÁ¦¿Í ¿¬ºñ ¸ñÇ¥ÀÇ °­È­µµ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ³ëÅ© ¼¾¼­´Â ¿¬¼Ò °øÁ¤À» ÃÖÀûÈ­ÇÏ¿© ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Ãâ·Â°ú ¿îÀü¼ºÀ» À¯ÁöÇϸ鼭 ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ´Â Àü ¼¼°è °¢±¹ Á¤ºÎ°¡ ¾ö°ÝÇÑ ¹èÃâ°¡½º Á¤Ã¥À» ½ÃÇàÇÏ´Â °¡¿îµ¥ ƯÈ÷ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ÀÚµ¿Â÷ ¹× Ç÷¯±×ÀÎ ÇÏÀ̺긮µå ÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº ³ëÅ© ¼¾¼­¿¡ »õ·Î¿î ±âȸ¸¦ °¡Á®´ÙÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇϱâ À§ÇØ È¿À²ÀûÀÎ ³»¿¬±â°ü ¿£Áø¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ³ëÅ© ¼¾¼­´Â ´Ù¾çÇÑ ºÎÇÏ¿Í Á¶°Ç¿¡¼­ ÀÌ·¯ÇÑ ¿£ÁøÀÌ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.

¿£Áø °ü¸® ½Ã½ºÅÛÀÇ ¹ßÀüµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÃֽŠECU´Â ³ëÅ© ¼¾¼­ÀÇ Á¤È®ÇÑ µ¥ÀÌÅÍ¿¡ ÀÇÁ¸ÇÏ¿© Á¡È­ ŸÀ̹Ö, ¿¬·á ºÐ»ç ¹× ±âŸ ¸Å°³ º¯¼ö¸¦ ½Ç½Ã°£À¸·Î Á¶Á¤ÇÕ´Ï´Ù. ¿£Áø Á¦¾î°¡ °íµµÈ­µÊ¿¡ µû¶ó °íÁ¤¹Ð, °í½Å·Ú¼º ³ëÅ© ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼µåÄ«¿Í ½º¸¶Æ®Ä«ÀÇ µîÀåÀ¸·Î ±× äÅÃÀº ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. IoT Ç÷§Æû ¹× Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼®°ú ÅëÇÕµÈ ³ëÅ© ¼¾¼­´Â ¿¹Áöº¸Àü ¹× ¿ø°Ý ¸ð´ÏÅ͸µ°ú °°Àº °í±Þ ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ´Â Â÷·®ÀÇ ½Å·Ú¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ ºÐ¾ßÀÇ µðÁöÅÐÈ­¶ó´Â ±¤¹üÀ§ÇÑ Æ®·»µå¿Íµµ ºÎÇÕÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î, ½Å·Ú¼ºÀÌ ³ô°í ¿¬ºñ°¡ ÁÁÀº ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡´Â ³ëÅ© ¼¾¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÎǰµéÀº ¿øÈ°ÇÑ ¿£Áø ¼º´É È®º¸, À¯Áöº¸¼ö ºñ¿ë Àý°¨, Â÷·® ¼ö¸í ¿¬Àå¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ÷´Ü ¿£Áø ±â¼úÀÇ ºÎ»ó, ¹è±â°¡½º Àú°¨ ¹× ¿¬ºñ È¿À²È­ÀÇ ¼¼°èÀû ÃßÁøÀ¸·Î ÀÚµ¿Â÷ ³ëÅ©¼¾¼­ ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ÁøÈ­ÇÏ´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼­ È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ģȯ°æÀûÀÎ ³»¿¬±â°üÀ» ±¸ÇöÇϱâ À§ÇØ ÇʼöÀûÀÎ Á¸Àç·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

Á¦°ø(¾ÐÀü½Ä ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­, À¯µµ½Ä ÀÚµ¿Â÷¿ë ³ëÅ© ¼¾¼­);¿ëµµ(½Â¿ëÂ÷ ¿ëµµ, »ó¿ëÂ÷ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â °ÍÀÌ ¾Æ´Ï¶ó, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automotive Knock Sensors Market to Reach US$887.8 Million by 2030

The global market for Automotive Knock Sensors estimated at US$754.5 Million in the year 2024, is expected to reach US$887.8 Million by 2030, growing at a CAGR of 2.8% over the analysis period 2024-2030. Piezoelectric Automotive Knock Sensors, one of the segments analyzed in the report, is expected to record a 3.4% CAGR and reach US$527.4 Million by the end of the analysis period. Growth in the Inductive Automotive Knock Sensors segment is estimated at 1.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$205.5 Million While China is Forecast to Grow at 5.4% CAGR

The Automotive Knock Sensors market in the U.S. is estimated at US$205.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$173.4 Million by the year 2030 trailing a CAGR of 5.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.0% and 2.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.5% CAGR.

Global Automotive Knock Sensors Market - Key Trends & Drivers Summarized

Why Are Knock Sensors Critical for Modern Engine Performance?

Automotive knock sensors are essential components in internal combustion engines, designed to detect abnormal combustion, commonly referred to as "knocking" or "pinging." Knocking occurs when fuel-air mixtures ignite prematurely, causing engine inefficiency and potential damage. Knock sensors play a pivotal role in monitoring these vibrations and sending real-time signals to the engine control unit (ECU), which then adjusts the ignition timing or fuel mixture to prevent further knocking. With the push toward improved fuel efficiency, reduced emissions, and enhanced engine performance, knock sensors have become indispensable in modern vehicles. They ensure smooth engine operation, prevent mechanical damage, and optimize power delivery. As engines become more sophisticated, particularly in turbocharged and downsized designs, the importance of reliable and precise knock sensors has grown exponentially.

How Are Market Trends Driving Demand for Automotive Knock Sensors?

The global automotive knock sensors market is witnessing steady growth, driven by trends in engine design, regulatory mandates, and consumer preferences. One key trend is the increasing adoption of turbocharged and downsized engines. Automakers are developing smaller, more efficient engines to meet stringent emissions standards and fuel efficiency goals. These engines are more prone to knocking due to higher compression ratios, making knock sensors essential for ensuring optimal performance. The transition to stricter emissions regulations worldwide has further boosted demand. Knock sensors help optimize combustion processes, ensuring compliance with regulatory limits for nitrogen oxides (NOx) and carbon dioxide (CO2) emissions. This aligns with global efforts to reduce the environmental impact of vehicles and promote cleaner technologies.

The growth of hybrid and plug-in hybrid electric vehicles (HEVs and PHEVs) has also influenced the market. While these vehicles incorporate electric powertrains, they still rely on internal combustion engines for extended range or auxiliary power. Knock sensors play a critical role in maintaining the efficiency and durability of these engines under varying load conditions. Advanced vehicle diagnostics and predictive maintenance trends have created additional opportunities for knock sensors. Modern vehicles feature sophisticated engine management systems that rely on data from knock sensors to monitor performance and identify potential issues. This data is valuable for real-time adjustments, remote diagnostics, and improving overall vehicle reliability. The growing emphasis on connected and smart vehicles has further accelerated demand for advanced knock sensors. These sensors are increasingly integrated with ECUs and IoT platforms, enabling real-time data analysis and enhanced engine performance management.

What Role Does Innovation Play in Advancing Knock Sensors?

Innovation has been a driving force in enhancing the accuracy, durability, and functionality of automotive knock sensors. One major advancement is the development of piezoelectric and piezoresistive sensor technologies. These sensors provide high sensitivity and precision, enabling accurate detection of knock signals even in challenging operating conditions. These advancements are particularly valuable for high-performance and turbocharged engines. Miniaturization has also transformed knock sensor design. Smaller, more compact sensors reduce weight and space requirements, making them ideal for modern engine designs where space constraints are significant. These compact sensors maintain high performance while offering greater flexibility in integration. Material advancements have improved the durability and reliability of knock sensors. Heat-resistant materials and advanced coatings allow sensors to function effectively in extreme temperature and vibration environments. This is especially critical for engines operating at higher temperatures due to turbocharging or downsizing.

Smart sensor technology has revolutionized the functionality of knock sensors. Modern sensors now incorporate on-board signal processing, enabling them to filter out noise and deliver more accurate data to the ECU. This reduces the workload on the ECU and enhances the efficiency of engine control systems. Integration with IoT and connected vehicle platforms has also expanded the role of knock sensors. By providing real-time data on engine performance, these sensors enable predictive maintenance and remote diagnostics. This connectivity ensures that vehicles remain in optimal condition and reduces the risk of unexpected engine failures.

What Factors Are Driving Growth in This Market?

The growth in the automotive knock sensors market is driven by several interconnected factors, reflecting advancements in engine technology, regulatory requirements, and consumer expectations. One of the primary drivers is the increasing adoption of advanced engine designs, including turbocharged, downsized, and hybrid powertrains. These engines operate under higher pressures and temperatures, making reliable knock detection essential for performance and durability. Stricter emissions standards and fuel efficiency goals have further fueled demand. Knock sensors help optimize combustion processes, enabling automakers to meet regulatory requirements while maintaining power output and drivability. This has become especially important as governments worldwide implement tougher emissions policies. The shift toward hybrid and plug-in hybrid vehicles has created new opportunities for knock sensors. These vehicles rely on efficient internal combustion engines for extended range, and knock sensors ensure that these engines operate reliably under varying loads and conditions.

Advancements in engine management systems have also contributed to market growth. Modern ECUs depend on accurate data from knock sensors to adjust ignition timing, fuel injection, and other parameters in real time. As engine control becomes more sophisticated, the demand for precise and reliable knock sensors has grown. The rise of connected and smart vehicles has further accelerated adoption. Knock sensors integrated with IoT platforms and cloud-based analytics enable advanced features such as predictive maintenance and remote monitoring. This not only enhances vehicle reliability but also aligns with the broader trend of digitization in the automotive sector. Finally, the increasing consumer demand for reliable and fuel-efficient vehicles has driven the adoption of knock sensors. These components play a critical role in ensuring smooth engine performance, reducing maintenance costs, and extending vehicle lifespan. With continued innovation, the rise of advanced engine technologies, and the global push for emissions reduction and fuel efficiency, the automotive knock sensor market is poised for sustained growth. These sensors will remain essential for enabling efficient, reliable, and environmentally friendly internal combustion engines in the evolving automotive landscape.

SCOPE OF STUDY:

The report analyzes the Automotive Knock Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Piezoelectric Automotive Knock Sensors, Inductive Automotive Knock Sensors); Application (Passenger Vehicles Application, Commercial Vehicles Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â