¼¼°èÀÇ ±¤ ¾ÆÀַ̼¹ÀÌÅÍ ½ÃÀå
Optical Isolators
»óǰÄÚµå : 1782977
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 376 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

±¤ ¾ÆÀַ̼¹ÀÌÅÍ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 8¾ï 1,980¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ±¤ ¾ÆÀַ̼¹ÀÌÅÍ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 3.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æí±¤ ÀÇÁ¸ÇüÀº CAGR 4.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 7,120¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Æí±¤ µ¶¸³Çü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 2,330¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±¤ ¾ÆÀַ̼¹ÀÌÅÍ ½ÃÀåÀº 2024³â¿¡ 2¾ï 2,330¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 2¾ï 810¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.1%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.4%¿Í 2.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±¤ ¾ÆÀַ̼¹ÀÌÅÍ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±¤ ¾ÆÀַ̼¹ÀÌÅͰ¡ Ãֽб¤ ½Ã½ºÅÛ¿¡¼­ ±¤ Àü¼Û °ü¸®¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

±¤ ¾ÆÀַ̼¹ÀÌÅÍ´Â Çö´ë ±¤ÇÐ ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¿¡¼­ ÇÑ ¹æÇâÀÇ ±¤ È帧À» º¸ÀåÇÏ°í ÆÄ±«ÀûÀÎ ¿ª¹Ý»ç ¹× ±¤ Çǵå¹éÀ¸·ÎºÎÅÍ ¼¶¼¼ÇÑ ·¹ÀÌÀú ±¸¼º¿ä¼Ò¸¦ º¸È£ÇÏ´Â Áß¿äÇÑ ±¸¼º¿ä¼ÒÀÔ´Ï´Ù. ½ºÆ®¸®¹Ö ¼­ºñ½º, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¿ø°Ý ±Ù¹«, Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ È®»êÀ¸·Î Àü ¼¼°è µ¥ÀÌÅÍ ¼Òºñ·®ÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ±¤Åë½Å ³×Æ®¿öÅ©´Â ´õ¿í ºü¸£°í È¿À²ÀûÀÎ ¿î¿µÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ±¤ ¾ÆÀַ̼¹ÀÌÅÍ´Â ÀÛÀº Çǵå¹éµµ ·¹ÀÌÀúÀÇ ºÒ¾ÈÁ¤¼º°ú ¼º´É ÀúÇϸ¦ À¯¹ßÇÒ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ ³×Æ®¿öÅ©¿¡¼­ ½ÅÈ£ ¹«°á¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ƯÈ÷ ±¤¼¶À¯ Àü¼Û ½Ã½ºÅÛ¿¡¼­´Â Àå°Å¸® Åë½Å ¹× ±¤´ë¿ª µ¥ÀÌÅÍ Àü¼ÛÀ» À§ÇØ ·¹ÀÌÀúÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇØ¾ß ÇϹǷΠ±× ¿ªÇÒÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Åë½Å»ç¾÷ÀÚµéÀÌ 5G, FTTH(Fiber to the Home), ¸ÞÆ®·Î/ÄÚ¾î ³×Æ®¿öÅ©¸¦ Áö¿øÇϱâ À§ÇØ ÀÎÇÁ¶ó¸¦ È®ÀåÇϰí ÀÖ´Â °¡¿îµ¥, ¾ÆÀַ̼¹ÀÌÅÍ´Â ÁõÆø±â, Æ®·£½Ã¹ö, ÆÄÀåºÐÇÒ´ÙÁß(WDM) ½Ã½ºÅÛ¿¡ ±¤¹üÀ§ÇÏ°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. Åë½Å»Ó¸¸ ¾Æ´Ï¶ó ÀÇ·á, Á¦Á¶, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ »ç¿ëµÇ´Â Á¤¹Ð ·¹ÀÌÀú ÀÀ¿ë ºÐ¾ß¿¡µµ ±× Á߿伺ÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, OCT(±¤ÇÐ °£¼· ´ÜÃþÃÔ¿µ±â)³ª ·¹ÀÌÀú ¾È°ú ¼ö¼ú°ú °°Àº ÀÇ·á¿ë ¿µ»ó ½Ã½ºÅÛ¿¡¼­ ¾ÆÀַ̼¹ÀÌÅÍ´Â Á¤È®µµ¸¦ ¶³¾î¶ß¸®´Â ¹Ý»ç·ÎºÎÅÍ Àåºñ¸¦ º¸È£ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¸¶Âù°¡Áö·Î »ê¾÷¿ë ·¹ÀÌÀú °¡°ø ¹× ÃøÁ¤¿¡¼­ ¾ÆÀַ̼¹ÀÌÅÍ´Â ·¹ÀÌÀú ¼Ò½º¸¦ º¸È£ÇÏ´Â µ¿½Ã¿¡ Áß´Ü ¾ø´Â Àü·Â °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷¿ë LiDAR, ¾çÀÚ ÄÄÇ»ÆÃ, ±¤¼¾½Ì°ú °°Àº »õ·Î¿î ºÐ¾ß¿¡¼­µµ ¾ÈÁ¤ÀûÀÌ°í ³ëÀÌÁî°¡ ¾ø´Â ±¤ÀüÆÄÀÇ Çʿ伺Àº ±¤Àý¿¬±âÀÇ ÇʼöÀûÀÎ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ·¹°Å½Ã ½Ã½ºÅÛ¿¡¼­ ÃÖ÷´Ü ±â¼ú±îÁö, ÀÌ·¯ÇÑ ±¸¼º¿ä¼ÒÀÇ Áö¼ÓÀûÀÎ °ü·Ã¼ºÀº ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò°¡ °í¼º´É ±¤ÇÐÀû ¼³°èÀÇ ±âÃʰ¡ µÇ´Â ÀÌÀ¯¸¦ °­Á¶ÇÕ´Ï´Ù.

±â¼ú ¹ßÀüÀº ¾î¶»°Ô ±¤Àý¿¬±âÀÇ ¼º´É°ú ´Ù¾ç¼ºÀ» Çâ»ó½Ã۰í Àִ°¡?

±¤Àý¿¬±âÀÇ ¼º´É, Å©±â, ÅëÇÕ ´É·ÂÀº ±â¼ú Çõ½ÅÀÇ ¹°°á¿¡ µû¶ó Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â Å׸£ºç-°¥·ý-°¡³Ý(TGG)°ú °°Àº º¸´Ù È¿À²ÀûÀÎ ±¤ÀÚ¼º Àç·áÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ¼ÒÀç´Â ¿ì¼öÇÑ ÆÐ·¯µ¥ÀÌ È¸Àü°ú »ðÀÔ ¼Õ½ÇÀ» °¨¼Ò½ÃÄÑ ¾ÆÀַ̼¹ÀÌÅ͸¦ °í¼Ó Àü¼Û¿¡¼­ ´õ¿í È¿°úÀûÀ¸·Î ¸¸µì´Ï´Ù. ÀÌ¿Í ÇÔ²² ¿¬±¸ÁøÀº ¿­Àû, ±¤ÇÐÀû ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŲ ¼ÒÀ縦 ¼³°èÇÏ¿© °¡È¤ÇÑ ÀÛµ¿ Á¶°Ç¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇÕ´Ï´Ù. ½Ã½ºÅÛ ÅëÇÕÀÌ Àüü Æ÷Åä´Ð½ºÀÇ ÃÖ¿ì¼± °úÁ¦°¡ µÊ¿¡ µû¶ó, Á¦Á¶¾÷üµéÀº ½Ç¸®ÄÜ Æ÷Åä´Ð½º ¹× Æ÷Åä´Ð ÁýÀûȸ·Î(PIC)ÀÇ Ä¨ ·¹º§ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÑ ¼ÒÇü ¾ÆÀַ̼¹ÀÌÅ͸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ƯÈ÷ Åë½Å, µ¥ÀÌÅͼ¾ÅÍ, ¼ÒºñÀÚ °¡Àü ºÐ¾ß¿¡¼­ µð¹ÙÀ̽º°¡ ¼ÒÇüÈ­, °í¹ÐµµÈ­µÊ¿¡ µû¶ó ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Æí±¤¿¡ ÀÇÁ¸ÇÏÁö ¾Ê´Â ¾ÆÀַ̼¹ÀÌÅͰ¡ °¢±¤À» ¹Þ°í ÀÖÀ¸¸ç, Æí±¤ Á¦¾î°¡ Çö½ÇÀûÀÌÁö ¾ÊÀº ´ÙÆÄÀå ½Ã½ºÅÛÀ̳ª ¾ç¹æÇ⠽ýºÅÛ¿¡¼­ º¸´Ù À¯¿¬ÇÑ Àü°³°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ÆÄÀ̹ö ÇDZ×Å×ÀÏ ¹× ¸ð³î¸®½Ä ÅëÇÕÀ» Æ÷ÇÔÇÑ Á¶¸³ ±â¼úÀÇ Çõ½ÅÀº ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ¸é¼­ Á¤·ÄÀÇ º¹À⼺°ú Á¦Á¶ ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÆÐŰ¡ ±â¼úÀÇ ¹ßÀüÀº °¡È¤ÇÑ È¯°æ¿¡ °ßµô ¼ö ÀÖ´Â ¾ÆÀַ̼¹ÀÌÅÍÀÇ °³¹ß·Î À̾îÁ® Ç×°ø¿ìÁÖ, ±º»ç, »ê¾÷ ºÐ¾ß¿¡¼­ÀÇ »ç¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶ Ãø¸é¿¡¼­´Â ÀÚµ¿È­, Á¤¹Ð Á¤·Ä, ÀÚ±â Â÷ÆóÀÇ °³¼±À¸·Î ¼º´É ÀúÇÏ ¾øÀÌ »ý»ê ±Ô¸ð¸¦ È®´ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸´Â ±¤Àý¿¬±âÀÇ Ã¤ÅÃÀ» Áõ°¡½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀÛµ¿ ÆÄÀå, ¿Âµµ ³»¼º, ÅëÇÕ °¡´É¼ºÀÇ ¹üÀ§¸¦ È®´ëÇÔÀ¸·Î½á ¿ÏÀüÈ÷ »õ·Î¿î ÀÀ¿ë ºÐ¾ß¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±¤ÇÐ ºÎǰ »ýŰ谡 º¸´Ù ÄÄÆÑÆ®Çϰí È¿À²ÀûÀ̸ç È®Àå °¡´ÉÇÑ ½Ã½ºÅÛÀ¸·Î ÁøÈ­ÇÔ¿¡ µû¶ó ¾ÆÀַ̼¹ÀÌÅ͵µ Â÷¼¼´ë Æ÷Åä´Ð½ºÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ÇÔ²² ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

±¤Àý¿¬±â¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡Àå ¸¹Àº »ê¾÷ ºÐ¾ß´Â?

±¤ ¾ÆÀַ̼¹ÀÌÅÍ´Â ±¤ ½ÅÈ£ÀÇ Ç°Áú°ú ½Ã½ºÅÛÀÇ ³»±¸¼ºÀ» º¸ÀåÇϱâ À§ÇØ °¢ ¾÷°è¿¡¼­ °íÀ¯ÇÑ ¹æ½ÄÀ¸·Î ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­´Â ¿¡¸£ºç ÷°¡ ±¤¼¶À¯ ÁõÆø±â(EDFA), À籸¼º °¡´É ±¤ ¾Öµåµå·Ó ¸ÖƼÇ÷º¼­(ROADM), ÄÚ¾î ¹× ¸ÞÆ®·Î ³×Æ®¿öÅ©¿¡ »ç¿ëµÇ´Â °í¼Ó Æ®·£½Ã¹ö µî ÇÙ½É ÀÎÇÁ¶ó¿¡ ¾ÆÀַ̼¹ÀÌÅͰ¡ ³»ÀåµÇ¾î ÀÖ¾î ¾çÀû ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Åë½Å ³×Æ®¿öÅ©°¡ 400G, 800G ¹× ´õ ºü¸¥ µ¥ÀÌÅÍ ¼Óµµ·Î À̵¿ÇÔ¿¡ µû¶ó ¾ÆÀַ̼¹ÀÌÅÍ´Â ·¹ÀÌÀú Ãâ·ÂÀ» ¾ÈÁ¤ÀûÀ¸·Î À¯ÁöÇÏ°í ½Ã½ºÅÛ ¿À·ù¸¦ ÁÙÀ̱â À§ÇØ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ¿¡¼­´Â ¾ÆÀַ̼¹ÀÌÅͰ¡ ¼­¹ö¿Í ½ºÀ§Ä¡ °£ÀÇ °í¹Ðµµ ±¤ »óÈ£¿¬°áÀ» Áö¿øÇÏ¿© ÇÏÀÌÆÛ½ºÄÉÀÏ Å¬¶ó¿ìµå ȯ°æ¿¡¼­ °í¼Ó, °í½Å·Ú¼º, ¿­ÀûÀ¸·Î ¾ÈÁ¤ÀûÀÎ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. »ê¾÷ ºÐ¾ß¿¡¼­ ¾ÆÀַ̼¹ÀÌÅÍ´Â ·¹ÀÌÀú Àý´Ü, ¿ëÁ¢, Á¶°¢, ¸®¼Ò±×·¡ÇÇ µî ·¹ÀÌÀú ±â¹Ý Á¦Á¶ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀ̸ç, ¹Ý»ç Ç¥¸éÀ¸·Î ÀÎÇÑ °ªºñ½Ñ ·¹ÀÌÀú ¼Õ»óÀ» ¹æÁöÇÕ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¾ÆÀַ̼¹ÀÌÅÍ´Â ³»½Ã°æ, OCT Àåºñ, Á¤¹Ð ·¹ÀÌÀú Ä¡·á ½Ã½ºÅÛ µî Áø´Ü ¹× ¼ö¼ú ±â±â¿¡ ³»ÀåµÇ¾î ±¤ÇÐÀûÀÎ Åõ¸í¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷, ƯÈ÷ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ¿¡¼­´Â Áøµ¿ÀÌ ¹ß»ýÇϱ⠽¬¿î ȯ°æ¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ½ÅÈ£ Ãâ·ÂÀ» À¯ÁöÇϱâ À§ÇØ LiDAR ¸ðµâ ³» ¾ÆÀַ̼¹ÀÌÅÍ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. À§¼ºÅë½Å¿¡¼­ ·¹ÀÌÀú À¯µµ ¹× Á¶ÁØ¿¡ À̸£±â±îÁö Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷ ºÐ¾ß¿¡¼­´Â °¡È¤ÇÑ ´ë±â ¹× ¿ìÁÖ È¯°æÀ» °ßµô ¼ö ÀÖ´Â °ß°íÇÑ ³»¹æ»ç¼± ¾ÆÀַ̼¹ÀÌÅͰ¡ ¿ä±¸µË´Ï´Ù. ¶ÇÇÑ, ¿¬±¸ ±â°ü ¹× ´ëÇп¡¼­´Â ¾çÀÚ ±¤ÇÐ ¹× Æ÷Åä´Ð½º ¿¬±¸¿¡¼­ ½ÇÇè º¯¼ö¸¦ Á¦¾îÇϱâ À§ÇØ ¾ÆÀַ̼¹ÀÌÅͰ¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß·Î ÀÎÇØ ÆÄÀ̹ö º£À̽º, ÇÁ¸®½ºÆäÀ̽º, Ĩ ½ºÄÉÀÏ µî ƯÁ¤ »ç¿ë »ç·Ê¿¡ ¸Â´Â ´Ù¾çÇÑ ÇüÅÂÀÇ ¾ÆÀַ̼¹ÀÌÅÍ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÎÅÍ³Ý ÀÎÇÁ¶ó¿¡¼­ ¼ÒºñÀÚ¿ë ¿þ¾î·¯ºí¿¡ À̸£±â±îÁö ¸ðµç °Í¿¡ Æ÷Åä´Ð½º°¡ Á¢¸ñµÇ°í ÀÖ´Â Áö±Ý, ±¤Àý¿¬±â´Â ¼¼°è Çõ½ÅÀÇ ÁÖ¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ±¤ ¾ÆÀַ̼¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±¤ ¾ÆÀַ̼¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÀåÀº È®´ëµÇ´Â µðÁöÅÐ ÀÎÇÁ¶ó, ±â¼ú À¶ÇÕ, °¢ »ê¾÷ ºÐ¾ßÀÇ ¼º´É¿¡ ´ëÇÑ ±â´ëÄ¡ »ó½Â µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©ÀÇ ±¸Ãà°ú ¼¼°è µ¥ÀÌÅÍ ¼ÒºñÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇØ Åë½Å »ç¾÷ÀÚµéÀº ±¤ ÀÎÇÁ¶ó¸¦ ¾÷±×·¹À̵åÇϰí ÀÖÀ¸¸ç, ¾ÆÀַ̼¹ÀÌÅÍ´Â ½Ã½ºÅÛ ¾ÈÁ¤¼º°ú °¡µ¿ ½Ã°£ÀÇ ÇÙ½ÉÀÔ´Ï´Ù. µ¿½Ã¿¡ ÇÏÀÌÅ×Å© ´ë±â¾÷°ú Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷üµéÀÇ ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ¹× È®ÀåÀÌ ÁøÇàµÇ¸é¼­ °í¼Ó Æ®·£½Ã¹ö ¹× ½ÅÈ£ ó¸® ¸ðµâ¿¡ »ç¿ëµÇ´Â ±¤ ¾ÆÀַ̼¹ÀÌÅÍ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶ ¾÷°è¿¡¼­´Â ƯÈ÷ ¹Ì¼¼ ¿ëÁ¢, ÀûÃþ °¡°ø µî Á¤¹Ð ÀÛ¾÷¿¡¼­ °íµµÀÇ ·¹ÀÌÀú ½Ã½ºÅÛ µµÀÔÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¿­ ¿µÇâÀ̳ª ¹Ý»ç·Î ÀÎÇÑ ºÒ¾ÈÁ¤¼ºÀ» ÃÖ¼ÒÈ­Çϸ鼭 ³ôÀº ±¤ Ãâ·ÂÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ¾ÆÀַ̼¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ ±â¼ú ¹ßÀü°ú Æ÷Åä´Ð ÁýÀûȸ·Î(PIC)ÀÇ Ã¤Åà Ȯ´ë´Â Ĩ ½ºÄÉÀÏ Ç÷§Æû¿¡ ¸Å²ô·´°Ô ÅëÇյǴ ¼ÒÇü ÁýÀû ¾ÆÀַ̼¹ÀÌÅÍÀÇ »õ·Î¿î »ç¿ë »ç·Ê¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇàÂ÷, µå·Ð, ·Îº¿ °øÇп¡¼­ LiDAR ¼¾¼­ÀÇ º¸±ÞÀº À̵¿ÇÏ´Â °íÁøµ¿ ȯ°æ¿¡¼­ ÀÛµ¿ÇÏ´Â ¼ÒÇü ¾ÆÀַ̼¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ´Â ±¤¼¶À¯ ±¤´ë¿ª È®´ë, µðÁöÅÐ ¿¬°á ÇÁ·Î±×·¥, ±¹°¡ ¾Èº¸ ½Ã½ºÅÛ µî¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀº Æ÷Åä´Ð½º¸¦ Ȱ¿ëÇÏ°í ½ÅÈ£ ¹«°á¼ºÀ» À§ÇØ ¾ÆÀַ̼¹ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ, ¾çÀÚ ±¤ÇÐ ¹× ±¤ÄÄÇ»ÆÃÀÇ Á߿伺ÀÌ Ä¿Áö¸é¼­ ¾ÆÀַ̼¹ÀÌÅÍ´Â ±úÁö±â ½¬¿î ±¤ °æ·Î¸¦ °ü¸®ÇÏ´Â Áß¿äÇÑ µµ±¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ¼³°è °³¼±, ´õ ³ÐÀº ÆÄÀå ȣȯ¼º, È®Àå °¡´ÉÇÑ »ý»ê ±â¼ú·Î ´ëÀÀÇÏ¿© ¾ÆÀַ̼¹ÀÌÅ͸¦ ±× ¾î´À ¶§º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í ÀûÀÀ·ÂÀÌ ³ôÀº ¾ÆÀַ̼¹ÀÌÅÍ·Î ¸¸µé°í ÀÖ½À´Ï´Ù. Æ÷Åä´Ð½º°¡ Åë½Å, ÀÚµ¿È­, ¼¾½Ì, ÄÄÇ»ÆÃÀÇ ÁßÃ߷μ­ Á¡Á¡ ´õ Áß¿äÇØÁü¿¡ µû¶ó, ¼¼°è ±¤Àý¿¬±â ½ÃÀåÀº ¸ðµç ÁÖ¿ä »ê¾÷ ¹× ±â¼ú ºÐ¾ß¿¡¼­ Àå±âÀûÀÌ°í ¿µÇâ·Â ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù.

ºÎ¹®

Ä«Å×°í¸®(Æí±¤ ÀÇÁ¸Çü, Æí±¤ ºñÀÇÁ¸Çü), ÆÄ¿ö ·¹º§(°íÃâ·Â, ÁßÃâ·Â, ÀúÃâ·Â), ÃÖÁ¾»ç¿ë(¿¬±¸°³¹ß ÃÖÁ¾»ç¿ë, Á¦Á¶ ÃÖÁ¾»ç¿ë, °¡Àü ÃÖÁ¾»ç¿ë, ¹æÀ§ ÃÖÁ¾»ç¿ë, ÀÇ·á ÃÖÁ¾»ç¿ë, ±âŸ ÃÖÁ¾»ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Optical Isolators Market to Reach US$1.0 Billion by 2030

The global market for Optical Isolators estimated at US$819.8 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 3.8% over the analysis period 2024-2030. Polarization Dependent, one of the segments analyzed in the report, is expected to record a 4.7% CAGR and reach US$671.2 Million by the end of the analysis period. Growth in the Polarization Independent segment is estimated at 2.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$223.3 Million While China is Forecast to Grow at 7.1% CAGR

The Optical Isolators market in the U.S. is estimated at US$223.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$208.1 Million by the year 2030 trailing a CAGR of 7.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.4% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.2% CAGR.

Global Optical Isolators Market - Key Trends & Drivers Summarized

Why Are Optical Isolators Vital in Managing Light Transmission in Modern Photonic Systems?

Optical isolators have become a critical component in the architecture of modern optical systems, ensuring unidirectional light flow and protecting sensitive laser components from disruptive back reflections and optical feedback. As global data consumption increases exponentially-driven by streaming services, cloud computing, remote work, and the proliferation of connected devices-optical communication networks must operate at higher speeds and greater efficiency. Optical isolators are central to maintaining signal integrity in these networks, where even minor feedback can cause laser instability or performance degradation. Their role is particularly crucial in fiber-optic transmission systems, where lasers must remain stable to handle long-distance communication and high-bandwidth data transfer. As telecom operators expand their infrastructure to support 5G, FTTH (Fiber to the Home), and metro/core networks, isolators are being deployed extensively in amplifiers, transceivers, and wavelength division multiplexing (WDM) systems. Beyond telecom, their importance extends into precision laser applications used in industries like healthcare, manufacturing, and automotive. For example, in medical imaging systems such as OCT (Optical Coherence Tomography) or laser eye surgery, isolators are used to protect equipment from reflections that can compromise accuracy. Similarly, in industrial laser machining and metrology, isolators safeguard the laser source while ensuring uninterrupted power delivery. Even in emerging fields like LiDAR for autonomous vehicles, quantum computing, and photonic sensing, the need for stable, noise-free light propagation highlights the indispensable role of optical isolators. Their continued relevance across both legacy systems and cutting-edge technologies underscores why these components remain foundational in high-performance photonic design.

How Are Technology Advancements Enhancing the Performance and Versatility of Optical Isolators?

The performance, size, and integration capabilities of optical isolators are being significantly elevated by a wave of technological innovation. One major area of advancement is the development of more efficient magneto-optic materials-such as terbium gallium garnet (TGG)-that provide superior Faraday rotation with reduced insertion loss, making isolators more effective at high transmission speeds. In parallel, researchers are engineering materials with enhanced thermal and optical stability, ensuring consistent performance under demanding operational conditions. As system integration becomes a top priority across photonics, manufacturers are creating miniaturized isolators suitable for chip-level applications in silicon photonics and photonic integrated circuits (PICs). These developments are crucial as devices become smaller and denser, especially in telecom, datacenter, and consumer electronics domains. Moreover, polarization-independent isolators are gaining prominence, offering more flexible deployment in multi-wavelength and bidirectional systems where controlling polarization is impractical. Innovations in assembly techniques, including fiber pigtailing and monolithic integration, are reducing alignment complexity and production costs while improving reliability. Meanwhile, advances in packaging technologies have led to the development of isolators that are ruggedized for harsh environments, supporting their use in aerospace, military, and industrial sectors. On the manufacturing side, automation, precision alignment, and improved magnetic shielding are helping scale production without compromising performance. These technological strides are not only increasing the adoption of optical isolators but also enabling entirely new applications by expanding their range of operational wavelengths, temperature tolerance, and integration potential. As the optical component ecosystem evolves toward more compact, efficient, and scalable systems, isolators are evolving in lockstep to meet the demands of next-generation photonics.

What Industry Segments Are Creating the Most Demand for Optical Isolators?

Optical isolators are seeing robust demand across a wide spectrum of industries, each leveraging the technology in unique ways to ensure optical signal quality and system durability. The telecommunications sector leads in volume demand, with isolators embedded in critical infrastructure such as erbium-doped fiber amplifiers (EDFAs), reconfigurable optical add-drop multiplexers (ROADMs), and high-speed transceivers used in core and metro networks. As telecom networks transition to 400G, 800G, and even higher data rates, isolators are essential to stabilize laser output and reduce system errors. In data centers, isolators support high-density optical interconnects between servers and switches, enabling fast, reliable, and thermally stable communication across hyperscale cloud environments. In the industrial sector, isolators are indispensable in laser-based manufacturing systems, including laser cutting, welding, engraving, and lithography, where they prevent costly laser damage caused by reflective surfaces. In healthcare, isolators are integrated into diagnostic and surgical tools such as endoscopes, OCT devices, and precision laser therapy systems to ensure optical clarity and safety. The automotive industry, particularly in autonomous driving systems, relies on isolators within LiDAR modules to maintain consistent signal output in compact, vibration-prone environments. Aerospace and defense applications-ranging from satellite communication to laser guidance and targeting-demand rugged, radiation-tolerant isolators capable of withstanding harsh atmospheric or space conditions. Furthermore, research institutions and universities use isolators extensively in quantum optics and photonic research to control experimental variables. This wide array of applications is driving the need for isolators in various formats-fiber-based, free-space, and chip-scale-each tailored to specific use cases. With photonics now embedded in everything from internet infrastructure to consumer wearables, optical isolators are emerging as a behind-the-scenes hero in global innovation.

What Factors Are Fueling Growth in the Optical Isolators Market Globally?

The growth in the optical isolators market is driven by several factors rooted in expanding digital infrastructure, technological convergence, and rising performance expectations across verticals. The rollout of 5G networks and the exponential increase in global data consumption are prompting telecom operators to upgrade their optical infrastructure, where isolators are key to system reliability and uptime. Simultaneously, the ongoing construction and expansion of hyperscale data centers by tech giants and cloud service providers is generating continuous demand for optical isolators used in high-speed transceivers and signal processing modules. The increased deployment of advanced laser systems in manufacturing, especially for precision tasks like micro-welding and additive manufacturing, is further amplifying demand for isolators that can handle high optical power while minimizing thermal effects and reflection-induced instability. Technological advancements in silicon photonics and the growing adoption of photonic integrated circuits (PICs) are also creating new use cases for compact, integrated isolators that blend seamlessly into chip-scale platforms. Moreover, the proliferation of LiDAR sensors in autonomous vehicles, drones, and robotics is driving demand for miniature isolators capable of functioning in mobile, high-vibration environments. Governments around the world are investing in fiber-optic broadband expansion, digital connectivity programs, and national security systems-all of which utilize photonics and require isolators for signal integrity. Additionally, the growing importance of quantum optics and photonic computing is spotlighting isolators as a crucial tool for managing fragile light paths. Manufacturers are responding with improved designs, wider wavelength compatibility, and scalable production techniques, making isolators more cost-effective and adaptable than ever. As photonics increasingly becomes the backbone of communication, automation, sensing, and computing, the global optical isolators market is positioned for long-term, high-impact growth across all major industrial and technological domains.

SCOPE OF STUDY:

The report analyzes the Optical Isolators market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Category (Polarization Dependent, Polarization Independent); Power Level (High Power, Medium Power, Low Power); End-Use (Research & Development End-Use, Manufacturing End-Use, Consumer Electronics End-Use, Defense End-Use, Medical End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â