¼¼°èÀÇ Èí½À¼º °ÇÃàÀÚÀç ½ÃÀå
Hygroscopic Building Material
»óǰÄÚµå : 1781297
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 383 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Èí½À¼º °ÇÃàÀÚÀç ¼¼°è ½ÃÀåÀº 2030³â±îÁö 12¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 8¾ï 8,800¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Èí½À¼º °ÇÃàÀÚÀç ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 5.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 12¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¹«±â ¿°·ù À¯ÇüÀº CAGR 3.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 1,120¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹«±â ±¤¹° À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,190¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Èí½À¼º °ÇÃàÀÚÀç ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,190¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 7.9%¸¦ ±â·ÏÇϸç 2030³â±îÁö 2¾ï 3,470¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.6%¿Í 5.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Èí½À¼º °ÇÃàÀÚÀç ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Èí½À¼º °ÇÃàÀÚÀç°¡ ±âÈÄ ´ëÀÀ °ÇÃàÀÇ ÇÙ½É Ç÷¹À̾ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Èí½À¼º °ÇÃàÀÚÀç(ÁÖº¯ ȯ°æÀ¸·ÎºÎÅÍ ¼öºÐÀ» Èí¼ö, ÀúÀå, ¹æÃâÇÒ ¼ö ÀÖ´Â °ÇÃàÀÚÀç)´Â Áö¼Ó°¡´ÉÇÑ °ÇÃà ¹× °ÇÃà°úÇÐ ºÐ¾ß¿¡¼­ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¸ñÀç, Á¡Åä ¼®°í, ¼®°í, ´ë¸¶ ÄÜÅ©¸®Æ®, ƯÁ¤ õ¿¬¼¶À¯ º¹ÇÕÀç·á¿Í °°Àº ÀÌ·¯ÇÑ Àç·á´Â ±â°è ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ½Ç³» ½Àµµ ¼öÁØÀ» Á¶ÀýÇÏ°í ¿­Àû ÄèÀû¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °ÇÃ๰Àº ƯÈ÷ ³Ã³­¹æ°ú °ø±â Á¤È­¸¦ À§ÇØ Àü ¼¼°è ¿¡³ÊÁö »ç¿ë·®ÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϱ⠶§¹®¿¡ Èí½À¼º ¼ÒÀç´Â ±âÈÄ¿¡ ´ëÀÀÇÏ´Â ¼³°è¸¦ À§ÇÑ ¼öµ¿ÀûÀÌ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. Èí½ÀÀç´Â ƯÈ÷ ½Àµµ°¡ º¯µ¿ÇÏ´Â Áö¿ª¿¡¼­ °á·Î À§ÇèÀ» ÁÙÀÌ°í °õÆÎÀÌ ¹ß»ýÀ» ¾ïÁ¦ÇÏ¸ç ½Ç³» °ø±â ȯ°æÀ» ¾ÈÁ¤È­½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °ÇÃà°¡¿Í ¿£Áö´Ï¾îµéÀº Èí½ÀÀ縦 º®°ú õÀå, ´Ü¿­Ãþ¿¡ ÅëÇÕÇÏ¿© ½Ç³» ȯ°æ°ú ¿ªµ¿ÀûÀ¸·Î »óÈ£ ÀÛ¿ëÇÏ´Â Åë±â¼º ÀÖ´Â °Ç¹° ¿ÜÇǸ¦ ¸¸µé°í ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº ¹ÙÀÌ¿À Ŭ¶óÀÌ¸ÓÆ½ °ÇÃà, À£ºù Á᫐ ¼³°è, °øÁ¶ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ °¨¼Ò¿Í °°Àº ±¤¹üÀ§ÇÑ ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²°ú °ÅÁÖÀÚÀÇ °Ç°­ÀÌ Á¡Á¡ ´õ Áß¿ä½ÃµÇ´Â ½Ã´ë¿¡ Èí½À¼º ¼ÒÀç´Â ±× ¹°¸®Àû Ư¼º»Ó¸¸ ¾Æ´Ï¶ó Á¾ÇÕÀûÀÎ °ÇÃà ¼º´É¿¡ ´ëÇÑ ±â¿©µµµµ ÀÎÁ¤¹Þ°í ÀÖ½À´Ï´Ù.

Àç·áÀÇ Çõ½Å°ú ½ÃÇèÀÇ ¹ßÀüÀº ¾î¶»°Ô ¿ëµµ¸¦ È®ÀåÇϰí Àִ°¡?

Àç·á °úÇаú ½ÃÇè ¹æ¹ýÀÇ °³¹ß·Î °í¼º´É Èí½À °ÇÃàÀÚÀçÀÇ °³¹ß ¹× äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÃֽйèÇÕÀº ÀüÅëÀûÀÎ Èí½À ¼ººÐ°ú ÷´Ü ±â¼úÀ» °áÇÕÇÏ¿© ³»±¸¼º, ³»È­¼º, Çö´ë °ÇÃà ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀ» ³ô¿´½À´Ï´Ù. ¿¹¸¦ µé¾î, Àΰø ¸ñÀç Á¦Ç°, ¹ÙÀÌ¿À ±â¹Ý ´Ü¿­Àç, ÇÏÀ̺긮µå º¹ÇÕÀç´Â ±¸Á¶Àû ¹«°á¼ºÀ̳ª ¼³°è À¯¿¬¼ºÀ» ¼Õ»ó½ÃŰÁö ¾ÊÀ¸¸é¼­ ¼öºÐ Èí¼ö ¿ÏÃæ ±â´ÉÀ» ³»ÀåÇϰí ÀÖ½À´Ï´Ù. WUFI¿Í °°Àº Á¤±³ÇÑ ¸ðµ¨¸µ µµ±¸¿Í ½À¿­ ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î´Â ´ÙÃþ ±¸Á¶¹°ÀÇ ½À±â °Åµ¿À» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ¼³°èÀڴ ƯÁ¤ ±âÈÄ Á¶°Ç¿¡ ¸Â°Ô °Ç¹° ¿ÜÇǸ¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÇÇè½Ç Å×½ºÆ® ¹× ÇöÀå ¸ð´ÏÅ͸µ ±â¼úÀ» ÅëÇØ µ¿Àû ¿Âµµ ¹× ½Àµµ Á¶°Ç¿¡¼­ Èí½À¼º Àç·áÀÇ ½ÇÁ¦ ¼º´É¿¡ ´ëÇÑ ½ÇÁõ µ¥ÀÌÅ͸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ßÀÚµéÀº ¶ÇÇÑ ³ª³ë Àç·á¿Í ¸¶ÀÌÅ©·Îĸ½¶È­¸¦ ޱ¸Çϰí ȯ°æ ½ÅÈ£¿¡ ¹ÝÀÀÇÏ´Â "Áö´ÉÇü" ½Àµµ Á¶Àý Àç·á¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î Èí½À¼º ¼ÒÀç´Â °í¼º´É ÁÖÅà ¹× »ó¾÷¿ë °ÇÃà¿¡¼­ ¿ª»çÀû °ÇÃ๰ º¹¿ø ¹× ºñÀü±âÈ­ ÁÖÅÿ¡ À̸£±â±îÁö º¸´Ù Æø³ÐÀº ¿ëµµ·ÎÀÇ Àû¿ëÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ±× °á°ú, ¼öºÐ ¿ÏÃæ Àü·«ÀÇ ÅëÇÕÀº Æ´»õ »ýŰè ÇÁ·ÎÁ§Æ®¿¡¼­ ÁÖ·ù °ÇÃà ¹æ½ÄÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í °Ç°­ ÁöÇâÀû µðÀÚÀÎÀº ¾î¶»°Ô ½ÃÀå ¼ö¿ä¸¦ ÀÚ±ØÇÒ ¼ö ÀÖÀ»±î?

Áö¼Ó°¡´É¼º, ¿¡³ÊÁö È¿À²¼º, Àΰ£ Á᫐ ¼³°è¸¦ ÁöÇâÇÏ´Â ¼¼°è´Â Èí½À¼º °ÇÃàÀÚÀçÀÇ ¸Å·Â Áõ°¡ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ì»ö°ÇÃà ÀÎÁõÁ¦µµ¿¡¼­´Â ½Ç³» ȯ°æ ǰÁú(IEQ), ¿¡³ÊÁö ¼º´É, ÀúºÎÇÏ, Åë±â¼º, õ¿¬ ¼ÒÀçÀÇ »ç¿ëÀÌ Á¡Á¡ ´õ Áß¿ä½ÃµÇ°í ÀÖ½À´Ï´Ù. Èí½À¼º ¼ÒÀç´Â ¾ÈÁ¤µÈ ½Àµµ ¼öÁØÀ» À¯ÁöÇÏ¿© È£Èí ÄèÀû¼º Çâ»ó, VOC ¹èÃâ·® °¨¼Ò, ¾Ë·¹¸£±â À¯¹ß ¹°Áú È®»ê ÃÖ¼ÒÈ­¿¡ ±â¿©ÇÏ¿© °ÅÁÖÀÚÀÇ °Ç°­À» Áö¿øÇÕ´Ï´Ù. Á¤ºÎ¿Í ÁöÀÚü°¡ ´õ ¾ö°ÝÇÑ ¿¡³ÊÁö ±ÔÁ¦¿Í Àúź¼Ò °ÇÃ๰¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ µµÀÔÇÏ´Â °¡¿îµ¥, Èí½À¼º ¼ÒÀçÀÇ ¼öµ¿Àû ±âÈÄ Á¦¾î Ư¼ºÀº ¿­ Áú·®, ÀÚ¿¬ ȯ±â, ¶óÀÌÇÁ »çÀÌŬÀÇ Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇÏ´Â ±ÔÁ¦¿Í Àß ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿ÀÇʸ¯ µðÀÚÀΰú À£ºù °ÇÃàÀÇ ºÎ»óÀ¸·Î ÀÎÇØ ÀÚ¿¬Àû °úÁ¤À» ÅëÇØ ´õ °Ç°­ÇÑ ½Ç³» ±âÈĸ¦ ¸¸µé¾î³»´Â Àç·áÀÇ »ç¿ëÀÌ Àå·ÁµÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµé, ƯÈ÷ °í±Þ ÁÖÅÃÀ̳ª ȯ°æÀǽÄÀÌ ³ôÀº ½ÃÀå¿¡¼­´Â ÀÚ¿¬¼ÒÀç, ¹«ÇØÇÑ ¼ÒÀç, ģȯ°æ ¼ÒÀ縦 »ç¿ëÇÑ ÁÖÅÃÀ» ¼±È£ÇÏ´Â °æÇâÀÌ °­ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º°ú À£ºùÀÇ À¶ÇÕ Ãß¼¼´Â °³¹ß¾÷ü, °ÇÃà°¡, ÀÚÀç °ø±Þ¾÷üµéÀÌ ±âÁ¸ °ÇÃà ¹æ½ÄÀ» Àç°ËÅäÇϰí Àü¹ÝÀûÀÎ °ÇÃà ¼º´É ÃÖÀûÈ­ÀÇ ÀÏȯÀ¸·Î Èí½À Àü·«À» äÅÃÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

Èí½À¼º °ÇÃàÀÚÀç ¼¼°è ½ÃÀå ¼ºÀå ¿øµ¿·ÂÀº?

Èí½À¼º °ÇÃàÀÚÀç ½ÃÀåÀÇ ¼ºÀåÀº ȯ°æ Á¤Ã¥, ¼ÒºñÀÚ ±â´ëÄ¡ º¯È­, ±â¼ú ÀûÇÕ¼º, °Ç¼³ µ¿Çâ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, Àü ¼¼°èÀûÀ¸·Î ¿¡³ÊÁö È¿À² Àǹ«È­¿Í ¼ø Á¦·Î ºôµù ¸ñÇ¥°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÆÐ½Ãºê µðÀÚÀÎ Àü·«ÀÇ »ç¿ëÀÌ Àå·ÁµÇ°í ÀÖÀ¸¸ç, Èí½À¼º Àç·á´Â ±â°èÀû °³ÀÔ ¾øÀÌ ³»ºÎ ±âÈĸ¦ Á¶ÀýÇÒ ¼ö ÀÖ´Â ºÐ¸íÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. µÑ°, °Ç¼³ ¾÷°è¿¡¼­´Â °ÅÁÖÀÚÀÇ °Ç°­°ú ½Ç³» °ø±âÁú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Àå±âÀûÀÎ ÄèÀûÇÔ°ú º¹Áö¿¡ ±â¿©ÇÏ´Â Á¶½À¼º, Åë±â¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼Â°, ±×¸° ºôµù ÀÎÁõÀÇ È®»êÀ¸·Î °ÇÃà°¡¿Í °³¹ß¾÷üµéÀÌ °ËÁõµÈ ½À¿­¼º´É°ú õ¿¬À¯·¡ Àç·á¸¦ ÁöÁ¤Çϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ³Ý°, Á¦Ç° ¿£Áö´Ï¾î¸µÀÇ ¹ßÀüÀ¸·Î ¸ðµâ½Ä Á¶¸³½Ä, ¸®¸ðµ¨¸µ, ½ÅÃà µî Çö´ë °ÇÃà ½Ã½ºÅÛ¿¡ Èí½À¼º Àç·á¸¦ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ´Ù¼¸Â°, Àç»ý °¡´ÉÇÏ°í ¼øÈ¯ °¡´ÉÇÑ °Ç¼³ ¹æ½Ä¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀúºÎÇÏÀÏ »Ó¸¸ ¾Æ´Ï¶ó ȯ°æÀû ¹è°æ¿¡ ´ëÀÀÇÏ´Â Àç·á°¡ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¹ÝÃßÇü °ÇÃà°ú À¯»ê º¸È£ÀÇ ºÎȰ·Î ¼®È¸ ȸ¹ÝÁ×°ú ¾îµµºñ °°Àº ÀüÅëÀûÀÎ Èí½À¼º Àç·á°¡ ºÎȰÇÏ¿© ¿ª»çÀû Áö½Ä°ú Çö´ëÀÇ ¼º´É Ç¥ÁØÀÌ À¶Çյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî Èí½À¼º °ÇÃàÀÚÀç´Â ź·ÂÀûÀÌ°í °Ç°­ÇÏ¸ç ¿¡³ÊÁö È¿À²ÀûÀÎ ±¸Á¶¹° ¼³°è¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î Àü ¼¼°èÀûÀ¸·Î äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¹«±â¿° À¯Çü, ¹«±â ±¤¹° À¯Çü, õ¿¬ ¼ÒÀç À¯Çü, ½Ç¸®Ä«/ÀÌ»êÈ­±Ô¼Ò À¯Çü, ºÐÀÚü À¯Çü, ±âŸ À¯Çü), ÈíÂø ÇÁ·Î¼¼½º(¹°¸® ÈíÂø ÇÁ·Î¼¼½º, È­ÇÐ ÈíÂø ÇÁ·Î¼¼½º), ÃÖÁ¾»ç¿ëÀÚ(ÁÖÅà ÃÖÁ¾»ç¿ëÀÚ, »ê¾÷ ÃÖÁ¾»ç¿ëÀÚ, »ó¾÷ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Hygroscopic Building Material Market to Reach US$1.2 Billion by 2030

The global market for Hygroscopic Building Material estimated at US$888.0 Million in the year 2024, is expected to reach US$1.2 Billion by 2030, growing at a CAGR of 5.1% over the analysis period 2024-2030. Inorganic Salts Type, one of the segments analyzed in the report, is expected to record a 3.5% CAGR and reach US$311.2 Million by the end of the analysis period. Growth in the Inorganic Minerals Type segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$241.9 Million While China is Forecast to Grow at 7.9% CAGR

The Hygroscopic Building Material market in the U.S. is estimated at US$241.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$234.7 Million by the year 2030 trailing a CAGR of 7.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.6% and 5.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.3% CAGR.

Global Hygroscopic Building Material Market - Key Trends & Drivers Summarized

What Makes Hygroscopic Building Materials a Key Player in Climate-Responsive Architecture?

Hygroscopic building materials-those capable of absorbing, storing, and releasing moisture from the surrounding environment-are gaining growing attention in sustainable architecture and building science. These materials, such as wood, clay plasters, gypsum, hempcrete, and certain natural fiber composites, play a significant role in regulating indoor humidity levels and enhancing thermal comfort without relying on mechanical systems. As buildings account for a substantial share of global energy use, especially for heating, cooling, and air quality control, hygroscopic materials offer a passive, energy-efficient alternative for climate-responsive design. Their ability to buffer moisture spikes helps reduce condensation risk, inhibit mold growth, and stabilize indoor air conditions, particularly in regions with fluctuating humidity. Architects and engineers are incorporating hygroscopic materials into walls, ceilings, and insulation layers to create breathable building envelopes that interact dynamically with the indoor environment. This capability supports the broader goals of bioclimatic architecture, well-being-focused design, and reduced reliance on HVAC systems. In an era increasingly defined by energy efficiency and occupant health, hygroscopic materials are being recognized not just for their physical properties but for their contribution to holistic building performance.

How Are Material Innovations and Testing Advancements Expanding Applications?

Advances in material science and testing methods are accelerating the development and adoption of high-performance hygroscopic building materials. Modern formulations combine traditional hygroscopic components with cutting-edge technologies to enhance durability, fire resistance, and compatibility with contemporary construction systems. For example, engineered wood products, bio-based insulation, and hybrid composites now incorporate moisture-buffering capacities without compromising structural integrity or design flexibility. Sophisticated modeling tools and hygrothermal simulation software, such as WUFI, are enabling more precise prediction of moisture behavior in multilayered assemblies, allowing designers to optimize building envelopes for specific climatic conditions. Additionally, laboratory testing and in-situ monitoring technologies are providing empirical data on the real-world performance of hygroscopic materials under dynamic temperature and humidity conditions. Researchers are also exploring nanomaterials and microencapsulation to develop “intelligent” moisture-regulating materials that respond to environmental cues. These innovations are making hygroscopic materials more viable for broader applications, from high-performance residential and commercial construction to heritage building restoration and off-grid housing. As a result, the integration of moisture-buffering strategies is moving from niche ecological projects into mainstream construction methodologies.

How Do Sustainability Goals and Health-Oriented Design Fuel Market Demand?

Global shifts toward sustainability, energy efficiency, and human-centric design are central to the growing appeal of hygroscopic building materials. Green building certification systems increasingly emphasize indoor environmental quality (IEQ), energy performance, and the use of low-impact, breathable, and natural materials. Hygroscopic materials, by helping maintain stable humidity levels, contribute to improved respiratory comfort, reduced VOC emissions, and minimized allergen proliferation-factors that support occupant well-being. As governments and municipalities introduce stricter energy codes and incentives for low-carbon buildings, the passive climate control properties of hygroscopic materials align well with regulations that promote thermal mass, natural ventilation, and lifecycle sustainability. In addition, the rise of biophilic design and wellness architecture is encouraging the use of materials that create healthier indoor climates through natural processes. Consumers, particularly in premium residential and eco-conscious markets, are increasingly favoring homes built with natural, non-toxic, and environmentally responsive materials. These converging sustainability and wellness trends are pushing developers, architects, and material suppliers to rethink conventional construction approaches and adopt hygroscopic strategies as part of holistic building performance optimization.

What’s Driving the Market Growth of Hygroscopic Building Materials Globally?

The growth in the hygroscopic building material market is driven by several factors related to environmental policy, changing consumer expectations, technological compatibility, and construction trends. First, the rise in global energy efficiency mandates and net-zero building targets is encouraging the use of passive design strategies, where hygroscopic materials offer clear benefits in regulating internal climates without mechanical intervention. Second, the construction industry's increasing focus on occupant health and indoor air quality is fostering demand for moisture-buffering, breathable materials that contribute to long-term comfort and well-being. Third, the popularity of green building certifications is encouraging architects and developers to specify materials with proven hygrothermal performance and natural origins. Fourth, advances in product engineering are making it easier to integrate hygroscopic materials into modern construction systems, whether in modular prefabrication, renovation, or new builds. Fifth, the growing interest in regenerative and circular construction practices is bringing attention to materials that are not only low-impact but also responsive to their environmental context. Lastly, the resurgence of vernacular architecture and heritage preservation is reviving traditional hygroscopic materials like lime plaster and adobe, blending historical knowledge with contemporary performance standards. Together, these factors are accelerating the global adoption of hygroscopic building materials as vital elements in the design of resilient, healthy, and energy-smart structures.

SCOPE OF STUDY:

The report analyzes the Hygroscopic Building Material market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Inorganic Salts Type, Inorganic Minerals Type, Natural Materials Type, Silica / Silicon Dioxide Type, Molecular Sieve Type, Other Types); Adsorption Process (Physical Adsorption Process, Chemical Adsorption Process); End-Use (Residential End-Use, Industrial End-Use, Commercial End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â