¼¼°èÀÇ HVDC ÄÉÀÌºí ½ÃÀå
HVDC Cables
»óǰÄÚµå : 1781284
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 367 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

HVDC ÄÉÀÌºí ¼¼°è ½ÃÀåÀº 2030³â±îÁö 249¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 111¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â HVDC ÄÉÀÌºí ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 14.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 249¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 35 kV-475 kV´Â CAGR 13.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 145¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 475 kV-600 kV ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 15.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 30¾ï ´Þ·¯, Áß±¹Àº CAGR 19.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ HVDC ÄÉÀÌºí ½ÃÀåÀº 2024³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 53¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 19.1%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 10.7%¿Í 12.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è HVDC ÄÉÀÌºí ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃßÁø ¿äÀÎ ¿ä¾à

HVDC ÄÉÀ̺íÀÌ Àå°Å¸® ¼ÛÀü ¹× ¼ÛÀü¸Á Çö´ëÈ­¿¡¼­ ¿ì¼±¼øÀ§°¡ ³ôÀº ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

°íÀü¾Ð Á÷·ù(HVDC) ÄÉÀ̺íÀº ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϸ鼭 ´ë·®ÀÇ Àü·ÂÀ» Àå°Å¸®·Î Àü¼ÛÇÒ ¼ö Àֱ⠶§¹®¿¡ Çö´ë ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±³·ù ¼ÛÀü ½Ã½ºÅÛ°ú ´Þ¸® HVDC ³×Æ®¿öÅ©´Â ´õ ³ôÀº È¿À²°ú ³·Àº ¼±·Î ¼Õ½Ç·Î Á¡´ëÁ¡ ¼ÛÀüÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ¿ø°ÝÁöÀÇ Àç»ý¿¡³ÊÁö ¿ø°ú ÇØ»ó dz·Â¹ßÀü¼Ò, Áö¸®ÀûÀ¸·Î ºÐ»êµÈ ¼ÛÀü¸Á ¿¬°á¿¡ ƯÈ÷ À¯¸®ÇÕ´Ï´Ù. °¢±¹ÀÌ Àç»ý¿¡³ÊÁö¿Í Żź¼ÒÈ­·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ´Â °¡¿îµ¥, HVDC ÄÉÀÌºí ½Ã½ºÅÛÀº Áö¿ª °£ ¹× ±¹°¡ °£ ¿¡³ÊÁö ±³È¯À» ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, »ý»ê ±âÁö¿¡¼­ µµ½Ã ºÎÇÏ ¼¾ÅͱîÁö ±ú²ýÇÑ Àü·ÂÀ» ¾ÈÁ¤ÀûÀ¸·Î °ø±ÞÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

dz·Â ¹× ž籤¹ßÀüÀÇ ±Þ¼ÓÇÑ ÅëÇÕÀº Á¾Á¾ ¼ö¿äó¿¡¼­ ¸Ö¸® ¶³¾îÁø °÷¿¡¼­ ¹ßÀüÇÏ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ °èÅë ¿î¿µÀÚ´Â Àå°Å¸® ¶Ç´Â ÇØÀú °æ·Î¿¡¼­ ´õ ³ôÀº Á¦¾î, ¾ÈÁ¤¼º ¹× ¿ë·®À» Á¦°øÇÏ´Â HVDC ¼Ö·ç¼ÇÀ» µµÀÔÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. HVDC ÄÉÀ̺íÀº ±¹°æÀ» ÃÊ¿ùÇÑ ¿¡³ÊÁö °Å·¡, ºÎÇÏ ºÐ»ê, ½Ã½ºÅÛ ÀÌÁßÈ­¸¦ °­È­ÇÏ´Â ±×¸®µå ÀÎÅÍÄ¿³ØÅÍ¿¡µµ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº È­¼®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̸鼭 º¯µ¿ÇÏ´Â Àç»ý¿¡³ÊÁö ÅõÀÔ·®¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â º¸´Ù ½º¸¶Æ®Çϰí À¯¿¬ÇÑ ´ë¿ë·® ¼ÛÀü¸ÁÀ» ±¸ÃàÇÏ·Á´Â Àü ¼¼°èÀûÀÎ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù. ¼ÛÀü¸ÁÀÇ º¹¿ø·Â°ú ¼ÛÀü È¿À²ÀÌ ±¹°¡Àû ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ´Â °¡¿îµ¥, HVDC ÄÉÀ̺íÀº Â÷¼¼´ë ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ±â¹Ý±â¼ú·Î Àνĵǰí ÀÖ½À´Ï´Ù.

HVDC ÄÉÀ̺íÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ±â¼ú Çõ½Å°ú Àç·á Çõ½ÅÀ̶õ?

HVDC ÄÉÀÌºí ¼³°è ¹× Àç·áÀÇ Çõ½ÅÀº À°»ó ¹× ÇØÀú ¼³ºñÀÇ ¿ë·®°ú ½Å·Ú¼ºÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ´ë·® ÇÔħ ºñ¹è¼ö(MIND) ÄÉÀ̺í°ú °¡±³ Æú¸®¿¡Æ¿·»(XLPE) Àý¿¬ ÄÉÀ̺íÀº ³ôÀº ¿­ ¾ÈÁ¤¼º, ³·Àº À¯Àüü ¼Õ½Ç, ±â°èÀû °ß°í¼ºÀ» Á¦°øÇϴ ǥÁØ ±â¼úÀÌ µÇ¾ú½À´Ï´Ù. ƯÈ÷ XLPE ÄÉÀ̺íÀº °æ·® ±¸Á¶, ȯ°æ ÀûÇÕ¼º ¹× ±&500 kV ÀÌ»óÀÇ Àü¾Ð¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº °ø°£, ¾ÈÀü ¹× ȯ°æÀû Á¦¾àÀÌ °¡Àå Áß¿äÇÑ ´ë±Ô¸ð ÇØ»ó dz·Â ÇÁ·ÎÁ§Æ®¿Í µµ½Ã ÁöÇÏ ¼ÛÀü Åë·Î¿¡¼­ äÅõǴ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°í¼øµµ ±¸¸® ¹× ¾Ë·ç¹Ì´½°ú °°Àº µµÃ¼ Àç·áÀÇ ¹ßÀüÀº ÄÉÀ̺í ÇǺ¹, Á¢ÇÕ ±â¼ú, ¿­ °ü¸® ½Ã½ºÅÛÀÇ Çõ½Å°ú ÇÔ²² ÅëÀü ¿ë·®°ú ÀÛµ¿ ¼ö¸íÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÃÊÀüµµ HVDC ÄÉÀ̺í°ú ÇÏÀ̺긮µå AC/DC ±×¸®µå ÅëÇÕ¿¡ ´ëÇÑ ¿¬±¸µµ Àü·Âȸ»ç°¡ ÃÊ °íÈ¿À²ÀÇ ¹Ì·¡Çü ¼ÛÀü ½Ã½ºÅÛÀ» ¸ð»öÇÏ´Â °¡¿îµ¥ °ßÀηÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ ¿­ ¸ðµ¨¸µ, ºÎºÐ ¹æÀü °¨Áö, ÄÉÀÌºí »óÅ ¸ð´ÏÅ͸µ°ú °°Àº °í±Þ ¸ð´ÏÅ͸µ ¹× Áø´Ü µµ±¸°¡ ¿¹¹æÀû À¯Áöº¸¼ö ¹× ¿î¿µÀÇ Åõ¸í¼ºÀ» ³ô¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÃÑüÀûÀ¸·Î ¼ÛÀü °Å¸® ¿¬Àå, ´õ ±íÀº ÇØ¿ªÀ¸·ÎÀÇ ¹èÄ¡, ´õ ³ôÀº Àü¾Ð È®À强À» °¡´ÉÇÏ°Ô ÇÏ¿© HVDC ÄÉÀ̺íÀ» ¼º¼÷ÇÏ°í ¹Ì·¡ÁöÇâÀûÀÎ ¼ÛÀü ±â¼ú·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¼¼°è HVDC ÄÉÀÌºí º¸±ÞÀ» Çü¼ºÇÏ´Â Á¤Ã¥, ¿¡³ÊÁö Àüȯ, »óÈ£¿¬°è µ¿ÇâÀº?

Àç»ý¿¡³ÊÁö ÅëÇÕ, ¼ÛÀü¸ÁÀÇ Å»Åº¼ÒÈ­, ±¹°æÀ» ÃÊ¿ùÇÑ ¿¡³ÊÁö °Å·¡¸¦ Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥À¸·Î ÀÎÇØ HVDC ÄÉÀ̺íÀÇ µµÀÔÀÌ Å©°Ô °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â EUÀÇ ±×¸°µô Á¤Ã¥°ú TEN-E(Trans-European Networks for Energy) Á¤Ã¥ÀÌ Àü·Â½ÃÀå ÅëÇÕ°ú Àç»ý¿¡³ÊÁö º¸±ÞÀ» Áö¿øÇÏ´Â ±¹°æÀ» ÃÊ¿ùÇÑ HVDC ÀÎÅÍÄ¿³ØÅÍ¿¡ ÀÕµû¶ó ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ ±¹°¡µéÀº ³»·ú¿¡¼­ ÇØ¾È°¡ »ê¾÷ °ÅÁ¡À¸·Î Àç»ý¿¡³ÊÁö¸¦ ¼ö¼ÛÇϱâ À§ÇØ Ãʰí¾Ð(UHV) HVDC ¼ÛÀü¼±À» ¹èÄ¡ÇÏ´Â µî ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­µµ ºñ½ÁÇÑ ³ë·ÂÀÌ ÁøÇà ÁßÀÔ´Ï´Ù. ºÏ¹Ì¿¡¼­´Â µ¿ÇؾÈÀÇ ÇØ»ó dz·Â °³¹ß°ú Áö¿ª °£ ¼ÛÀü ³ë·ÂÀ¸·Î ÀÎÇØ HVDC ÄÉÀ̺í ÇÁ·ÎÁ§Æ®, ƯÈ÷ ÇØÀú ¹× ÁöÇÏ °æ·Î¸¦ À§ÇÑ °­·ÂÇÑ ÆÄÀÌÇÁ¶óÀÎÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

¿¡³ÊÁö ¾Èº¸¿Í ´Ùº¯È­°¡ Àü ¼¼°èÀûÀ¸·Î °­Á¶µÇ´Â °¡¿îµ¥, ºÏ¾ÆÇÁ¸®Ä«ÀÇ Å¾籤¹ßÀü ¿ë·®À» À¯·´ ¼ÛÀü¸Á¿¡ ¿¬°áÇÏ·Á´Â ¾ß½ÉÂù Á¦¾È µî ´ë·ú°£ HVDC ¿¬°á¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü, Àü±âÀÚµ¿Â÷ÀÇ º¸±Þ, ³­¹æ ¹× ¿î¼ÛÀÇ Àü±âÈ­·Î ÀÎÇØ ±âÁ¸ ±³·ù ³×Æ®¿öÅ©¿¡ ´õ ¸¹Àº ½ºÆ®·¹½º°¡ °¡ÇØÁö´Â °¡¿îµ¥, HVDC ÄÉÀ̺íÀº È¥ÀâÀ» ÇÇÇÏ°í ½Ã½ºÅÛÀÇ À¯¿¬¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¹Î°ü ÆÄÆ®³Ê½Ê, °£¼ÒÈ­µÈ ÀÎÇã°¡ ÀýÂ÷, ±â¼ú Á߸³¼ºÀ» Áö¿øÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ´ë±Ô¸ð HVDC ±¸ÃàÀ» ´õ¿í °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶Àû, Á¤Ã¥Àû È帧Àº HVDC ÄÉÀ̺íÀÇ ½ÃÀå È®´ë»Ó¸¸ ¾Æ´Ï¶ó Żź¼ÒÈ­, »óÈ£¿¬°èµÈ Àü·Â°èÅëÀ» À§ÇÑ Àü·«Àû ÀÎÇÁ¶ó ¿ì¼±¼øÀ§·Î ÀÚ¸® Àâ¾Æ°¡°í ÀÖ½À´Ï´Ù.

ÇÁ·ÎÁ§Æ® À¯Çüº°, Áö¿ªº° HVDC ÄÉÀÌºí ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

HVDC ÄÉÀÌºí ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â °ÍÀº Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ ±ÞÁõ, ÇØ»ó dz·Â¹ßÀü ¿ë·®ÀÇ È®´ë, Àü ¼¼°è ¼ÛÀü ³×Æ®¿öÅ©ÀÇ Çö´ëÈ­ÀÔ´Ï´Ù. ƯÈ÷ À¯·´, Áß±¹, ¹Ì±¹ÀÇ ÇØ»ó dz·Â¹ßÀüÀº HVDC ±â¼úÀÌ ´ë±Ô¸ð ÇØ»ó ¹ßÀü¼Ò¸¦ ¸Ö¸® ¶³¾îÁø À°»ó ¼ÛÀü¸Á¿¡ ¿¬°áÇϱâ À§ÇÑ º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®¿¡ Å« ¼ºÀåÀÇ ±âÆøÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇØÀú ¼ÛÀü¸ÁÀº ¼¶ÀÇ ¼ÛÀü¸ÁÀ» ¿¬°áÇϰí, Çǿ丣µå¿Í »ê¸ÆÀ» °¡·ÎÁö¸£¸ç, ¿¡³ÊÁö °Å·¡¿Í ¼ÛÀü¸ÁÀÇ ±ÕÇüÀ» Áö¿øÇϱâ À§ÇØ ±¹°¡ °£ »óÈ£¿¬°á¿¡ À־µµ ±× Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °íºÎ°¡°¡Ä¡ ÇÁ·ÎÁ§Æ®¿¡´Â °¡È¤ÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â °ß°íÇÑ ¸ÂÃãÇü ÄÉÀÌºí ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù.

À°»óÀÇ HVDC ÄÉÀÌºí ¼³Ä¡´Â Àα¸ ¹ÐÁý Áö¿ªÀ̳ª ȯ°æ¿¡ ¹Î°¨ÇÑ Áö¿ª, °¡°ø ¼ÛÀü¼±·Î¸¦ ¼³Ä¡ÇÒ ¼ö ¾ø´Â Áö¿ª¿¡¼­ ¼ö¿ä°¡ ¸¹½À´Ï´Ù. µµ½Ã ¿¡³ÊÁö ȸ¶û, µ¥ÀÌÅͼ¾ÅÍ Å¬·¯½ºÅÍ, »ê¾÷´ÜÁö, °í¼Óöµµ Àüöȭ ÇÁ·ÎÁ§Æ®¿¡¼­ ¼³Ä¡ ¸éÀûÀ» ÃÖ¼ÒÈ­ÇÏ°í ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ ÁöÇϸ¦ ÀÌ¿ëÇÏ´Â HVDC ÄÉÀ̺íÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áö¿ªº°·Î´Â À¯·´ÀÌ ¼º¼÷ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í »óÈ£¿¬°á¿¡ ´ëÇÑ ¾ß¸ÁÀ¸·Î HVDC °³¹ßÀ» ÁÖµµÇϰí ÀÖ´Â ¹Ý¸é, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¹¿µ Àü·Âȸ»ç°¡ ÁÖµµÇÏ´Â °íÀü¾Ð ¹× ´ë¿ë·® ¸Þ°¡ ÇÁ·ÎÁ§Æ®¸¦ ÅëÇØ ¹°·® Áß½ÉÀÇ ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«µµ À׿© Àç»ý¿¡³ÊÁö¸¦ ¼öÃâÇϰí Áö¿ª ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤È­¸¦ À§ÇØ HVDC¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¼¼°è ¿¡³ÊÁö ÀüȯÀÌ °¡¼ÓÈ­µÇ°í ±¹°æÀ» ÃÊ¿ùÇÑ Çù·ÂÀÌ °­È­µÇ´Â °¡¿îµ¥, HVDC ÄÉÀÌºí ½ÃÀåÀº ±â¼úÀû ¼º¼÷µµ, Á¤Ã¥ÀÇ Àϰü¼º, ¼¼°è ¿¡³ÊÁö »óÈ£ÀÇÁ¸µµ Áõ°¡¸¦ ¹è°æÀ¸·Î Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

Àü¾Ð(35 kV-475 kV, 475 kV-600 kV, 600 kV ÀÌ»ó), ¼³Ä¡(°¡°ø¼±, ÇØÀú, ÁöÇÏ), ¿ëµµ(Áö¿ª³», Å©·Î½ºº¸´õ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global HVDC Cables Market to Reach US$24.9 Billion by 2030

The global market for HVDC Cables estimated at US$11.1 Billion in the year 2024, is expected to reach US$24.9 Billion by 2030, growing at a CAGR of 14.4% over the analysis period 2024-2030. 35 kV - 475 kV, one of the segments analyzed in the report, is expected to record a 13.5% CAGR and reach US$14.5 Billion by the end of the analysis period. Growth in the 475 kV - 600 kV segment is estimated at 15.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.0 Billion While China is Forecast to Grow at 19.1% CAGR

The HVDC Cables market in the U.S. is estimated at US$3.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$5.3 Billion by the year 2030 trailing a CAGR of 19.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.7% and 12.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.4% CAGR.

Global HVDC Cables Market - Key Trends & Drivers Summarized

Why Are HVDC Cables Gaining Priority in Long-Distance Power Transmission and Grid Modernization?

High-voltage direct current (HVDC) cables are playing an increasingly vital role in modern energy infrastructure due to their ability to transmit large volumes of electricity over long distances with minimal energy losses. Unlike AC transmission systems, HVDC networks enable point-to-point power transfer with higher efficiency and lower line losses-making them particularly advantageous for connecting remote renewable energy sources, offshore wind farms, and geographically dispersed power grids. As nations accelerate their transition toward renewable energy and decarbonization, HVDC cable systems are emerging as critical enablers of inter-regional and cross-border energy exchange, supporting the reliable delivery of clean power from production sites to urban load centers.

The rapid integration of wind and solar power-often generated far from demand hubs-is prompting grid operators to deploy HVDC solutions that offer greater control, stability, and capacity over long distances or undersea routes. HVDC cables are also essential for grid interconnectors that enhance energy trading, load balancing, and system redundancy across national borders. These capabilities are aligned with global efforts to build smarter, more flexible, and high-capacity transmission networks that can accommodate fluctuating renewable inputs while reducing dependency on fossil fuels. As grid resilience and transmission efficiency become national priorities, HVDC cables are being recognized as a cornerstone technology for next-generation energy systems.

How Are Technological Advancements and Material Innovations Enhancing HVDC Cable Performance?

Technological innovation in HVDC cable design and materials is expanding the capabilities and reliability of both land and submarine installations. Mass-impregnated non-draining (MIND) cables and cross-linked polyethylene (XLPE) insulated cables have become standard technologies, offering high thermal stability, low dielectric losses, and mechanical robustness. XLPE cables, in particular, are favored for their lightweight construction, environmental compatibility, and ability to support voltages exceeding ±500 kV. These attributes are driving their adoption in large-scale offshore wind projects and underground urban transmission corridors where space, safety, and environmental constraints are paramount.

Further advancements in conductor materials-such as high-purity copper and aluminum-along with innovations in cable sheathing, jointing techniques, and thermal management systems are boosting current-carrying capacity and operational lifespan. Research into superconducting HVDC cables and hybrid AC/DC grid integration is also gaining traction as utilities explore future-ready transmission systems with ultra-high efficiency. Moreover, advanced monitoring and diagnostic tools-such as real-time thermal modeling, partial discharge detection, and cable condition monitoring-are enhancing preventive maintenance and operational transparency. These innovations are collectively enabling longer transmission distances, deeper sea deployments, and greater voltage scalability, solidifying HVDC cables as both a mature and forward-looking transmission technology.

What Policy, Energy Transition, and Interconnection Trends Are Shaping HVDC Cable Deployment Globally?

Government policies supporting renewable integration, grid decarbonization, and transnational energy trade are significantly accelerating HVDC cable deployment. In Europe, the EU’s Green Deal and Trans-European Networks for Energy (TEN-E) policy are funding a wave of cross-border HVDC interconnectors that support electricity market integration and renewable distribution across the continent. Similar initiatives are underway in Asia-Pacific, where China, India, and Southeast Asian countries are deploying ultra-high voltage (UHV) HVDC lines to transport renewable energy from interior regions to coastal industrial hubs. In North America, offshore wind development along the East Coast and interregional power transfer initiatives are creating a robust pipeline for HVDC cable projects, particularly for subsea and underground routes.

The global emphasis on energy security and diversification is also increasing interest in intercontinental HVDC links, such as the ambitious proposals connecting North Africa’s solar capacity with European grids. As distributed energy generation, electric vehicle adoption, and electrification of heating and transport place additional stress on existing AC networks, HVDC cables offer a scalable solution to avoid congestion and improve system flexibility. Regulatory frameworks supporting public-private partnerships, streamlined permitting processes, and technology neutrality are further enabling large-scale HVDC deployment. These structural and policy trends are not only expanding the market for HVDC cables but also embedding them as a strategic infrastructure priority for decarbonized, interconnected power systems.

What Is Driving the Growth of the HVDC Cables Market Across Project Types and Global Regions?

The growth in the HVDC cables market is driven by surging investment in renewable energy infrastructure, expanding offshore wind capacity, and the global modernization of transmission networks. Offshore wind power-particularly in Europe, China, and the U.S.-is a major growth catalyst, as HVDC technology provides a more efficient and cost-effective solution for connecting large-scale offshore farms to distant onshore grids. Submarine HVDC cables are also gaining importance in linking island grids, crossing fjords or mountain ranges, and interconnecting countries to support energy trading and grid balancing. These high-value projects require robust, tailor-engineered cable systems capable of operating in harsh environmental conditions.

Land-based HVDC cable installations are witnessing strong demand in densely populated or environmentally sensitive areas where overhead AC lines are not feasible. Urban energy corridors, data center clusters, industrial parks, and high-speed rail electrification projects are increasingly specifying underground HVDC cables to minimize footprint and enhance safety. Regionally, Europe continues to lead in HVDC deployment due to mature regulatory frameworks and interconnector ambitions, while Asia-Pacific is emerging as a volume-driven market with high-voltage, high-capacity megaprojects led by state utilities. The Middle East and Africa are also exploring HVDC to export surplus renewable energy and stabilize regional grids. As the global energy transition accelerates and cross-border collaboration intensifies, the HVDC cable market is poised for sustained growth, backed by technological maturity, policy alignment, and rising global energy interdependence.

SCOPE OF STUDY:

The report analyzes the HVDC Cables market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Voltage (35 kV - 475 kV, 475 kV - 600 kV, Above 600 kV); Installation (Overhead lines, Submarine, Underground); Application (Intra-Regional, Cross Border, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â