¼¼°èÀÇ °¡½º ó¸® ¾Æ¹Î ½ÃÀå
Gas Treating Amine
»óǰÄÚµå : 1780862
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 379 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°¡½º ó¸® ¾Æ¹Î ¼¼°è ½ÃÀåÀº 2030³â±îÁö 48¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °¡½º ó¸® ¾Æ¹Î ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 6.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 48¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸ð³ë¿¡Åº¿Ã¾Æ¹Ìµå´Â CAGR 4.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 18¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µð¿¡Åº¿Ã¾Æ¹Î ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 560¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ °¡½º ó¸® ¾Æ¹Î ½ÃÀåÀº 2024³â¿¡´Â 9¾ï 560¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 9.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 9¾ï 5,820¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.1%¿Í 5.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °¡½º ó¸® ¾Æ¹Î ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°¡½º ó¸® ¾Æ¹ÎÀº »ê¾÷ °¡½º 󸮸¦ ¾î¶»°Ô °­È­Çմϱî?

°¡½ºÃ³¸® ¾Æ¹ÎÀº ÁַΠõ¿¬°¡½º, Á¤Á¦°¡½º, ÇÕ¼º°¡½º¿¡¼­ ÀÌ»êȭź¼Ò(CO2), Ȳȭ¼ö¼Ò(H2S) µî »ê¼º ¿À¿°¹°ÁúÀ» Á¦°ÅÇÏ´Â µ¥ »ç¿ëµÇ¸ç, »ê¾÷°¡½º 󸮿¡ ÇʼöÀûÀÎ ¼ººÐÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î »ê¼º °¡½º¶ó°í ºÒ¸®´Â À̵é È­ÇÕ¹°Àº ÆÄÀÌÇÁ¶óÀÎ ºÎ½Ä, ȯ°æ¿À¿°, ´Ù¿î½ºÆ®¸² ó¸® È¿À² ÀúÇÏ µî ¿î¿µ»ó Å« ¹®Á¦°¡ µÇ°í ÀÖ½À´Ï´Ù. °¡½º ó¸® ¾Æ¹ÎÀº °¡½º °¨¹ÌÈ­ °øÁ¤¿¡¼­ È­ÇÐ ¿ë¸Å·Î¼­ ÀÛ¿ëÇÏ¿© ºÒÇÊ¿äÇÑ ºÒ¼ø¹°À» ¼±ÅÃÀûÀ¸·Î Èí¼ö ¹× Á¦°ÅÇϸ鼭 Á¤Á¦µÈ °¡½º¸¦ È¿À²ÀûÀ¸·Î ¼ö¼Û ¹× ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µû¶ó¼­ ¼®À¯ ¹× °¡½º Á¤Á¦, ¼®À¯È­ÇÐ, ¹ßÀü, ¾Ï¸ð´Ï¾Æ »ý»ê µîÀÇ »ê¾÷¿¡¼­ ¾ø¾î¼­´Â ¾È µÉ Á¸Àç°¡ µÇ¾ú½À´Ï´Ù.

ûÁ¤¿¡³ÊÁö¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, õ¿¬°¡½º ÀÎÇÁ¶óÀÇ È®´ë´Â °¡½º ó¸® ¾Æ¹ÎÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³Î¸® »ç¿ëµÇ´Â ¾Æ¹Î Áß ¸ð³ë¿¡Åº¿Ã¾Æ¹Î(MEA), µð¿¡Åº¿Ã¾Æ¹Î(DEA), ¸ÞÆ¿µð¿¡Åº¿Ã¾Æ¹Î(MDEA) ¹× Ư¼ö ¹èÇÕ ºí·»µå´Â ¼±Åüº°ú Èí¼ö È¿À²À» Çâ»ó½ÃŰ´Â °ÍÀ¸·Î ÀÔÁõµÇ¾ú½À´Ï´Ù. ÃÖ±Ù ¿ë¸Å È­ÇÐÀÇ Ãß¼¼´Â ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ȯ°æ ģȭÀûÀÎ ¾Æ¹Î Á¦Á¦ÀÇ °³¹ß·Î À̾îÁ® »ê¼º °¡½º Á¦°Å ÀåºñÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÌ°í ¿ë¸Å ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ¹Î ó¸® Ç÷£Æ® ÀÚµ¿È­¿Í µðÁöÅÐ ¸ð´ÏÅ͸µ ±â¼úÀÇ ÅëÇÕÀ¸·Î °øÁ¤ ÃÖÀûÈ­¸¦ °³¼±ÇÏ¿© ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ°í ¾ÈÀü ±âÁØÀ» °­È­Çß½À´Ï´Ù.

°¡½º ó¸® ¾Æ¹ÎÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷Àº ¹«¾ùÀΰ¡?

¼®À¯ ¹× °¡½º »ê¾÷Àº °¡½º ó¸® ¾Æ¹ÎÀÇ ÁÖ¿ä ¼Òºñó·Î, Á¤À¯°øÀå, õ¿¬°¡½º ó¸® Ç÷£Æ®, ÇØ¾ç Ç÷§Æû¿¡¼­ °¡½º °¨¹ÌÈ­ ¹× Ȳ ȸ¼ö °øÁ¤¿¡ ÀÌ È­ÇÕ¹°À» »ç¿ëÇÕ´Ï´Ù. ¼ÎÀϰ¡½º ¹× ¼®ÅºÃþ ¸ÞźÀ» Æ÷ÇÔÇÑ ºñÀüÅë °¡½º »ý»êÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÎ »ê¼º °¡½º Á¦°ÅÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ °í¼º´É ¾Æ¹Î ¿ë¾×¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼öÃâ ǰÁú ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ °¡½º Á¤Á¦°¡ Áß¿äÇÑ ¾×ȭõ¿¬°¡½º(LNG) ½Ã¼³ÀÇ È®ÀåÀº ½ÃÀå ¼ºÀå¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¼®À¯ ¹× °¡½º ºÐ¾ß ¿Ü¿¡µµ È­ÇÐ ¹× Àü·Â »ê¾÷µµ °¡½º ó¸® ¾Æ¹Î¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¾Ï¸ð´Ï¾Æ ¹× ¼ö¼Ò »ý»ê¿¡¼­´Â °øÁ¤ È¿À²°ú Á¦Ç° ǰÁúÀ» À¯ÁöÇϱâ À§ÇØ CO2 Á¦°Å°¡ ÇÊ¿äÇÕ´Ï´Ù. ÇÑÆí, õ¿¬°¡½º¸¦ ¿ø·á·Î ÇÏ´Â ¹ßÀü¼Ò¿¡¼­´Â Åͺó°ú º¸ÀÏ·¯ÀÇ ¼Õ»óÀ» ¹æÁöÇϱâ À§ÇØ È¿À²ÀûÀÎ °¡½º 󸮰¡ ÇÊ¿äÇÕ´Ï´Ù. ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) »ê¾÷Àº ƯÈ÷ »ê¾÷ ¹× ¹ßÀü¼ÒÀÇ CO2 ¹èÃâÀ» ÁÙÀÌ´Â µ¥ ÀÖ¾î ÷´Ü ¾Æ¹Î°è ¿ë¸ÅÀÇ ÁÖ¿ä ¼ÒºñÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ¹èÃâ·® °¨Ãà Àǹ«¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â »óȲ¿¡¼­, CCS ÀÀ¿ë ºÐ¾ß¿¡¼­ °¡½ºÃ³¸® ¾Æ¹ÎÀÇ Ã¤ÅÃÀÌ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡½º ó¸® ¾Æ¹Î ¹èÇÕÀÇ Ãֽбâ¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

°¡½º ó¸® ¾Æ¹Î ±â¼úÀÇ ¹ßÀüÀº º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ̸ç ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ¿ë¸Å ¼Ö·ç¼ÇÀÇ °³¹ß·Î À̾îÁ³½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â MDEA, DEA, MEA¿Í °°Àº ±âÁ¸ ¾Æ¹ÎÀÇ ÀåÁ¡À» °áÇÕÇϸ鼭 ±× ÇѰ踦 ±Øº¹Çϴ ȥÇÕ ¾Æ¹Î°ú º¯¼º ¾Æ¹ÎÀÇ ¹èÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¸ÂÃãÇü Á¦Á¦´Â Èí¼öÀ²À» ³ôÀ̰í, ºÐÇØÀ²À» ³·Ã߸ç, Àç»ý¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö¸¦ ÃÖ¼ÒÈ­ÇÏ¿© °¡½º ó¸® ½Ã¼³ÀÇ Àüü ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÀúÁ¡µµ, ÀúºÎ½Ä¼º ¾Æ¹Î ¿ë¾×ÀÇ µµÀÔÀ¸·Î ÀåºñÀÇ ¼ö¸íÀÌ Çâ»óµÇ°í, À¯Áöº¸¼öÀÇ Çʿ伺ÀÌ °¨¼ÒÇß½À´Ï´Ù. ¿­ ¾ÈÁ¤¼º ¿°ºÐ Á¦°Å ±â¼ú ¹× ¼ÒÆ÷Á¦ µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î ½Ã½ºÅÛ ¼º´ÉÀ» ´õ¿í ÃÖÀûÈ­ÇÏ¿© ¿îÀü»óÀÇ º´¸ñÇö»óÀ» ¹æÁöÇÏ°í ¿ë¸ÅÀÇ ¼ö¸íÁֱ⸦ ¿¬ÀåÇÏ¿´½À´Ï´Ù. µðÁöÅÐÈ­´Â °¡½º ó¸® ÀÛ¾÷¿¡µµ º¯È­¸¦ °¡Á®¿ÔÀ¸¸ç, AI¸¦ Ȱ¿ëÇÑ ¿¹Áöº¸Àü, ½Ç½Ã°£ ¾Æ¹Î ǰÁú ¸ð´ÏÅ͸µ, °øÁ¤ ÀÚµ¿È­·Î È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ °¡½º ó¸® ¾Æ¹ÎÀÇ Ã¤ÅÃÀ» Áõ°¡½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀ¸·Î °¡½º 󸮸¦ º¸´Ù Áö¼Ó°¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

°¡½º ó¸® ¾Æ¹Î ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

°¡½º ó¸® ¾Æ¹Î ½ÃÀåÀÇ ¼ºÀåÀº ¼¼°è ¿¡³ÊÁö ¼ö¿ä Áõ°¡, ȯ°æ ±ÔÁ¦ °­È­, »ê¼º °¡½º Á¦°Å °øÁ¤ÀÇ ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ¹ß»ýÇÕ´Ï´Ù. ¼®Åº°ú ¼®À¯¸¦ ´ëüÇÒ ¼ö Àִ ûÁ¤ ´ëü ¿¡³ÊÁö·Î õ¿¬°¡½º ¼Òºñ°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡½º ó¸® Ȱµ¿ÀÌ ±ÞÁõÇϰí ÀÖÀ¸¸ç, È¿À²ÀûÀÎ °¡½º Á¤Á¦ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. LNG ÀÎÇÁ¶óÀÇ È®´ë¿Í ÆÄÀÌÇÁ¶óÀΠǰÁúÀÇ °¡½º ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÷´Ü ¾Æ¹Î°è ó¸® ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, »ê¾÷¿ë CO2 ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ Åº¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÃßÁøÀº ƯÈ÷ ¹ßÀü¼Ò ¹× Á¦Á¶ ½Ã¼³¿¡¼­ °¡½º ó¸®¿ë ¾Æ¹Î¿¡ ´ëÇÑ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¾Æ¹Î ±â¹Ý Èí¼ö¿Í ¸âºê·¹ÀÎ ¹× ÈíÂø ±â¼úÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå ¿ë¸Å ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²¼ºÀÌ Çâ»óµÇ°í °¡½º 󸮰¡ °æÁ¦ÀûÀ¸·Î ½ÇÇö °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì, Áßµ¿, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¤À¯¼Ò Çö´ëÈ­ ÅõÀÚ¿Í Ãµ¿¬°¡½º ó¸® ´É·Â È®´ë´Â ½ÃÀå ¼ºÀåÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷°è°¡ ºñ¿ë È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀÎ °¡½º Á¤Á¦ ¼Ö·ç¼ÇÀ» Áö¼ÓÀûÀ¸·Î Ãß±¸ÇÔ¿¡ µû¶ó Â÷¼¼´ë °¡½º ó¸® ¾Æ¹Î¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¸î ³â µ¿¾È Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

À¯Çü(¸ð³ë¿¡Åº¿Ã¾Æ¹Ìµå, µð¿¡Åº¿Ã¾Æ¹Î, ¿¡Åº¿Ã¾Æ¹Î, ±âŸ °¡½º ó¸® ¾Æ¹Î), ¿ëµµ(õ¿¬°¡½º °¨¹ÌÈ­ ¿ëµµ, ¹ÙÀÌ¿À°¡½º Á¤Á¦ ¿ëµµ, Á¤Á¦ °¡½º Ä¡·á ¿ëµµ, »ê¼º °¡½º Á¦°Å ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(¼®À¯ ¹× °¡½º ÃÖÁ¾»ç¿ëÀÚ, Á¤Á¦ ÃÖÁ¾»ç¿ëÀÚ, ¹ßÀü ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gas Treating Amine Market to Reach US$4.8 Billion by 2030

The global market for Gas Treating Amine estimated at US$3.3 Billion in the year 2024, is expected to reach US$4.8 Billion by 2030, growing at a CAGR of 6.2% over the analysis period 2024-2030. Monoethanolamide, one of the segments analyzed in the report, is expected to record a 4.6% CAGR and reach US$1.8 Billion by the end of the analysis period. Growth in the Diethanolamine segment is estimated at 7.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$905.6 Million While China is Forecast to Grow at 9.4% CAGR

The Gas Treating Amine market in the U.S. is estimated at US$905.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$958.2 Million by the year 2030 trailing a CAGR of 9.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 5.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

Global Gas Treating Amine Market - Key Trends & Drivers Summarized

How Are Gas Treating Amines Enhancing Industrial Gas Processing?

Gas treating amines have become an indispensable component in industrial gas processing, primarily used for the removal of acidic contaminants such as carbon dioxide (CO2) and hydrogen sulfide (H2S) from natural gas, refinery gas, and synthesis gas. These compounds, commonly referred to as acid gases, pose significant operational challenges, including pipeline corrosion, environmental pollution, and reduced efficiency in downstream processing. Gas treating amines function as chemical solvents in gas sweetening processes, selectively absorbing and removing these unwanted impurities while allowing purified gas to be transported and utilized efficiently. This makes them vital in industries such as oil and gas refining, petrochemicals, power generation, and ammonia production.

The increasing global demand for clean energy, stringent environmental regulations, and the expansion of natural gas infrastructure have propelled the adoption of gas treating amines. Among the widely used amines, monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and specialized formulated blends have demonstrated enhanced selectivity and absorption efficiency. Recent advancements in solvent chemistry have led to the development of more energy-efficient and environmentally friendly amine formulations, reducing the energy consumption of acid gas removal units and minimizing solvent losses. Additionally, the integration of automation and digital monitoring technologies in amine treatment plants has improved process optimization, reducing operational costs and enhancing safety standards.

Which Industries Are Driving the Demand for Gas Treating Amines?

The oil and gas industry is the primary consumer of gas treating amines, using these compounds for gas sweetening and sulfur recovery processes in refineries, natural gas processing plants, and offshore platforms. With the rise of unconventional gas production, including shale gas and coal bed methane, the need for efficient acid gas removal has intensified, driving the demand for high-performance amine solutions. The expansion of liquefied natural gas (LNG) facilities, where gas purification is crucial to meeting export quality standards, has further contributed to market growth.

Beyond the oil and gas sector, the chemical and power industries also rely heavily on gas treating amines. In ammonia and hydrogen production, CO2 removal is necessary for maintaining process efficiency and product quality. Meanwhile, power plants utilizing natural gas as a feedstock require efficient gas treatment to prevent damage to turbines and boilers. The carbon capture and storage (CCS) industry has also emerged as a major consumer of advanced amine-based solvents, particularly in reducing CO2 emissions from industrial sources and power plants. As industries face mounting pressure to comply with emission reduction mandates, the adoption of gas treating amines in CCS applications is expected to rise significantly.

What Are the Latest Technological Advancements in Gas Treating Amine Formulations?

The evolution of gas treating amine technology has led to the development of more efficient, cost-effective, and environmentally sustainable solvent solutions. One of the most significant advancements in this field is the formulation of blended and modified amines, which combine the strengths of traditional amines such as MDEA, DEA, and MEA while addressing their limitations. These customized formulations enhance absorption rates, reduce degradation rates, and minimize the energy required for regeneration, thereby lowering the overall operating costs of gas treatment facilities.

Additionally, the introduction of low-viscosity and low-corrosion amine solutions has improved the longevity of equipment and reduced maintenance requirements. Innovations such as heat-stable salt removal technologies and anti-foaming agents have further optimized system performance, preventing operational bottlenecks and increasing solvent life cycles. Digitalization has also transformed gas treating operations, with AI-powered predictive maintenance, real-time amine quality monitoring, and process automation significantly improving efficiency. These technological innovations are not only increasing the adoption of gas treating amines across various sectors but also making gas treatment more sustainable and cost-efficient in the long run.

What Factors Are Fueling the Growth of the Gas Treating Amine Market?

The growth in the gas treating amine market is driven by several factors, including increasing global energy demand, stricter environmental regulations, and technological advancements in acid gas removal processes. The rising consumption of natural gas as a cleaner alternative to coal and oil has led to a surge in gas processing activities, necessitating efficient gas purification solutions. The expansion of LNG infrastructure and the growing demand for pipeline-quality gas have further fueled the need for advanced amine-based treatment systems.

Additionally, the push for carbon capture and storage (CCS) initiatives to reduce industrial CO2 emissions has created new opportunities for gas treating amines, particularly in power plants and manufacturing facilities. The increasing adoption of hybrid solvent systems, integrating amine-based absorption with membrane and adsorption technologies, has enhanced efficiency, making gas treatment more economically viable. Furthermore, investments in refinery modernization and natural gas processing capacity expansions across North America, the Middle East, and Asia-Pacific are expected to sustain market growth. As industries continue to seek cost-effective and environmentally friendly gas purification solutions, the demand for next-generation gas treating amines is poised for significant expansion in the coming years.

SCOPE OF STUDY:

The report analyzes the Gas Treating Amine market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Monoethanolamide, Diethanolamine, Ethanolamine, Other Gas Treating Amines); Application (Natural Gas Sweetening Application, Biogas Purification Application, Refinery Gas Treatment Application, Acid Gas Removal Application, Other Applications); End-User (Oil & Gas End-User, Refining End-User, Power Generation End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â