¼¼°èÀÇ ¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀå
Space On-Board Computing Platform
»óǰÄÚµå : 1784155
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 219 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ¼¼°è ½ÃÀåÀº 2030³â±îÁö 40¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 13.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 40¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÃʼÒÇü À§¼ºÀº CAGR 10.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÃʼÒÇü À§¼º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 9,350¸¸ ´Þ·¯, Áß±¹Àº CAGR 12.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀåÀº 2024³â¿¡ 4¾ï 9,350¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 12.8%·Î 2030³â±îÁö 6¾ï 2,650¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 12.0%¿Í 11.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Âº¸µå ÄÄÇ»ÆÃÀÌ ÀÚÀ² ¿ìÁÖ ÀÓ¹«ÀÇ Àü·«Àû ¿øµ¿·ÂÀÌ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀΰøÀ§¼º, ¿ìÁÖ Å½»ç¼±, ½É¿ìÁÖ ÀÓ¹«°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÚÀ²È­µÊ¿¡ µû¶ó °­·ÂÇϰí Áö´ÉÀûÀÎ ¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§ÆûÀÇ Á߿伺ÀÌ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Áö»ó ÀÇÁ¸Çü ½Ã½ºÅÛ°ú ´Þ¸®, ÃֽŠ¿ìÁÖ ÀÓ¹«´Â ½Ç½Ã°£ ÀÇ»ç°áÁ¤, ³»ºñ°ÔÀ̼Ç, µ¥ÀÌÅÍ ¾ÐÃà, ½Ã½ºÅÛ »óÅ ¸ð´ÏÅ͸µ, ÀûÀÀÇü Á¦¾î¸¦ Áö¿øÇÏ´Â °í¼º´É ¿Âº¸µå ÇÁ·Î¼¼½ÌÀ» ¿ä±¸ÇÕ´Ï´Ù. ƯÈ÷ ½É¿ìÁÖ¿¡¼­ÀÇ ¿î¿ëÀº ´ë±â½Ã°£°ú µ¥ÀÌÅÍ Àü¼ÛÀÇ Á¦¾àÀÌ Áõ°¡Çϱ⠶§¹®¿¡ ¿ìÁÖ¼± ³»¿¡¼­ ·ÎÄ÷Πµ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ¸Å¿ì Áß¿äÇÑ ¿ä±¸»çÇ×ÀÌ µÇ°í ÀÖ½À´Ï´Ù. °íÇØ»óµµ À̹ÌÁö¸¦ ó¸®ÇÏ´Â Áö±¸ °üÃø À§¼º, ÇèÁØÇÑ ÁöÇüÀ» Ž»öÇÏ´Â È­¼º Ž»ç¼±, ÀÚÀ² Çϰ­À» °áÁ¤ÇÏ´Â ´Þ Âø·ú¼± µî ¿Âº¸µå ÄÄÇ»ÆÃÀº ¹Ì¼ÇÀÇ ½Å·Ú¼º, È¿À²¼º, ¿î¿µÀÇ µ¶¸³¼ºÀ» º¸ÀåÇÕ´Ï´Ù. AI žÀç žÀçü, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ À§¼º, À§¼º °£ Åë½Å ³×Æ®¿öÅ©ÀÇ µîÀåÀº ¿ìÁÖ¿¡¼­ Áö´ÉÇü ÄÄÇ»ÆÃ Ç÷§ÆûÀÇ ¿ªÇÒÀ» ´õ¿í Áõ´ë½Ã۰í ÀÖ½À´Ï´Ù. À§¼ºÀÌ ¸ðµâÈ­µÇ°í, À籸¼º °¡´ÉÇϸç, AI¸¦ Áö¿øÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ÄÄÇ»ÆÃ Ç÷§ÆûÀº °íÁ¤µÈ ±â´ÉÀÇ Á¦¾î ÀåÄ¡¿¡¼­ ´ÜÀÏ Çϵå¿þ¾î ±â¹Ý¿¡¼­ ¿©·¯ ¹Ì¼Ç ÇÁ·ÎÆÄÀÏÀ» Áö¿øÇÒ ¼ö ÀÖ´Â µ¿Àû ¸ÖƼ ÄÚ¾î ¾ÆÅ°ÅØÃ³·Î À̵¿Çϰí ÀÖ½À´Ï´Ù.

»õ·Î¿î ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¿Í Àç·á´Â ¾î¶»°Ô žÀç ´É·ÂÀ» À籸¼ºÇϰí Àִ°¡?

¿ìÁÖ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³ÀÇ ÁøÈ­´Â ÇÁ·Î¼¼¼­ ¼³°è, ¿­ °ü¸®, ¹æ»ç¼± °æÈ­ ºÎǰÀÇ Çõ½Å¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ½Ã½ºÅÛÀº ¹æ»ç¼±À̳ª ±ØÇÑÀÇ ¿Âµµ°¡ ºñÆ® ¹ÝÀüÀ̳ª ·¡Ä¡¾÷, ¶Ç´Â ¿µ±¸ÀûÀÎ ¼Õ»óÀ» À¯¹ßÇÒ ¼ö ÀÖ´Â °¡È¤ÇÑ ¿ìÁÖ È¯°æÀ¸·Î ÀÎÇØ ¼º´ÉÀÌ ³·Áö¸¸ ½Å·ÚÇÒ ¼ö ÀÖ´Â ÇÁ·Î¼¼¼­¿¡ ÀÇÁ¸ÇØ ¿Ô½À´Ï´Ù. ±×·¯³ª ¿À´Ã³¯¿¡´Â ±¤´ë¿ª °¸ ¹ÝµµÃ¼, ¿À·ù Á¤Á¤ ¸Þ¸ð¸® ½Ã½ºÅÛ, FPGA ±â¹Ý ¼³°è¸¦ ÅëÇØ º¸´Ù °í¼º´É, ¼ÒÇü, ¹æ»ç¼± ³»¼º ÄÄÇ»ÆÃ Ç÷§ÆûÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ARM ±â¹Ý, RISC-V, ¸ÖƼ ÄÚ¾î ÇÏÀ̺긮µå ¾ÆÅ°ÅØÃ³ÀÇ »ç¿ëÀº ¼º´É, ¿¡³ÊÁö È¿À²¼º, ³»°áÇÔ¼ºÀÇ ±ÕÇüÀ» Á¦°øÇÏ¿© Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. »ó¿ë ÇÁ·Î¼¼¼­(COTS)ÀÇ ¿ìÁÖ »ç¾ç ¹öÀüµµ LEO ¹Ì¼Ç, Å¥ºê»û, ´Ü±â°£ °úÇРŽ»ç¼±¿¡ žÀçµÇ¾î ¿§Áö AI, ÀÚÀ² ÆäÀ̷εå Á¦¾î, ½Ç½Ã°£ À̹ÌÁö 󸮸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ°ú ¾çÀÚ ÄÄÇ»ÆÃÀÇ °³¹ßÀº ±â°è ÇнÀ°ú ´ë±Ô¸ð ½Ã¹Ä·¹À̼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÓ¹«¿¡ Àå±âÀûÀÎ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¿î¿µÃ¼Á¦(RTOS)¿Í °¡»óÈ­ ȯ°æ µî Çâ»óµÈ ¼ÒÇÁÆ®¿þ¾î °èÃþÀ» ÅëÇØ ¿ìÁÖ¼±ÀÌ ÀÓ¹« ±â´ÉÀ» µ¿½Ã¿¡ ½ÇÇàÇϰí, ÆäÀÌ·Îµå ¿î¿µÀ» °ü¸®Çϸç, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¿ìÁÖ ÀÚ»ê ½Ã´ë¿¡ Áß¿äÇÑ ±â´ÉÀÎ ¹«¼± ¾÷µ¥ÀÌÆ®¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿Âº¸µå ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ½ÃÀå ºÎ¹®°ú ¹Ì¼ÇÀº ¹«¾ùÀΰ¡?

¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀåÀº À§¼ºÀÇ ¼ÒÇüÈ­, »ó¾÷¿ë º°ÀÚ¸® ¹èÄ¡, ½É¿ìÁÖ Å½»ç ¹× ¹æÀ§ ÁöÇâÀû ¿ìÁÖ È°µ¿À¸·Î ÀÎÇØ ´Ù¾çÇÑ ÀÓ¹« À¯Çü¿¡¼­ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Àú±Ëµµ(LEO)¿¡¼­ Áö±¸ °üÃø, ±âÈÄ ¸ð´ÏÅ͸µ, ±¤´ë¿ª ¿¬°áÀ» ¸ñÀûÀ¸·Î ÇÏ´Â À§¼º º°ÀÚ¸®ÀÇ ºÎ»óÀ¸·Î ½Ç½Ã°£ À̹ÌÁö ó¸® ¹× ¿§Áö ºÐ¼®À» Áö¿øÇÏ´Â °æ·® °í¼º´É ÄÄÇ»ÆÃ À¯´Ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Åë½Å À§¼ºÀ» Æ÷ÇÔÇÑ Á¤Áö±Ëµµ(GEO) Ç÷§Æû¿¡¼­´Â Àå±âÀûÀÎ ¼º´É°ú ÀÚÀ²ÀûÀÎ °íÀå 󸮸¦ À§ÇØ °í½Å·Ú¼º ÄÄÇ»ÆÃ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ´Þ Ž»ç, ¼ÒÇ༺ ä±¼, Ç༺ °£ Ž»ç µî ½É¿ìÁÖ ÀÓ¹«¿¡¼­ ÄÄÇ»ÆÃ Ç÷§ÆûÀº ½Ç½Ã°£ ÀÇ»ç°áÁ¤, ½Ã½ºÅÛ À籸¼º, Åë½Å Áö¿¬À¸·Î ÀÎÇÑ µ¶¸³ÀûÀÎ Ç×ÇØ°¡ °¡´ÉÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ±º¿ë À§¼º ¹× ¿ìÁÖ »óȲ ÀνÄ(SSA) ½Ã½ºÅÛ¿¡´Â °­·ÂÇÑ »çÀ̹ö º¸¾È, ÀúÁö¿¬ Á¦¾î, AI ±â¹Ý À§Çù ŽÁö°¡ ÇÊ¿äÇϸç, ÀÌ ¸ðµç °ÍÀº °­·ÂÇÏ°í ¾ÈÀüÇÑ ¿Âº¸µå ÄÄÇ»ÆÃ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇöÀç °¡Àå ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â À§¼º ºÐ¾ßÀΠťºê»û°ú ¼ÒÇü À§¼ºÀº ÀúÀü·Â ¼Òºñ¿Í °í¼º´ÉÀ» °âºñÇÑ ÃʼÒÇü ÄÄÇ»ÆÃ Ç÷§ÆûÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±Ëµµ ¼­ºñ½º, ¿ìÁÖ °ø°£¿¡¼­ÀÇ Á¦Á¶, ÀÚÀ² ·Îº¿ ÀÛµ¿À» ÇâÇÑ Ãß¼¼´Â ¿Âº¸µå ó¸® ¿ä±¸ »çÇ×ÀÇ ¹üÀ§¿Í °íµµÈ­¸¦ ´õ¿í È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¿ìÁÖ¿ë ¿Âº¸µå ÄÄÇ»ÆÃ Ç÷§Æû ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¹Ì¼ÇÀÇ ÀÚÀ²¼º, ÆäÀ̷εåÀÇ º¹À⼺, ¿ìÁÖ »ó¾÷È­¿¡ »Ñ¸®¸¦ µÐ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¿ìÁÖ¼±¿¡ žÀçµÈ °í󸮷® ¼¾¼­, ¿ø°Ý °¨Áö Àåºñ, ÀÚÀ² ·Îº¿À» Æ÷ÇÔÇÑ ¹Ì¼Ç¿¡¼­ ½Ç½Ã°£, ÀúÁö¿¬ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±Ëµµ»óÀÇ ÀÇ»ç°áÁ¤, ÁöÇü Ž»ö, À§Çù ŽÁö ¹× ÀÌ»ó ¡ÈÄ ÇØ°áÀ» À§ÇØ AI¿Í ¸Ó½Å·¯´×ÀÇ È°¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, º¸´Ù °­·ÂÇÏ°í ¸ðµâÈ­ ¹× ¾÷±×·¹À̵尡 °¡´ÉÇÑ ÄÄÇ»ÆÃ Ç÷§ÆûÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¼ÒÇü À§¼º ¹× Å¥ºê»ûÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ºñ¿ë È¿À²ÀûÀÌ°í ¿ªµ¿ÀûÀÎ ¼ÒÇÁÆ®¿þ¾î ±¸µ¿ ±â´ÉÀ» Áö¿øÇÏ´Â ¼ÒÇü ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ À§¼º ¹× ÀçÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇÑ ÆäÀ̷εåÀÇ µîÀåÀ¸·Î ÄÄÇ»ÆÃ Ç÷§ÆûÀº ¹Ì¼Ç À籸¼º ¹× ¼ö¸íÁֱ⠿¬ÀåÀÇ µðÁöÅÐ ½ÉÀåÀÌ µÇ°í ÀÖ½À´Ï´Ù. »çÀ̹ö º¸¾È°ú ¾ÈÀüÇÑ Åë½ÅÀ» ¿ì¼±½ÃÇÏ´Â ±º»ç ¹× Á¤ºÎ ÀÓ¹«´Â ¹æ»ç¼± ³»¼º ¹× ¾Ïȣȭ ±â´ÉÀ» °®Ãá ÄÄÇ»ÆÃ ¸ðµâÀÇ Ã¤ÅÃÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ SpaceX, Blue Origin, Planet Labs¿Í °°Àº ±â¾÷µé¿¡ ÀÇÇÑ ±¤¹üÀ§ÇÑ ¿ìÁÖ »ó¾÷È­´Â LEO¿Í ±× ÀÌ»óÀÇ ¿ìÁÖ¿¡¼­ È®Àå °¡´ÉÇÏ°í »óÈ£ ¿î¿ë °¡´ÉÇÑ ÄÄÇ»ÆÃ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¹Ì¼ÇÀÇ ¼ö, º¹À⼺ ¹× ±â°£ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, Çö´ë ¿ìÁÖ °æÁ¦ÀÇ ÇÙ½ÉÀÎ ½Å·ÚÇÒ ¼ö ÀÖ°í Áö´ÉÀûÀÌ¸ç °í¼º´ÉÀÇ ¿Âº¸µå ÄÄÇ»ÆÃ¿¡ ´ëÇÑ Çʿ伺Àº Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Ç÷§Æû(ÃʼÒÇü À§¼º, ÃʼÒÇü À§¼º, ¼ÒÇü À§¼º, ÁßÇü À§¼º, ´ëÇü À§¼º, ¿ìÁÖ¼±), Åë½Å Á֯ļö(X ¹êµå, S ¹êµå, K ¹êµå, UHF/VHF ¹êµå), ±Ëµµ(Àú±Ëµµ, Á߱˵µ, Á¤Áö Áö±¸ ±Ëµµ), ¿ëµµ(Åë½Å, Áö±¸ °üÃø, ³»ºñ°ÔÀ̼Ç, ±â»ó, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Space On-Board Computing Platform Market to Reach US$4.0 Billion by 2030

The global market for Space On-Board Computing Platform estimated at US$1.9 Billion in the year 2024, is expected to reach US$4.0 Billion by 2030, growing at a CAGR of 13.5% over the analysis period 2024-2030. Nano satellite, one of the segments analyzed in the report, is expected to record a 10.9% CAGR and reach US$1.0 Billion by the end of the analysis period. Growth in the Micro satellite segment is estimated at 15.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$493.5 Million While China is Forecast to Grow at 12.8% CAGR

The Space On-Board Computing Platform market in the U.S. is estimated at US$493.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$626.5 Million by the year 2030 trailing a CAGR of 12.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.0% and 11.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.1% CAGR.

Global Space On-board Computing Platform Market - Key Trends & Drivers Summarized

Why Is On-board Computing Becoming a Strategic Enabler of Autonomous Space Missions?

As satellites, space probes, and deep-space missions grow more complex and autonomous, the importance of robust and intelligent space on-board computing platforms has become paramount. Unlike traditional ground-dependent systems, modern space missions demand high-performance on-board processing to support real-time decision-making, navigation, data compression, system health monitoring, and adaptive control. With increasing latency and data transmission limitations-particularly for deep-space operations-the ability to process and analyze data locally, on the spacecraft, is a critical requirement. Whether it’s an Earth observation satellite processing high-resolution imagery, a Mars rover navigating rugged terrain, or a lunar lander making autonomous descent decisions, on-board computing ensures mission reliability, efficiency, and operational independence. The rise of AI-powered payloads, software-defined satellites, and inter-satellite communication networks further amplifies the role of intelligent computing platforms in space. As satellites become more modular, reconfigurable, and AI-capable, computing platforms are transitioning from fixed-function control units to dynamic, multi-core architectures capable of supporting multiple mission profiles from a single hardware base.

How Are New Computing Architectures and Materials Reshaping On-board Capabilities?

The evolution of space computing architectures is being driven by innovations in processor design, thermal management, and radiation-hardened components. Legacy systems traditionally relied on low-performance but highly reliable processors due to harsh space conditions, where radiation and extreme temperatures can cause bit flips, latch-ups, or permanent damage. Today, however, wide-bandgap semiconductors, error-correcting memory systems, and FPGA-based designs are enabling more powerful, compact, and radiation-tolerant computing platforms. The use of ARM-based, RISC-V, and multi-core hybrid architectures is gaining traction, offering a balance between performance, energy efficiency, and fault resilience. Space-qualified versions of commercial processors (COTS) are also finding their way into LEO missions, CubeSats, and short-duration science probes, enabling edge AI, autonomous payload control, and real-time image processing. Meanwhile, developments in neuromorphic and quantum computing hold long-term potential for missions requiring machine learning and large-scale simulations. Enhanced software layers, including real-time operating systems (RTOS) and virtualized environments, are allowing spacecraft to run concurrent mission functions, manage payload operations, and support over-the-air updates-a key feature in the age of software-defined space assets.

What Market Segments and Missions Are Fueling Demand for On-board Computing?

The space on-board computing platform market is expanding rapidly across a range of mission types, driven by satellite miniaturization, commercial constellation deployment, deep-space exploration, and defense-oriented space operations. In low Earth orbit (LEO), the rise of satellite constellations for Earth observation, climate monitoring, and broadband connectivity is creating demand for lightweight yet capable computing units that support real-time image processing and edge analytics. Geostationary orbit (GEO) platforms, including telecom satellites, require high-reliability computing systems for long-term performance and autonomous fault handling. In deep-space missions-such as lunar exploration, asteroid mining, or interplanetary probes-computing platforms must enable real-time decision-making, system reconfiguration, and independent navigation due to communication delays. Additionally, military satellites and space situational awareness (SSA) systems demand robust cybersecurity, low-latency control, and AI-based threat detection-all of which depend on powerful and secure on-board computing. CubeSats and smallsats, which are now the fastest-growing satellite segment, require ultra-compact computing platforms that combine low power consumption with high performance. The growing trend toward on-orbit servicing, in-space manufacturing, and autonomous robotic operations is further expanding the scope and sophistication of on-board processing requirements.

What Factors Are Driving the Long-term Growth of the On-board Computing Platform Market?

The growth in the space on-board computing platform market is driven by several key factors rooted in technological advancement, mission autonomy, payload complexity, and space commercialization. One of the primary growth drivers is the need for real-time, low-latency data processing onboard spacecraft, especially in missions involving high-throughput sensors, remote sensing instruments, or autonomous robotics. The increasing use of AI and machine learning for in-orbit decision-making, terrain navigation, threat detection, and anomaly resolution necessitates more powerful, modular, and upgradable computing platforms. The proliferation of small satellites and CubeSats is also boosting demand for miniaturized computing solutions that are both cost-efficient and capable of supporting dynamic software-driven functions. Meanwhile, the rise of software-defined satellites and reprogrammable payloads is making computing platforms the digital heart of mission reconfigurability and lifecycle extension. Military and government missions that prioritize cybersecurity and secure communication are driving adoption of radiation-hardened and encryption-enabled computing modules. Furthermore, the broader commercialization of space-through companies like SpaceX, Blue Origin, Planet Labs, and others-is pushing demand for scalable, interoperable computing systems across LEO and beyond. As missions increase in number, complexity, and duration, the need for reliable, intelligent, and high-performance on-board computing will only intensify, making it a core enabler of the modern space economy.

SCOPE OF STUDY:

The report analyzes the Space On-Board Computing Platform market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Platform (Nano satellite, Micro satellite, Small satellite, Medium satellite, Large satellite, Spacecraft); Communication Frequency (X-band, S-band, K-band, UHF / VHF band); Orbit (Low Earth Orbit, Medium Earth Orbit, Geostationary Earth Orbit); Application (Communication, Earth Observation, Navigation, Meteorology, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â