¼¼°èÀÇ Ãæ°Ý ¼¾¼­ ½ÃÀå
Shock Sensors
»óǰÄÚµå : 1784124
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 293 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ãæ°Ý ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 14¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ãæ°Ý ¼¾¼­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 18.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾ÐÀüÀº CAGR 16.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ÐÀü ÀúÇ× ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 21.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 7,010¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 24.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ãæ°Ý ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 3¾ï 7,010¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 4,940¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 24.5%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 14.7%¿Í 16.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 15.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ãæ°Ý ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»óÅ ¸ð´ÏÅ͸µ°ú ÀÚ»ê º¸È£¿¡ ´ëÇÑ ¼ö¿ä°¡ Ãæ°Ý ¼¾¼­ÀÇ º¸±ÞÀ» ÃËÁø?

ÀÚ»ê º¸È£, ¾ÈÀü, ½Ç½Ã°£ »óÅ ¸ð´ÏÅ͸µÀ» ¿ì¼±½ÃÇÏ´Â »ê¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Ãæ°Ý ¼¾¼­ ¼¼°è ½ÃÀåÀº °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °©ÀÛ½º·¯¿î °¡¼Óµµ, Ãæ°Ý, Áøµ¿À» °¨ÁöÇÏ´Â Ãæ°Ý ¼¾¼­´Â ¹°·ù, Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, °¡Àü, ±¹¹æ, »ê¾÷ Àåºñ µîÀÇ ºÐ¾ß¿¡¼­ °íºÎ°¡°¡Ä¡ ÀÚ»êÀ» º¸È£Çϱâ À§ÇØ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. ¹°·ù ¹× °ø±Þ¸Á ¾÷¹«¿¡¼­´Â Ãæ°Ý ¼¾¼­¸¦ Æ÷ÀåÀ̳ª ¿ë±â¿¡ ³»ÀåÇÏ¿© Á¦Ç° Ãë±ÞÀ» ¸ð´ÏÅ͸µÇϰí, ÀÇ·á±â±â, ÀüÀÚ Á¦Ç°, Á¤¹Ð ±â±â µî ±úÁö±â ½¬¿î »óǰ¿¡ Áß¿äÇÑ ¿î¼Û Áß ÀáÀçÀû ¼Õ»óÀ» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, Ç×°ø¿ìÁÖ ¹× ±º»ç ºÐ¾ß¿¡¼­ Ãæ°Ý ¼¾¼­´Â Ãæµ¹ °¨Áö, ±¸Á¶Àû °ÇÀü¼º ¸ð´ÏÅ͸µ, »óȲ ÀÎ½Ä °­È­ ¹× Àåºñ °íÀåÀ» ¹æÁöÇÏ´Â ¾ÈÀü Áß¿ä ½Ã½ºÅÛ¿¡ »ç¿ëµË´Ï´Ù. Ãֽбâ°è, ÀÎÇÁ¶ó ¹× ÀüÀÚ ÀåºñÀÇ º¹À⼺°ú ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü´Â ¿î¿µÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ°í °¡µ¿ Áß´Ü ½Ã°£À» ÁÙÀ̱â À§ÇØ Ãæ°Ý °¨Áö ±â¼úÀ» µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ±â¾÷µéÀÌ ¿¹Áöº¸Àü°ú ½º¸¶Æ® ÀÚ»ê °ü¸®¸¦ ÃßÁøÇÏ´Â °¡¿îµ¥, Ãæ°Ý ¼¾¼­´Â Ãæ°Ý À̺¥Æ®¿¡ ´ëÇÑ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖÀ¸¸ç, Ä¡¸íÀûÀÎ °íÀåÀ¸·Î È®´ëµÇ±â Àü¿¡ ¹Ì¸® ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

¼ÒÇüÈ­ ¹× IoT¿ÍÀÇ ÅëÇÕÀÌ ÀÀ¿ë °¡´É¼ºÀ» ³ÐÈú ¼ö ÀÖÀ»±î?

¼¾¼­ ¼³°è, ƯÈ÷ ¼ÒÇüÈ­, ¹«¼± ¿¬°á, Àü·Â È¿À² µîÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ¼ÒºñÀÚ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ Ãæ°Ý ¼¾¼­ÀÇ »ç¿ë »ç·Ê°¡ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖ½Å Ãæ°Ý ¼¾¼­´Â Á¡Á¡ ´õ ¼ÒÇüÈ­, °æ·®È­, ¿¡³ÊÁö Àý¾àÈ­µÇ¾î ½º¸¶Æ®Æù, ¿þ¾î·¯ºí, ½º¸¶Æ®È¨ ±â±â, ÀÚµ¿Â÷ ºÎǰ, Ç×°ø¿ìÁÖ ±¸Á¶¹° µî¿¡ ±â´ÉÀ̳ª ¹Ì°üÀ» ÇØÄ¡Áö ¾Ê°í ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ Ãæ°Ý ¼¾¼­´Â Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå¿¡ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Àü¼ÛÇÏ¿© ¿ø°Ý ¸ð´ÏÅ͸µ, À̺¥Æ® ÃßÀû, ÀÚµ¿ °æ°í ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚµ¿Â÷ »ê¾÷¿¡¼­ Ãæ°Ý ¼¾¼­´Â ¿¡¾î¹é Àü°³ ½Ã½ºÅÛ, Ãæµ¹ ºÐ¼®, ¼­½ºÆæ¼Ç Áø´Ü¿¡ »ç¿ëµÇ¾î ÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ½ÂÂ÷°¨À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÇÑÆí, ½º¸¶Æ® Á¦Á¶ »ê¾÷¿¡¼­´Â ³»ÀåµÈ Ãæ°Ý ¼¾¼­°¡ ÀåºñÀÇ °Ç°­ »óŸ¦ ÃßÀûÇϰí ÀÌ»óÀ» °¨ÁöÇÏ¿© ¿¹Áöº¸ÀüÀ» Áö¿øÇÏ¿© °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÁÙÀÔ´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚ±â±â ºÐ¾ßµµ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ºÐ¾ß·Î, ÀåÄ¡ Á¦Á¶¾÷üµéÀº Ãæ°Ý ¼¾¼­¸¦ »ç¿ëÇÏ¿© Ãæ°Ý ÈÄ Çڵ鸵 ¼Õ»ó ÃßÀû, º¸Áõ Æ®¸®°Å, ±â´É ºñȰ¼ºÈ­ µîÀ» ¼öÇàÇϰí ÀÖ½À´Ï´Ù. Ãæ°Ý °¨Áö, µ¥ÀÌÅÍ ºÐ¼®, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¹«¼± Àü¼ÛÀÇ À¶ÇÕÀ» ÅëÇØ ÀÌ·¯ÇÑ ±¸¼º¿ä¼ÒµéÀº ½Ç½Ã°£À¸·Î Áß¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â Áö´ÉÇü ½Ã½ºÅÛÀ¸·Î º¯¸ðÇϰí ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ »õ·Î¿î °¡Ä¡¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

½Å·Ú¼º°ú ±ÔÁ¦ Áؼö°¡ ÇÙ½É ºÐ¾ß·ÎÀÇ ½ÃÀå ħÅõ¸¦ ÃËÁøÇϴ°¡?

Ãæ°Ý ¼¾¼­ÀÇ »ç¿ëÀÌ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ¸·Î È®´ëµÊ¿¡ µû¶ó ¿­¾ÇÇÑ Á¶°Ç¿¡¼­µµ Á¤È®ÇÏ°Ô ÀÛµ¿ÇÒ ¼ö ÀÖ´Â °í½Å·Ú¼º, °ß°íÇÑ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ, ±¹¹æ, ÀÇ·á±â±â µîÀÇ »ê¾÷¿¡¼­´Â ³»±¸¼º, °¨µµ, ¿Âµµ º¯µ¿, ½À±â, ÀüÀڱ⠰£¼·, ±â°èÀû ¸¶¸ð¿¡ ´ëÇÑ ³»¼º µî ±î´Ù·Î¿î ±âÁØÀ» ÃæÁ·ÇÏ´Â ¼¾¼­°¡ ¿ä±¸µË´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸´Â ¿­¾ÇÇÑ »ç¿ë ȯ°æ¿¡¼­µµ Á¤È®ÇÑ Ãæ°Ý °¨Áö¸¦ Á¦°øÇÏ´Â ¾ÐÀü, MEMS ±â¹Ý, Á¤Àü¿ë·®½Ä Ãæ°Ý ¼¾¼­¿Í °°Àº Ư¼ö ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î À̾îÁ³½À´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ Ç¥ÁØ ¹× ÀÎÁõ(ISO, CE, MIL-STD, RoHS µî) Áؼö´Â ±ÔÁ¦ »ê¾÷¿¡ ÁøÀÔÇϰíÀÚ ÇÏ´Â º¥´õ¿¡°Ô Çʼö Á¶°ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·Î±ë, ŸÀÓ½ºÅÆÇÁ, º¯Á¶ ¹æÁö ±â´ÉÀ» Áö¿øÇÏ´Â Ãæ°Ý ¼¾¼­´Â ÃßÀû¼º°ú Ã¥ÀÓ¼ºÀÌ °¡Àå Áß¿äÇÑ º¸Çè, Ç×°ø, Á¦¾à µîÀÇ ºÐ¾ß¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢ ȸ»ç´Â °í°´ÀÇ Æ¯Á¤ ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ Á¶Á¤ °¡´ÉÇÑ ÀÓ°è°ª, ½Ç½Ã°£ Áø´Ü, µà¾ó ¸ðµå ±â´ÉÀ» °®Ãá ¸ÂÃãÇü ¼¾¼­ ¼Ö·ç¼ÇÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº »ç¿ëÀÚÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í ¿ÀŽÁö¸¦ ÁÙÀÌ¸ç ¾÷¹« ¼º°ú¸¦ Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Ãæ°Ý ¼¾¼­´Â ¼¼°è ½ÃÀå¿¡¼­ ¾ÈÀü, ÄÄÇöóÀ̾ð½º, ¼º´É º¸Áõ Àü·«ÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â ±¸¼º¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Ãæ°Ý ¼¾¼­ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Ãæ°Ý ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº »ê¾÷ µðÁöÅÐÈ­, ÀÚ»ê ÀÎÅÚ¸®Àü½º, °í±Þ ¸ð´ÏÅ͸µÀÇ Çʿ伺°ú Á÷°áµÇ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, È®ÀåµÇ´Â ¹°·ù ¹× ÄݵåüÀÎ ºÐ¾ß¿¡¼­´Â ¿î¼Û ¹× º¸°ü Áß Á¦Ç°ÀÇ ¹«°á¼ºÀ» º¸ÀåÇϱâ À§ÇØ Ãæ°Ý ¼¾¼­¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µÑ°, Á¦Á¶ ½Ã½ºÅÛ ¹× »ê¾÷ Àåºñ°¡ º¹ÀâÇØÁü¿¡ µû¶ó ¿¹Áöº¸ÀüÀ» Áö¿øÇϰí Á¶¾÷ Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÏ´Â Ãæ°Ý °¨Áö ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼Â°, ¼ÒÇüÈ­, ¹«¼± ±â´É, IoT »ýŰè¿ÍÀÇ ÅëÇÕÀ» Æ÷ÇÔÇÑ ¼¾¼­ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¼ÒºñÀÚ °¡Àü°ú »ê¾÷ ÀÎÇÁ¶ó ¸ðµÎ¿¡ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ³Ý°, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ±¹¹æ ºÐ¾ß¿¡¼­ °³ÀÎ ¹× °ø°ø¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â À̺¥Æ® Æ®¸®°ÅÇü ¼¾¼­ÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ´Ù¼¸Â°, ÀÇ·á, Ç×°ø, ÀüÀÚ µî ¹Î°¨ÇÑ »ê¾÷¿¡¼­ º¸Çè ¹× ±ÔÁ¤ Áؼö ¿ä±¸»çÇ×ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ç½Ã°£ Ãæ°Ý ÃßÀû ¹× ¹®¼­È­¸¦ À§ÇÑ ¼¾¼­ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿©¼¸Â°, ½º¸¶Æ® ½ÃƼ ¹× ÀÎÇÁ¶ó ¸ð´ÏÅ͸µ ÇÁ·ÎÁ§Æ®¿¡¼­´Â ±³·®, öµµ, °Ç¹°ÀÇ Áøµ¿ ¹× ÀáÀçÀûÀÎ ±¸Á¶Àû À§ÇùÀ» °¨ÁöÇϱâ À§ÇØ Ãæ°Ý ¼¾¼­¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¸ÂÃãÇü, ÀúÀü·Â, ºñ¿ë È¿À²ÀûÀÎ ¼¾¼­ ¼Ö·ç¼ÇÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ´Ù¾çÇÑ È¯°æ¿¡¼­ È®Àå °¡´ÉÇÑ Ãæ°Ý °¨Áö ½Ã½ºÅÛÀ» ½±°Ô µµÀÔÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÈûµéÀÌ °áÇյǾî Ãæ°Ý ¼¾¼­´Â Ä¿³ØÆ¼µå ½Ã½ºÅÛ ½Ã´ëÀÇ Áö´ÉÇü ¸ð´ÏÅ͸µ°ú Ãæ°Ý¿¡ ´ëÀÀÇÏ´Â ÀÇ»ç°áÁ¤ÀÇ Áß¿äÇÑ ½ÇÇö ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¾ÐÀü, ¾ÐÀü ÀúÇ×, Ä¿ÆÐ½ÃÅÍ, ½ºÆ®·¹ÀÎ °ÔÀÌÁö, ±âŸ), ÃÖÁ¾»ç¿ë(ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, »ê¾÷, °¡Àü, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Shock Sensors Market to Reach US$3.7 Billion by 2030

The global market for Shock Sensors estimated at US$1.4 Billion in the year 2024, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 18.2% over the analysis period 2024-2030. Piezoelectric, one of the segments analyzed in the report, is expected to record a 16.6% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the Piezoresistive segment is estimated at 21.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$370.1 Million While China is Forecast to Grow at 24.5% CAGR

The Shock Sensors market in the U.S. is estimated at US$370.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$849.4 Million by the year 2030 trailing a CAGR of 24.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.7% and 16.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.2% CAGR.

Global Shock Sensors Market - Key Trends & Drivers Summarized

Is the Demand for Condition Monitoring and Asset Protection Fueling Shock Sensor Adoption?

The global shock sensors market is experiencing notable growth as industries increasingly prioritize asset protection, safety, and real-time condition monitoring in their operations. Shock sensors, which detect sudden accelerations, impacts, or vibrations, are being widely deployed to safeguard high-value assets across sectors such as logistics, aerospace, automotive, consumer electronics, defense, and industrial equipment. In logistics and supply chain operations, shock sensors are embedded into packaging or containers to monitor product handling and detect potentially damaging impacts during transit-critical for fragile goods like medical devices, electronics, and precision instruments. Similarly, in aerospace and military applications, shock sensors are used in crash detection, structural health monitoring, and safety-critical systems to enhance situational awareness and prevent equipment failure. The rising complexity and cost of modern machinery, infrastructure, and electronics is prompting manufacturers to implement impact-detection technologies to ensure operational integrity and reduce downtime. As businesses move toward predictive maintenance and smart asset management, shock sensors are becoming essential tools that provide actionable insights into impact events, allowing for proactive response before damage escalates into catastrophic failure.

Can Miniaturization and Integration with IoT Expand Application Potential?

Technological advancements in sensor design, particularly in miniaturization, wireless connectivity, and power efficiency, are dramatically expanding the use cases for shock sensors across consumer and industrial domains. Modern shock sensors are increasingly compact, lightweight, and energy-efficient-enabling seamless integration into smartphones, wearables, smart home devices, automotive components, and aerospace structures without compromising functionality or aesthetics. Integration with Internet of Things (IoT) platforms allows shock sensors to transmit real-time data to cloud-based dashboards, enabling remote monitoring, event tracking, and automated alert systems. In the automotive industry, for example, shock sensors are used in airbag deployment systems, crash analysis, and suspension diagnostics to enhance vehicle safety and ride quality. Meanwhile, in smart manufacturing, embedded shock sensors help track equipment health and detect anomalies, supporting predictive maintenance and reducing unplanned downtime. Consumer electronics are another fast-growing segment, with device manufacturers using impact sensors to track handling damage, trigger warranties, or disable features post-impact. The convergence of shock sensing with data analytics, cloud computing, and wireless transmission is transforming these components into intelligent systems capable of delivering critical insights in real time-thereby unlocking new value across sectors.

Is Reliability and Regulatory Compliance Enhancing Market Penetration in Critical Sectors?

As the use of shock sensors extends into mission-critical applications, the demand for high-reliability, ruggedized sensors that can perform accurately under extreme conditions is rising. Industries such as aerospace, defense, and medical devices require sensors that meet stringent standards for durability, sensitivity, and resistance to temperature fluctuations, moisture, electromagnetic interference, and mechanical wear. This need has led to increased investment in specialized sensor technologies including piezoelectric, MEMS-based, and capacitive shock sensors that offer precise impact detection even in harsh operating environments. In addition, compliance with international standards and certifications (such as ISO, CE, MIL-STD, and RoHS) is becoming a prerequisite for vendors aiming to serve regulated industries. Shock sensors that support data logging, timestamping, and tamper-resistance are particularly valuable in sectors like insurance, aviation, and pharmaceuticals where traceability and accountability are paramount. Furthermore, companies are developing customizable sensor solutions with adjustable thresholds, real-time diagnostics, and dual-mode functionality to cater to specific client requirements. These capabilities are helping to enhance user confidence, reduce false positives, and improve operational outcomes-positioning shock sensors as a trusted component in safety, compliance, and performance assurance strategies across global markets.

What’s Driving the Growth in the Shock Sensors Market?

The growth in the shock sensors market is driven by several factors directly tied to industrial digitization, asset intelligence, and advanced monitoring needs. First, the expanding logistics and cold chain sectors are increasingly relying on shock sensors to ensure product integrity during transportation and storage. Second, the growing complexity of manufacturing systems and industrial equipment is creating demand for impact detection technologies that support predictive maintenance and minimize operational disruptions. Third, rapid advancements in sensor technology-including miniaturization, wireless capabilities, and integration with IoT ecosystems-are enabling broader deployment in both consumer devices and industrial infrastructure. Fourth, the increased focus on personal and public safety in automotive, aerospace, and defense applications is fueling the need for highly reliable, event-triggered sensors. Fifth, rising insurance and compliance requirements in sensitive industries such as healthcare, aviation, and electronics are promoting the adoption of sensors for real-time impact tracking and documentation. Sixth, smart cities and infrastructure monitoring projects are incorporating shock sensors to detect vibrations and potential structural threats in bridges, railways, and buildings. Lastly, the rising availability of customizable, low-power, cost-effective sensor solutions is making it easier for organizations to implement scalable impact detection systems across varied environments. Together, these forces are establishing shock sensors as a vital enabler of intelligent monitoring and impact-responsive decision-making in the era of connected systems.

SCOPE OF STUDY:

The report analyzes the Shock Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Piezoelectric, Piezoresistive, Capacitors, Strain Gage, Others); End-Use (Automotive, Aerospace, Industrial, Consumer Electronics, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â