¼¼°èÀÇ °¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀå
Gas Analyzer Systems
»óǰÄÚµå : 1780851
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 288 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°¡½º ºÐ¼® ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °¡½º ºÐ¼® ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 3.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Àü±âÈ­ÇÐ ±â¼úÀº CAGR 3.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »óÀÚ¼º ±â¼ú ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 1,020¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 8¾ï 1,020¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 7¾ï 4,100¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.5%¿Í 2.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°¡½º ºÐ¼® ½Ã½ºÅÛÀº »ê¾÷°èÀÇ ¾ÈÀü°ú È¿À²¼ºÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

°¡½º ºÐ¼® ½Ã½ºÅÛÀº ¾ÈÀü, ±ÔÁ¦ Áؼö, °øÁ¤ ÃÖÀûÈ­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ¸ç »ê¾÷ ¿î¿µ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº »ê¾÷ ȯ°æ ³» °¡½º¸¦ °¨Áö, ¸ð´ÏÅ͸µ ¹× Á¤·®È­ÇÏ¿© À¯ÇØÇÑ ¹èÃâ, ´©Ãâ ¹× °¡½º Á¶¼ºÀÇ º¯µ¿ÀÌ ¿î¿µ ¹× Àη¿¡ À§ÇèÀ» ÃÊ·¡ÇÏÁö ¾Êµµ·Ï º¸ÀåÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¼®À¯ ¹× °¡½º, ¼®À¯È­ÇÐ, ¹ßÀü, ½ÄÀ½·á, Á¦¾à, ȯ°æ ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ °¡½º ºÐ¼®±â¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. Àû¿Ü¼±(IR) ºÐ±¤¹ý, »óÀڱ⠺м®, Àü±âÈ­ÇÐ ¼¾¼­, °¡½º Å©·Î¸¶Åä±×·¡ÇÇ µî ´Ù¾çÇÑ °ËÃâ ±â¼ú·Î °¡½º¸¦ Á¤¹ÐÇÏ°Ô ÃøÁ¤ÇÒ ¼ö ÀÖÀ¸¸ç, ¿ëµµ¿¡ µû¶ó °¢±â ´Ù¸¥ ÀåÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. Àû¿Ü¼± ¼¾¼­´Â źȭ¼ö¼Ò ¹× ¿Â½Ç °¡½º ÃøÁ¤¿¡ ƯÈ÷ È¿°úÀûÀ̸ç, Àü±â È­ÇÐ ¼¾¼­´Â Á¼Àº ÀÛ¾÷ °ø°£¿¡¼­ »ê¼Ò ¹× µ¶¼º °¡½º¸¦ °¨ÁöÇÏ´Â µ¥ ³Î¸® »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº »ê¾÷°è°¡ ¾ÈÀü Á¶Ä¡¸¦ °­È­Çϰí, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸç, »ý»ê °øÁ¤¿¡¼­ ÃÖÀûÀÇ °¡½º Á¶¼ºÀ» º¸ÀåÇÏ¿© ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

»ê¾÷ ¹èÃâ¹° ¹× ÀÛ¾÷Àå ¾ÈÀü¿¡ ´ëÇÑ Á¤ºÎ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó °¡½º ºÐ¼®±âÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ȯ°æº¸È£Ã»(EPA), »ê¾÷¾ÈÀüº¸°Çû(OSHA), À¯·´È¯°æÃ»(EEA) µîÀÇ ±ÔÁ¦±â°üÀº ´ë±âÁú°ú ¹èÃâ°¡½º¿¡ ´ëÇÑ ¾ö°ÝÇÑ °¡À̵å¶óÀÎÀ» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¤ À§¹ÝÀº ¹«°Å¿î ó¹úÀ̳ª °¡µ¿ Áß´ÜÀ¸·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, »ê¾÷°è´Â ÷´Ü °¡½º ºÐ¼® ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È­ÇÐ Ç÷£Æ®³ª Á¤À¯°øÀå µî À§ÇèÇÑ È¯°æ¿¡¼­ ¿î¿µµÇ´Â »ê¾÷¿¡¼­´Â °¡½º ´©ÃâÀ» °¨ÁöÇÏ°í ¾ÈÀüÇÑ ÀÛ¾÷ ȯ°æÀ» º¸ÀåÇϱâ À§ÇØ °¡½º ºÐ¼®±â¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼¾¼­ÀÇ ¼ÒÇüÈ­¿Í ¹«¼± ¿¬°áÀÇ ¹ßÀüµµ ÈÞ´ë¿ë °¡½º ºÐ¼®±âÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ¿ø°ÝÁö³ª Á¼Àº Àå¼Ò¿¡¼­µµ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ÈÞ´ë¿ë ÀåÄ¡´Â ºñ»ó ´ëÀÀ ½Ã³ª¸®¿À¿¡ ÇʼöÀûÀ̸ç, À§Çè °¡½º ·¹º§ÀÌ ÀÓ°è°ª¿¡ µµ´ÞÇϱâ Àü¿¡ ½Å¼ÓÇÏ°Ô °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷ °øÁ¤ÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁü¿¡ µû¶ó ´õ ³ôÀº Á¤È®µµ, ÀÚµ¿È­ ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ±â´ÉÀ» °®Ãá °¡½º ºÐ¼®±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

÷´Ü °¡½º ºÐ¼® ½Ã½ºÅÛÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷Àº?

°¡½º ºÐ¼®±â¿¡ ´ëÇÑ ¼ö¿ä´Â »ê¾÷¸¶´Ù ´Ù¸£¸ç, °¢ »ê¾÷Àº °¡½º Á¶¼º ¹× ¹èÃâ°¡½º ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °íÀ¯ÇÑ ¿ä±¸ »çÇ×À» °¡Áö°í ÀÖ½À´Ï´Ù. ¼®À¯ ¹× °¡½º ºÐ¾ß¿¡¼­ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´©Ãâ °¨Áö, źȭ¼ö¼Ò ºÐ¼®, ¿¬¼Ò È¿À² ÃÖÀûÈ­¿¡ ÇʼöÀûÀÔ´Ï´Ù. Á¤À¯¼Ò¿Í ÇØ¾ç ½ÃÃß Ç÷§Æû¿¡¼­´Â Èֹ߼º À¯±â È­ÇÕ¹°(VOC)À» ¸ð´ÏÅ͸µÇϰí ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ °íÁ¤¹Ð °¡½º ºÐ¼®±â¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ¹ßÀü »ê¾÷Àº ¿¬·á ¿¬¼Ò¸¦ ÃÖÀûÈ­Çϰí ÀÏ»êȭź¼Ò(CO), ÀÌ»êȭȲ(SO2), Áú¼Ò»êÈ­¹°(NOx) µîÀÇ ¿À¿°¹°Áú ¹èÃâÀ» ÁÙÀ̱â À§ÇØ °¡½º ºÐ¼®±â¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼®ÅºÈ­·Â¹ßÀü¼Ò³ª õ¿¬°¡½º ¹ßÀü¼Ò¿¡¼­´Â ¹è±â°¡½º¸¦ ¸ð´ÏÅ͸µÇÏ°í ¿¬¼Ò Á¦¾î¸¦ ÅëÇØ ¿¡³ÊÁö È¿À²À» ³ôÀ̱â À§ÇØ ¹è±â°¡½º ºÐ¼®±â¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è°¡ ûÁ¤¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ¼ö¼Ò »ý»ê ½Ã¼³µµ ¿¬·áÀüÁö ¹× ¿¡³ÊÁö ÀúÀå ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¼øµµ ¼öÁØÀ» º¸ÀåÇϱâ À§ÇØ °¡½º ºÐ¼®±â¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

Á¦¾à »ê¾÷°ú ½Äǰ »ê¾÷µµ °¡½º ºÐ¼® ½Ã½ºÅÛÀÇ ½ÃÀå ÃËÁø¿äÀÎÀ¸·Î Áß¿äÇÕ´Ï´Ù. ÀǾàǰ Á¦Á¶¿¡¼­ ÅëÁ¦µÈ ȯ°æÀ» À¯ÁöÇÏ´Â °ÍÀº ÀǾàǰÀÇ ¾ÈÁ¤¼º, ¹é½Å Á¦Á¶, ¹«±Õ 󸮿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °¡½º ºÐ¼®±â´Â ÀúÀå ½Ã¼³À̳ª Á¦Á¶ ½Ã¼³ÀÇ »ê¼Ò, ÀÌ»êȭź¼Ò, ½Àµµ ¼öÁØÀ» ¸ð´ÏÅ͸µÇϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ½Äǰ¾÷°è¿¡¼­´Â ½Å¼±µµ À¯Áö¸¦ À§ÇØ Á¤È®ÇÑ °¡½º Á¶¼ºÀÌ ÇÊ¿äÇÑ °¡½º´ëüÆ÷Àå(MAP)À¸·Î Á¦Ç°ÀÇ Ç°ÁúÀ» º¸ÀåÇϰí À¯Åë±âÇÑÀ» ¿¬ÀåÇϱâ À§ÇØ °¡½ººÐ¼®±â¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ °¨½Ã ±â°ü, ƯÈ÷ »ê¾÷ ¹èÃâ°¡½º°¡ ¿À¿°ÀÇ ¿øÀÎÀÌ µÇ´Â µµ½Ã Áö¿ª¿¡¼­´Â ´ë±âÁú Æò°¡ µµ±¸¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿À¿°¹°ÁúÀ» ÃßÀûÇÏ°í ´õ ¾ö°ÝÇÑ ´ë±âÁú ±âÁØÀ» ½ÃÇàÇϱâ À§ÇØ ¿¬¼Ó ¹èÃâ°¡½º ¸ð´ÏÅ͸µ ½Ã½ºÅÛ(CEMS)ÀÌ ±¤¹üÀ§ÇÏ°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. »ê¾÷ Ȱµ¿ÀÌ Àü ¼¼°èÀûÀ¸·Î È®´ëµÊ¿¡ µû¶ó ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â ½Ç½Ã°£ °¡½º ºÐ¼® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´ëµÎµÇ¸é¼­ ½ÃÀå ¼ºÀåÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

°¡½º ºÐ¼® ±â¼úÀ» Çü¼ºÇÏ´Â ÃÖ÷´Ü ±â¼ú Çõ½ÅÀ̶õ?

±â¼úÀÇ ¹ßÀüÀ¸·Î °¡½º ºÐ¼® ½Ã½ºÅÛÀÇ Á¤È®¼º, ±â´É¼º, È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. °¡Àå Çõ½ÅÀûÀÎ Çõ½Å Áß Çϳª´Â »ç¹°ÀÎÅͳÝ(IoT)°ú Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼®ÀÇ ÅëÇÕÀ¸·Î ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ¿ø°Ý Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀÔ´Ï´Ù. IoT¿¡ ¿¬°áµÈ °¡½º ºÐ¼®±â´Â Áß¾Ó °ü¸® ¼¾ÅÍ¿¡ Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ ½ºÆ®¸²À» Àü¼ÛÇÒ ¼ö ÀÖÀ¸¸ç, »ê¾÷°è´Â °¡½º ´©ÃâÀ̳ª º¯µ¿ÀÌ À§ÇèÇÑ »óȲÀ¸·Î È®´ëµÇ±â Àü¿¡ À̸¦ °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)µµ °¡½º ³óµµ µ¥ÀÌÅÍÀÇ Ãß¼¼¿Í ÀÌ»ó ¡Èĸ¦ ÆÄ¾ÇÇÏ¿© °¡½º ºÐ¼®À» ÃÖÀûÈ­ÇÏ°í º¸´Ù Á¤È®ÇÑ ¿¹Áöº¸Àü Àü·«À» ¼ö¸³ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ ÀÚµ¿È­´Â ´Ù¿îŸÀÓÀ» ÁÙÀ̰í, ¿î¿µ ¸®½ºÅ©¸¦ ÃÖ¼ÒÈ­Çϸç, ¿¡³ÊÁö È¿À²À» °³¼±ÇϰíÀÚ ÇÏ´Â »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

Æ©³Êºí ´ÙÀÌ¿Àµå ·¹ÀÌÀú ºÐ±¤¹ý(TDLS) ¹× ¾çÀÚ Ä³½ºÄÉÀÌµå ·¹ÀÌÀú(QCL)¿Í °°Àº ·¹ÀÌÀú ±â¹Ý °ËÃâ ±â¼úÀº ³ôÀº ¼±Åüº°ú °£¼· ¾ø´Â ÃøÁ¤À» Á¦°øÇÔÀ¸·Î½á °¡½º ºÐ¼®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº »ê¾÷ ¹èÃâ°¡½º ¹× Ŭ¸°·ë ȯ°æ¿¡¼­ ¹Ì·® °¡½º ³óµµ¸¦ °¨ÁöÇÏ´Â µ¥ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. ¶ÇÇÑ, Àü±âÈ­ÇÐ ¼¾¼­ÀÇ ¹ßÀüÀ¸·Î °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇÏ´Â ¼ÒÇüÀÇ °í°¨µµ °¡½º ºÐ¼®±â°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ »õ·Î¿î Æ®·»µå´Â ºñÁ¢ÃË½Ä ¹× ±¤ÇÐ½Ä °¡½º ºÐ¼®¹ýÀ¸·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®¹ýÀº ½Ã·á ÃßÃâÀÇ Çʿ伺À» ¾ø¾Ö°í, À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÈÞ´ë¿ë °¡½º ºÐ¼®±â´Â Á¤È®µµ, ³»±¸¼º, ¹èÅ͸® ¼ö¸íÀÌ Å©°Ô Çâ»óµÇ¾î ºñ»ó ´ëÀÀ, ȯ°æ ¸ð´ÏÅ͸µ, »ê¾÷ °Ë»ç µîÀÇ ÇöÀå ¿ëµµ¿¡ À¯¿ëÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´É¼º°ú ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦¿¡ ´ëÀÀÇÏ´Â °¡¿îµ¥, ÷´Ü ¼¾¼­, AI ±â¹Ý ºÐ¼®, IoT ¿¬°áÀ» °®Ãá °¡½º ºÐ¼®±â´Â ÄÄÇöóÀ̾ð½º, È¿À²¼º, ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

°¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

°¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦ÀÇ µµÀÔ Áõ°¡, »ê¾÷ ÀÚµ¿È­ÀÇ È®´ë, Áß¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ½Ç½Ã°£ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀÎÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ´õ¿í ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦¸¦ ½ÃÇàÇÔ¿¡ µû¶ó, »ê¾÷°è´Â ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϰí ó¹úÀ» ÇÇÇϱâ À§ÇØ °¡½º ºÐ¼®±â¿¡ ÅõÀÚÇØ¾ß¸¸ ÇÕ´Ï´Ù. ÀÌ´Â Áö¼ÓÀûÀÎ ¹èÃâ°¡½º ¸ð´ÏÅ͸µÀÌ Àǹ«È­µÈ ¹ßÀü, ¼®À¯ ¹× °¡½º, Á¦Á¶ ºÐ¾ß¿¡¼­ ƯÈ÷ µÎµå·¯Áý´Ï´Ù. ¼ö¼Ò¿Í õ¿¬°¡½º¸¦ Æ÷ÇÔÇÑ Ã»Á¤¿¡³ÊÁö¿øÀ¸·ÎÀÇ Àüȯµµ ¿¬·áÀÇ ¼øµµ¿Í ¿¬¼Ò È¿À²À» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â Àü¿ë °¡½º ºÐ¼®±â¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ¶óƾ¾Æ¸Þ¸®Ä«¸¦ Áß½ÉÀ¸·Î ÇÑ ½ÅÈï °æÁ¦±ÇÀÇ ±Þ¼ÓÇÑ »ê¾÷È­´Â ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼­ °¡½º ºÐ¼® ±â¼úÀÇ Ã¤Åà Ȯ´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

AI ±â¹Ý ¿¹Áöº¸Àü, IoT ´ëÀÀ °¡½º ¸ð´ÏÅ͸µ, ¼ÒÇüÈ­ ¼¾¼­ µîÀÇ ±â¼ú ¹ßÀüµµ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® Á¦Á¶¿Í Àδõ½ºÆ®¸® 4.0Àº »ê¾÷ ȯ°æÀ» À籸¼ºÇϰí ÀÖÀ¸¸ç, °øÁ¤ Á¦¾î¸¦ °­È­Çϱâ À§ÇØ ÀÚµ¿È­ ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â °¡½º ºÐ¼®±â°¡ ÇÊ¿äÇÕ´Ï´Ù. Á¦¾à ¹× ½Äǰ »ê¾÷¿¡¼­´Â »ý»ê ¹× Æ÷Àå °øÁ¤¿¡¼­ Á¤¹ÐÇÑ °¡½º ¼ººÐ ¸ð´ÏÅ͸µÀÇ Çʿ伺ÀÌ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÛ¾÷Àå ¾ÈÀü°ú ȯ°æ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÇöÀå¿ë ÈÞ´ë¿ë ¹«¼± °¡½º ºÐ¼®±â¿¡ ´ëÇÑ ÅõÀÚ°¡ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ·¹ÀÌÀú ±â¹Ý ¹× ºñÁ¢ÃË½Ä °¡½º °ËÃâ ¹æ¹ýÀÇ ¿¬±¸ °³¹ß È®´ë´Â ½ÃÀå ¼ºÀåÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´É¼º, È¿À²¼º, ±ÔÁ¦ Áؼö¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, °¡½º ºÐ¼® ½Ã½ºÅÛ ½ÃÀåÀº ½Ç½Ã°£ °¡½º ÃøÁ¤ ¹× ºÐ¼®À» À§ÇÑ ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á Å« ¹ßÀüÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(Àü±âÈ­ÇÐ ±â¼ú, »óÀÚ¼º ±â¼ú, Áö¸£ÄÚ´Ï¾Æ ±â¼ú, ºñºÐ»ê IR ±â¼ú, ±âŸ ±â¼ú), ÃÖÁ¾»ç¿ëÀÚ(¼®À¯ ¹× °¡½º ÃÖÁ¾»ç¿ëÀÚ, È­ÇС¤¼®À¯È­ÇÐ ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, Á¶»ç ÃÖÁ¾»ç¿ëÀÚ, »óÇϼöµµ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gas Analyzer Systems Market to Reach US$3.7 Billion by 2030

The global market for Gas Analyzer Systems estimated at US$3.0 Billion in the year 2024, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 3.7% over the analysis period 2024-2030. Electrochemical Technology, one of the segments analyzed in the report, is expected to record a 3.3% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the Paramagnetic Technology segment is estimated at 4.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$810.2 Million While China is Forecast to Grow at 6.8% CAGR

The Gas Analyzer Systems market in the U.S. is estimated at US$810.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$741.0 Million by the year 2030 trailing a CAGR of 6.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.5% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.2% CAGR.

Global Gas Analyzer Systems Market - Key Trends & Drivers Summarized

How Are Gas Analyzer Systems Transforming Industrial Safety and Efficiency?

Gas analyzer systems have become an integral part of industrial operations, playing a crucial role in safety, regulatory compliance, and process optimization. These systems are designed to detect, monitor, and quantify gases within industrial environments, ensuring that harmful emissions, leaks, or fluctuations in gas composition do not pose risks to operations or personnel. Various industries rely on gas analyzers, including oil and gas, petrochemicals, power generation, food and beverage, pharmaceuticals, and environmental monitoring. Different detection technologies such as infrared (IR) spectroscopy, paramagnetic analysis, electrochemical sensors, and gas chromatography allow for precise measurement of gases, each with its own advantages depending on the application. Infrared sensors are particularly effective in measuring hydrocarbons and greenhouse gases, while electrochemical sensors are widely used for detecting oxygen and toxic gases in confined workspaces. These technologies help industries enhance safety measures, minimize environmental impact, and improve energy efficiency by ensuring optimal gas compositions during production processes.

The increasing stringency of government regulations regarding industrial emissions and workplace safety has led to the widespread adoption of gas analyzers. Regulatory bodies such as the Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), and the European Environment Agency (EEA) enforce strict guidelines on air quality and emissions. Non-compliance can result in heavy penalties and operational shutdowns, prompting industries to invest in sophisticated gas analysis systems. Furthermore, industries that operate in hazardous environments, such as chemical plants and oil refineries, utilize gas analyzers to detect leaks and ensure safe working conditions. Advances in sensor miniaturization and wireless connectivity have also contributed to the growth of portable gas analyzers, allowing real-time monitoring in remote or confined locations. These portable units are essential in emergency response scenarios, enabling rapid detection of hazardous gas levels before they reach critical thresholds. As industrial processes become increasingly complex, the demand for gas analyzers with higher accuracy, automation, and remote monitoring capabilities is expected to grow significantly.

Which Industries Are Driving the Demand for Advanced Gas Analyzer Systems?

The demand for gas analyzers varies across industries, each with unique requirements for monitoring gas compositions and emissions. In the oil and gas sector, these systems are indispensable for leak detection, hydrocarbon analysis, and combustion efficiency optimization. Refineries and offshore drilling platforms utilize high-precision gas analyzers to monitor volatile organic compounds (VOCs) and ensure compliance with environmental regulations. Similarly, the power generation industry depends on gas analyzers to optimize fuel combustion and reduce the emission of pollutants such as carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen oxides (NOx). Coal-fired and natural gas power plants deploy flue gas analyzers to monitor exhaust emissions and enhance energy efficiency through combustion control. With the global transition towards cleaner energy sources, hydrogen production facilities are also increasing their reliance on gas analyzers to ensure purity levels in fuel cells and energy storage applications.

The pharmaceutical and food industries also represent significant market drivers for gas analyzer systems. In pharmaceutical manufacturing, maintaining controlled environments is crucial for drug stability, vaccine production, and sterile processing. Gas analyzers are employed to monitor oxygen, carbon dioxide, and humidity levels in storage and production facilities. The food industry utilizes gas analyzers to ensure product quality and extend shelf life through Modified Atmosphere Packaging (MAP), where precise gas composition is necessary to preserve freshness. Additionally, environmental monitoring agencies are witnessing a growing need for air quality assessment tools, especially in urban areas where industrial emissions contribute to pollution. Continuous Emission Monitoring Systems (CEMS) are being widely implemented to track pollutants and enforce stricter air quality standards. As industrial activities expand globally, the necessity for reliable, real-time gas analysis solutions is becoming more pronounced across various sectors, further accelerating market growth.

What Are the Cutting-Edge Innovations Reshaping Gas Analysis Technology?

Technological advancements are significantly enhancing the precision, functionality, and efficiency of gas analyzer systems. One of the most transformative innovations is the integration of the Internet of Things (IoT) and cloud-based analytics, which enable real-time monitoring, predictive maintenance, and remote diagnostics. IoT-connected gas analyzers can transmit continuous data streams to centralized control centers, allowing industries to detect gas leaks and fluctuations before they escalate into hazardous situations. Artificial intelligence (AI) is also playing a pivotal role in optimizing gas analysis by identifying trends and anomalies in gas concentration data, leading to more accurate predictive maintenance strategies. This level of automation is crucial for industries aiming to reduce downtime, minimize operational risks, and improve energy efficiency.

Laser-based detection technologies, such as Tunable Diode Laser Spectroscopy (TDLS) and Quantum Cascade Lasers (QCL), are revolutionizing gas analysis by offering highly selective and interference-free measurements. These technologies are particularly effective in detecting trace gas concentrations in industrial emissions and cleanroom environments. Additionally, advancements in electrochemical sensors have led to the development of compact, high-sensitivity gas analyzers that can operate in extreme conditions. Another emerging trend is the shift toward non-contact and optical gas analysis methods, which eliminate the need for sample extraction and reduce maintenance costs. Portable gas analyzers have also seen significant improvements in accuracy, durability, and battery life, making them invaluable for field applications such as emergency response, environmental monitoring, and industrial inspections. As industries strive for sustainability and stricter emission controls, gas analyzers equipped with advanced sensors, AI-driven analytics, and IoT connectivity will play an increasingly vital role in ensuring compliance, efficiency, and safety.

What Are the Key Factors Driving the Growth of the Gas Analyzer Systems Market?

The growth in the gas analyzer systems market is driven by several factors, including the increasing implementation of stringent environmental regulations, the expansion of industrial automation, and the growing need for real-time monitoring in critical applications. As governments worldwide enforce stricter emissions policies, industries are compelled to invest in gas analyzers to ensure compliance and avoid penalties. This is particularly evident in the power generation, oil and gas, and manufacturing sectors, where continuous emission monitoring is mandatory. The transition toward clean energy sources, including hydrogen and natural gas, is also accelerating the demand for specialized gas analyzers capable of monitoring fuel purity and combustion efficiency. Furthermore, rapid industrialization in emerging economies, particularly in Asia-Pacific and Latin America, is contributing to increased adoption of gas analysis technologies across multiple industries.

Technological advancements such as AI-driven predictive maintenance, IoT-enabled gas monitoring, and miniaturized sensors are also fueling market expansion. Smart manufacturing and Industry 4.0 are reshaping the industrial landscape, requiring gas analyzers that can integrate seamlessly with automated systems for enhanced process control. In the pharmaceutical and food industries, the need for precise gas composition monitoring in production and packaging processes is further driving demand. Additionally, the growing emphasis on workplace safety and environmental monitoring is encouraging investments in portable and wireless gas analyzers for field applications. The expansion of research and development in laser-based and non-contact gas detection methods is expected to create new opportunities for market growth. As industries prioritize sustainability, efficiency, and regulatory compliance, the gas analyzer systems market is poised for significant advancements, offering cutting-edge solutions for real-time gas measurement and analysis.

SCOPE OF STUDY:

The report analyzes the Gas Analyzer Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Electrochemical Technology, Paramagnetic Technology, Zirconia Technology, Non-Dispersive IR Technology, Other Technologies); End-Use (Oil & Gas End-Use, Chemical & Petrochemical End-Use, Healthcare End-Use, Research End-Use, Water & Wastewater End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â